Optimization of Enzymatic Deproteination of Northern Shrimp (Pandalus borealis) Shell Chitin Using Commercial Proteases
Abstract
:1. Introduction
2. Results and Discussions
2.1. Enzymatic Deproteination
2.2. SEB Pro FL100
2.3. Sea-B-Zyme L200
2.4. Confirmation Runs, Sea B Zyme L200
2.5. Calculation of Total Deproteination during Chitin Extraction
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Shell and Demineralization
3.3. Analytical Methods
3.4. Caustic Deproteination
3.5. Gas Chromatography–Mass Spectrometer (GC-MS) Analysis
3.6. Enzymatic Deproteination
3.7. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shahidi, F.; Hossain, A. Preservation of aquatic food using edible films and coatings containing essential oils: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 66–105. [Google Scholar] [CrossRef] [PubMed]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Senadheera, R.L.T.; Hossain, A.; Shahidi, F. Marine bioactives and their application in the food industry: A review. Appl. Sci. 2023, 13, 12088. [Google Scholar] [CrossRef]
- Hayes, M. Chitin, chitosan and their derivatives from marine rest raw materials: Potential food and pharmaceutical applications. In Marine Bioactive Compounds: Sources, Characterization and Applications; Hayes, M., Ed.; Springer US: Boston, MA, USA, 2012; pp. 115–128. [Google Scholar]
- Pohling, J.; Hawboldt, K.; Dave, D. Comprehensive review on pre-treatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications. Green Chem. 2022, 24, 6790. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. The good, the bad and the ugly of chitosans. Mar. Drugs 2016, 14, 99. [Google Scholar] [CrossRef]
- Onodenalore, C.A.; Hossain, A.; Banoub, J.; Shahidi, F. Unique heterocyclic phenolic compounds from shrimp (Pandalus borealis) and beyond. Food Prod. Process. Nutr. 2024, 6, 29. [Google Scholar] [CrossRef]
- DFO. Seafisheries Landings. Available online: https://www.dfo-mpo.gc.ca/stats/commercial/sea-maritimes-eng.htm (accessed on 15 July 2024).
- Hossain, A.; Shahidi, F. Upcycling shellfish waste: Distribution of amino acids, minerals, and carotenoids in body parts of North Atlantic crab and shrimp. Foods 2024, 13, 2700. [Google Scholar] [CrossRef]
- Pohling, J.; Dave, D.; Liu, Y.; Murphy, W.; Trenholm, S. Two-Step Demineralization of Shrimp (Pandalus borealis) Shells Using Citric Acid: An Environmentally Friendly, Safe and Cost-Effective Alternative to the Traditional Approach. Green Chem. 2022, 24, 1141–1151. [Google Scholar] [CrossRef]
- Setoguchi, T.; Kato, T.; Yamamoto, K.; Kadokawa, J.-I. Facile Production of Chitin from Crab Shells Using Ionic Liquid and Citric Acid. Int. J. Biol. Macromol. 2012, 50, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, G.A.E.; Arab, F. Unconventional Approach for Demineralization of Deproteinized Crustacean Shells for Chitin Production. Am. J. Biochem. Biotechnol. 2007, 3, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.C.; Liu, C.; Liu, X.; Lu, Y.; Zhou, G.; Liu, C.; Mei, C. Microwave-assisted deep eutectic solvent extraction of chitin from crayfish shell wastes for 3D printable inks. Ind. Crops Prod. 2023, 194, 116325. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, W.; Liu, P.; Cheng, Q.; Tahirou, T.; Gu, W.; Li, B. Chitosan Modification and Pharmaceutical/Biomedical Applications. Mar. Drugs 2010, 8, 1962–1987. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers. Mar. Drugs 2010, 8, 292–312. [Google Scholar] [CrossRef]
- Mao, X.; Guo, N.; Sun, J.; Xue, C. Comprehensive Utilization of Shrimp Waste Based on Biotechnological Methods: A Review. J. Clean. Prod. 2017, 143, 814–823. [Google Scholar] [CrossRef]
- Marzieh, M.N.; Zahra, F.; Tahereh, E.; Sara, K.N. Comparison of the Physicochemical and Structural Characteristics of Enzymatically Produced Chitin and Commercial Chitin. Int. J. Biol. Macromol. 2019, 139, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Mæhre, H.K.; Dalheim, L.; Edvinsen, G.K.; Elvevoll, E.O.; Jensen, I.-J. Protein Determination—Method Matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef]
- Kim, S.-K.; Mendis, E. Bioactive Compounds from Marine Processing Byproducts—A Review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Boonkham, A.; Suwancharoen, S.; Suwannawong, P.; Buntham, B.; Nguendee, J. Shrimp shell deproteinization by using papain and antifungal of chitosan against Fusarium oxysporum. J. King Mongkut’s Univ. Technol. North Bangk. 2019, 29, 282–291. [Google Scholar]
- Rohyami, Y.; Istiningrum, R.B.; Puspasari, I. The Influence of Papain Concentration on Deacetylation Degree of Chitin. AIP Conf. Proc. 2018, 2026, 020070. [Google Scholar]
- Valdez-Pena, A.U.; Espinoza-Perez, J.D.; Sandoval-Fabian, G.C.; Balagurusamy, N.; Hernandez-Rivera, A.; De-la-Garza-Rodriguez, I.M.; Contreras-Esquivel, J.C. Screening of Industrial Enzymes for Deproteination of Shrimp Head for Chitin Recovery. Food Sci. Biotechnol. 2010, 19, 553–557. [Google Scholar] [CrossRef]
- Deng, J.J.; Mao, H.H.; Fang, W.; Li, Z.Q.; Shi, D.; Li, Z.W.; Zhou, T.; Luo, X.C. Enzymatic Conversion and Recovery of Protein, Chitin, and Astaxanthin from Shrimp Shell Waste. J. Clean. Prod. 2020, 271, 122655. [Google Scholar] [CrossRef]
- Gagne, N.; Simpson, B.K. Use of Proteolytic Enzymes to Facilitate the Recovery of Chitin from Shrimp Wastes. Food Biotechnol. 1993, 7, 253–263. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Noriega, D.; Ramos, P.; Valcarcel, J.; Novoa-Carballal, R.; Pastrana, L.; Reis, R.L.; Pérez-Martín, R.I. Optimization of High Purity Chitin and Chitosan Production from Illex argentinus Pens by a Combination of Enzymatic and Chemical Processes. Carbohydr. Polym. 2017, 174, 262–272. [Google Scholar] [CrossRef]
- Dhanabalan, V.; Xavier, K.A.M.; Eppen, S.; Joy, A.; Balange, A.; Asha, K.K.; Murthy, L.N.; Nayak, B.B. Characterization of Chitin Extracted from Enzymatically Deproteinized Acetes Shell Residue with Varying Degree of Hydrolysis. Carbohydr. Polym. 2021, 253, 117203. [Google Scholar] [CrossRef]
- Younes, I.; Ghorbel-Bellaaj, O.; Nasri, R.; Chaabouni, M.; Rinaudo, M.; Nasri, M. Chitin and Chitosan Preparation from Shrimp Shells Using Optimized Enzymatic Deproteinization. Process Biochem. 2012, 47, 2032–2039. [Google Scholar] [CrossRef]
- Younes, I.; Hajji, S.; Frachet, V.; Rinaudo, M.; Jellouli, K.; Nasri, M. Chitin Extraction from Shrimp Shell Using Enzymatic Treatment: Antitumor, Antioxidant, and Antimicrobial Activities of Chitosan. Int. J. Biol. Macromol. 2014, 69, 489–498. [Google Scholar] [CrossRef]
- Younes, I.; Hajji, S.; Rinaudo, M.; Chaabouni, M.; Jellouli, K.; Nasri, M. Optimization of Protein and Mineral Removal from Shrimp Shells to Produce Highly Acetylated Chitin. Int. J. Biol. Macromol. 2016, 84, 246–253. [Google Scholar] [CrossRef]
- Arbia, W.; Arbia, L.; Adour, L.; Amrane, A. Chitin Extraction from Crustacean Shells Using Biological Methods—A Review. Food Technol. Biotechnol. 2013, 51, 12–25. [Google Scholar]
- Harmsen, R.A.G.; Tuveng, T.R.; Antonsen, S.G.; Eijsink, V.G.H.; Sørlie, M. Can We Make Chitosan by Enzymatic Deacetylation of Chitin? Molecules 2019, 24, 3862. [Google Scholar] [CrossRef]
- Limam, Z.; Arafa, S.; Sadok, S.; El Abed, A. Lipids and Fatty Acids Composition in the Tissues and By-Products of Two Tunisian Shrimp Species from the North and South Regions. Nutr. Health 2008, 19, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Ramos, P.; Mirón, J.; Valcarcel, J.; Sotelo, C.; Pérez-Martín, R. Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology. Mar. Drugs 2017, 15, 180. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, M.; Hajji, S.; Affes, S.; Taktak, W.; Maâlej, H.; Nasri, M.; Nasri, R. Development of a Controlled Bioconversion Process for the Recovery of Chitosan from Blue Crab (Portunus segnis) Exoskeleton. Food Hydrocoll. 2018, 77, 534–548. [Google Scholar] [CrossRef]
- Dong, Q.; Qiu, W.; Feng, Y.; Jin, Y.; Deng, S.; Tao, N.; Jin, Y. Proteases and Microwave Treatment on the Quality of Chitin and Chitosan Produced from White Shrimp (Penaeus vannamei). eFood 2023, 4, 73. [Google Scholar] [CrossRef]
- Storer, A.C.; Menard, R. Papain—An Overview. In Handbook of Proteolytic Enzymes, 3rd ed.; Academic Press Inc.: Cambridge, MA, USA, 2013. [Google Scholar]
- Ojha, B.K.; Singh, P.K.; Shrivastava, N. Enzymes in the Animal Feed Industry. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 93–109. [Google Scholar]
- King, C.; Stein, R.S.; Shamshina, J.L.; Rogers, R.D. Measuring the Purity of Chitin with a Clean, Quantitative Solid-State NMR Method. ACS Sustain. Chem. Eng. 2017, 5, 8011–8016. [Google Scholar] [CrossRef]
- Pacheco, N.; Garnica-Gonzalez, M.; Gimeno, M.; Bárzana, E.; Trombotto, S.; David, L.; Shirai, K. Structural Characterization of Chitin and Chitosan Obtained by Biological and Chemical Methods. Biomacromolecules 2011, 12, 3285–3290. [Google Scholar] [CrossRef]
- Rødde, R.H.; Einbu, A.; Vårum, K.M. A Seasonal Study of the Chemical Composition and Chitin Quality of Shrimp Shells Obtained from Northern Shrimp (Pandalus borealis). Carbohydr. Polym. 2008, 71, 388–393. [Google Scholar] [CrossRef]
ID | pH | Temp (°C) | Conc (%) | Time (h) | Mean Total N (%) | SD Total N | Protein N (%) | Residual Protein (%) |
---|---|---|---|---|---|---|---|---|
1 | 6.00 | 55.0 | 0.10 | 12 | 8.95 | 0.30 | 2.23 | 13.92 |
2 | 6.00 | 40.0 | 4.00 | 2 | 8.83 | 0.00 | 2.11 | 13.21 |
3 | 6.00 | 55.0 | 4.00 | 12 | 8.93 | 0.16 | 2.21 | 13.79 |
4 | 6.00 | 40.0 | 0.10 | 12 | 9.26 | 0.06 | 2.54 | 15.87 |
5 | 3.00 | 55.0 | 0.10 | 2 | 8.47 | 0.09 | 1.75 | 10.94 |
6 | 3.00 | 40.0 | 4.00 | 12 | 7.81 | 0.05 | 1.09 | 6.82 |
7 | 3.00 | 55.0 | 4.00 | 2 | 7.74 | 0.05 | 1.02 | 6.37 |
8 | 3.00 | 55.0 | 4.00 | 12 | 7.52 | 0.16 | 0.80 | 5.03 |
9 | 6.00 | 40.0 | 0.10 | 2 | 9.31 | 0.02 | 2.59 | 16.22 |
10 | 6.00 | 55.0 | 0.10 | 2 | 9.10 | 0.00 | 2.38 | 14.85 |
11 | 4.50 | 47.5 | 2.05 | 7 | 7.89 | 0.09 | 1.17 | 7.31 |
12 | 3.00 | 55.0 | 0.10 | 12 | 8.58 | 0.04 | 1.86 | 11.62 |
13 | 3.00 | 40.0 | 0.10 | 12 | 8.52 | 0.06 | 1.80 | 11.28 |
14 | 6.00 | 40.0 | 4.00 | 12 | 8.77 | 0.11 | 2.05 | 12.83 |
15 | 3.00 | 40.0 | 4.00 | 2 | 8.08 | 0.02 | 1.36 | 8.49 |
16 | 4.50 | 47.5 | 2.05 | 7 | 7.87 | 0.03 | 1.15 | 7.17 |
17 | 6.00 | 55.0 | 4.00 | 2 | 8.82 | 0.11 | 2.10 | 13.14 |
18 | 4.50 | 47.5 | 2.05 | 7 | 7.82 | 0.01 | 1.10 | 6.87 |
19 | 3.00 | 40.0 | 0.10 | 2 | 8.83 | 0.08 | 2.11 | 13.18 |
ID | Time (h) | Conc (%) | pH | Mean Total N (%) | SD N | Protein N (%) | Residual Protein (%) |
---|---|---|---|---|---|---|---|
1 | 8 | 4 | 4.2 | 7.54 | 0.06 | 0.82 | 5.15 |
2 | 8 | 2 | 4.7 | 8.32 | 0.02 | 1.60 | 9.98 |
3 | 1 | 4 | 4.7 | 8.16 | 0.01 | 1.44 | 8.97 |
4 | 1 | 2 | 4.2 | 8.09 | 0.03 | 1.37 | 8.54 |
5 | 2 | 1 | 4.7 | 8.72 | 0.06 | 2.00 | 12.52 |
6 | 4 | 1 | 4.2 | 8.46 | 0.02 | 1.74 | 10.90 |
7 | 2 | 2 | 4.7 | 8.39 | 0.00 | 1.67 | 10.42 |
8 | 4 | 4 | 4.7 | 8.05 | 0.04 | 1.33 | 8.28 |
9 | 2 | 4 | 4.2 | 7.77 | 0.02 | 1.05 | 6.58 |
10 | 1 | 1 | 4.7 | 8.73 | 0.05 | 2.01 | 12.56 |
Enzyme Concentration | pH | Residual Protein Content |
---|---|---|
2 | 4.2 | 8.23 |
4 | 4.7 | 8.31 |
2 | 4.7 | 10.36 |
1 | 4.2 | 10.58 |
1 | 4.7 | 12.70 |
ID | pH | Temperature | Conc | Time | Mean Total N (%) | SD Total N | Protein N | Residual Protein (%) |
---|---|---|---|---|---|---|---|---|
1 | 7.00 | 70 | 0.50 | 2 | 7.31 | 0.03 | 0.59 | 3.68 |
2 | 7.00 | 60 | 1.50 | 8 | 7.19 | 0.02 | 0.47 | 2.95 |
3 | 7.00 | 60 | 1.50 | 2 | 7.32 | 0.04 | 0.60 | 3.75 |
4 | 7.00 | 60 | 0.50 | 8 | 7.37 | 0.06 | 0.65 | 4.04 |
5 | 5.50 | 60 | 0.50 | 2 | 8.09 | 0.01 | 1.37 | 8.59 |
6 | 6.25 | 65 | 1.00 | 5 | 7.44 | 0.00 | 0.72 | 4.51 |
7 | 5.50 | 70 | 1.50 | 2 | 7.53 | 0.04 | 0.81 | 5.07 |
8 | 5.50 | 60 | 0.50 | 8 | 7.87 | 0.06 | 1.15 | 7.19 |
9 | 5.50 | 70 | 0.50 | 8 | 7.53 | 0.05 | 0.81 | 5.03 |
10 | 5.50 | 60 | 1.50 | 2 | 7.75 | 0.01 | 1.03 | 6.47 |
11 | 7.00 | 60 | 0.50 | 2 | 7.60 | 0.01 | 0.88 | 5.47 |
12 | 7.00 | 70 | 1.50 | 8 | 7.22 | 0.04 | 0.50 | 3.10 |
13 | 5.50 | 70 | 0.50 | 2 | 7.85 | 0.10 | 1.13 | 7.09 |
14 | 6.25 | 65 | 1.00 | 5 | 7.38 | 0.04 | 0.66 | 4.13 |
15 | 5.50 | 70 | 1.50 | 8 | 7.73 | 0.02 | 1.01 | 6.33 |
16 | 7.00 | 70 | 1.50 | 2 | 7.05 | 0.57 | 0.33 | 2.06 |
17 | 6.25 | 65 | 1.00 | 5 | 7.48 | 0.03 | 0.76 | 4.72 |
18 | 5.50 | 60 | 1.50 | 8 | 7.58 | 0.07 | 0.86 | 5.36 |
19 | 7.00 | 70 | 0.50 | 8 | 7.20 | 0.05 | 0.48 | 3.03 |
pH | Temp (°C) | Enzyme Concentration (%) | Reaction Time (h) | Predicted Residual Protein Content (%) |
---|---|---|---|---|
7 | 70 | 0.5 | 8 | 2.77 |
7 | 60 | 1.5 | 8 | 2.89 |
7 | 70 | 1.5 | 8 | 2.94 |
7 | 60 | 1.5 | 2 | 3.34 |
7 | 70 | 0.5 | 2 | 3.61 |
Residual protein (%) | ||
---|---|---|
Kjeldahl Approach | Amino Acid Analysis | |
Sample ID | Mean ±SD (%) | Mean ± SD (%) |
Before deproteination | 17.28 ± 0.04 | 17.38 ± 0.18 |
1 | 2.25 ± 0.08 | 2.24 ± 0.14 |
2 | 0.00 ± 0.00 * | 2.50 ± 0.10 |
3 | 1.40 ± 0.13 | 4.65 ± 0.25 * |
4 | 0.93 ± 0.70 | 2.73 ± 0.58 |
5 | 5.43 ± 1.14 * | 2.77 ± 1.14 |
6 | 1.56 ± 0.26 | 2.39 ± 0.11 |
7 | 0.75 ± 0.61 | 1.79 ± 0.12 |
8 | 0.84 ± 0.13 | 1.47 ± 0.01 |
9 | 2.87 ± 0.08 | 1.67 ± 0.17 |
10 | 2.50 ± 2.20 | 1.49 ± 0.22 |
11 | 1.09 ± 0.57 | 1.69 ± 0.03 |
12 | 1.59 ± 0.13 | 1.85 ± 0.08 |
13 | 1.18 ± 0.35 | 1.76 ± 0.20 |
14 | 2.37 ± 1.32 | 2.86 ± 0.76 |
15 | 1.87 ± 0.70 | 2.05 ± 1.06 |
16 | 2.68 ± 0.70 | 1.55 ± 0.50 |
17 | 1.09 ± 0.22 | 1.61 ± 0.11 |
18 | 1.56 ± 0.97 | 2.46 ± 0.26 |
19 | 1.78 ± 0.39 | 1.53 ± 0.15 |
20 | 1.31 ± 0.08 | 1.83 ± 0.37 |
Grand average | 1.65 ± 0.53 | 2.01 ± 0.34 |
Factor | Sea-B-Zyme L200 | SEB Pro FL100 | ||
---|---|---|---|---|
Low | High | Low | High | |
pH | 5.5 | 7 | 3 | 6 |
Temperature (°C) | 60 | 70 | 40 | 55 |
Enzyme concentration (% of reaction volume) | 0.5 | 1.5 | 0.1 | 4 |
Reaction time (h) | 2 | 8 | 2 | 12 |
Factor | Levels | Values |
---|---|---|
Reaction time (h) | 4 | 1, 2, 4, and 8 |
Enzyme concentration (% of reaction volume) | 3 | 1, 2, and 4 |
pH | 2 | 4.2 and 4.7 |
ID | Time | Enzyme Concentration | pH |
---|---|---|---|
1 | 8 | 4 | 4.2 |
2 | 8 | 2 | 4.7 |
3 | 1 | 4 | 4.7 |
4 | 1 | 2 | 4.2 |
5 | 2 | 1 | 4.7 |
6 | 4 | 1 | 4.2 |
7 | 2 | 2 | 4.7 |
8 | 4 | 4 | 4.7 |
9 | 2 | 4 | 4.2 |
10 | 1 | 1 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohling, J.; Ramakrishnan, V.V.; Hossain, A.; Trenholm, S.; Dave, D. Optimization of Enzymatic Deproteination of Northern Shrimp (Pandalus borealis) Shell Chitin Using Commercial Proteases. Mar. Drugs 2024, 22, 445. https://doi.org/10.3390/md22100445
Pohling J, Ramakrishnan VV, Hossain A, Trenholm S, Dave D. Optimization of Enzymatic Deproteination of Northern Shrimp (Pandalus borealis) Shell Chitin Using Commercial Proteases. Marine Drugs. 2024; 22(10):445. https://doi.org/10.3390/md22100445
Chicago/Turabian StylePohling, Julia, Vegneshwaran Vasudevan Ramakrishnan, Abul Hossain, Sheila Trenholm, and Deepika Dave. 2024. "Optimization of Enzymatic Deproteination of Northern Shrimp (Pandalus borealis) Shell Chitin Using Commercial Proteases" Marine Drugs 22, no. 10: 445. https://doi.org/10.3390/md22100445
APA StylePohling, J., Ramakrishnan, V. V., Hossain, A., Trenholm, S., & Dave, D. (2024). Optimization of Enzymatic Deproteination of Northern Shrimp (Pandalus borealis) Shell Chitin Using Commercial Proteases. Marine Drugs, 22(10), 445. https://doi.org/10.3390/md22100445