Characterization of the Antiproliferative Activity of Sargassum muticum Low and High Molecular Weight Polysaccharide Fractions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Process and Membrane Fractionation
2.2. Characterization of the Solid Fraction
2.3. Rheology of Alginate
2.4. Characterization of the Liquid Fraction
2.5. Reduction in Tumor Cell Viability Induced by the Fractions In Vitro
2.6. Synergistic Cytotoxic Effect of R100 and R50 with Chemotherapeutic Drugs
3. Materials and Methods
3.1. Raw Material
3.2. Pressing Process
3.3. Extraction Treatment
3.4. Alginate Precipitation
3.5. Rheology of the Biopolymer
3.6. Membrane Fractionation
3.7. Characterization of Raw Material and Residual Solid Phase
3.8. Characterization of Liquid Phases
3.8.1. Phloroglucinol Content
3.8.2. Trolox Equivalent Antioxidant Capacity Assay
3.8.3. Sulfate Content
3.8.4. Protein Content
3.8.5. Carbohydrate Content
3.8.6. High-Performance Size Exclusion Chromatography
3.8.7. Fourier Transform Infrared Spectroscopy
3.8.8. Cell lines and Antitumoral Reagents
3.8.9. Cell Viability Assays
Stock Solutions
MTS
xCELLigence
Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H. Review: An Overview about the Structure–Function Relationship of Marine Sulfated Homopolysaccharides with Regular Chemical Structures. Biopolymers 2009, 91, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar. Drugs 2021, 19, 620. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Nagahawatta, D.P.; Fernando, I.P.S.; Kim, Y.-T.; Kim, J.-S.; Kim, W.-S.; Lee, J.S.; Jeon, Y.-J. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar. Drugs 2022, 20, 755. [Google Scholar] [CrossRef]
- Mensah, E.O.; Kanwugu, O.N.; Panda, P.K.; Adadi, P. Marine Fucoidans: Structural, Extraction, Biological Activities and Their Applications in the Food Industry. Food Hydrocoll. 2023, 142, 108784. [Google Scholar] [CrossRef]
- Bogolitsyn, K.; Parshina, A.; Ivanchenko, N.; Polomarchuk, D. Seasonal Variations in the Chemical Composition of Arctic Brown Macroalgae. Algal Res. 2023, 72, 103112. [Google Scholar] [CrossRef]
- Moomin, A.; Russell, W.R.; Knott, R.M.; Scobbie, L.; Mensah, K.B.; Adu-Gyamfi, P.K.T.; Duthie, S.J. Season, Storage and Extraction Method Impact on the Phytochemical Profile of Terminalia Ivorensis. BMC Plant Biol. 2023, 23, 162. [Google Scholar] [CrossRef]
- Getachew, A.T.; Holdt, S.L.; Meyer, A.S.; Jacobsen, C. Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Mar. Drugs 2022, 20, 263. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Ortega-Barbosa, J.P.; Parada-Alfonso, F.; Ferreira, S.R.S.; del Pilar Sánchez-Camargo, A. Chapter 13—Supercritical Fluid Extraction of Lipids, Carotenoids, and Other Compounds from Marine Sources. In Innovative and Emerging Technologies in the Bio-Marine Food Sector; Garcia-Vaquero, M., Rajauria, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 277–317. ISBN 978-0-12-820096-4. [Google Scholar]
- Gan, A.; Baroutian, S. Subcritical Water Extraction for Recovery of Phenolics and Fucoidan from New Zealand Wakame (Undaria pinnatifida) Seaweed. J. Supercrit. Fluids 2022, 190, 105732. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the Chemical Composition of Brown Seaweed (Saccharina japonica) Hydrolysate by Pressurized Hot Water Extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Balboa, M.E.; Rivas, S.; Moure, A.; Domínguez, H.; Parajó, J.C. Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Mar. Drugs 2013, 11, 4612–4627. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. A Comparison Study on Polysaccharides Extracted from: Laminaria japonica Using Different Methods: Structural Characterization and Bile Acid-Binding Capacity. Food Funct. 2017, 8, 3043–3052. [Google Scholar] [CrossRef] [PubMed]
- Erpel, F.; Mariotti-Celis, M.S.; Parada, J.; Pedreschi, F.; Pérez-Correa, J.R. Pressurized Hot Liquid Extraction with 15% v/v Glycerol-Water as an Effective Environment-Friendly Process to Obtain Durvillaea incurvata and Lessonia spicata Phlorotannin Extracts with Antioxidant and Antihyperglycemic Potential. Antioxidants 2021, 10, 1105. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Viñas, M.; Flórez-Fernández, N.; González-Muñoz, M.J.; Domínguez, H. Influence of Molecular Weight on the Properties of Sargassum muticum Fucoidan. Algal Res. 2019, 38, 101393. [Google Scholar] [CrossRef]
- Smolarz, B.; Zadrożna Nowak, A.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Camacho, R.M.; González-Morales, S.; González-Fuentes, J.A.; Rodríguez-Jasso, R.M.; Benavides-Mendoza, A.; Charles-Rodríguez, A.V.; Robledo-Olivo, A. Characterization of Sargassum spp. from the Mexican Caribbean and Its Valorization through Fermentation Process. Processes 2023, 11, 685. [Google Scholar] [CrossRef]
- Kumar Kadimpati, K.; Thadikamala, S.; Devarapalli, K.; Banoth, L.; Uppuluri, K.B. Characterization and Hydrolysis Optimization of Sargassum cinereum for the Fermentative Production of 3G Bioethanol. Biomass Convers. Biorefinery 2023, 13, 1831–1841. [Google Scholar] [CrossRef]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef]
- Liranzo-Gómez, R.E.; Gómez, A.M.; Gómez, B.; González-Hernández, Y.; Jauregui-Haza, U.J. Characterization of Sargassum Accumulated on Dominican Beaches in 2021: Analysis of Heavy, Alkaline and Alkaline-Earth Metals, Proteins and Fats. Mar. Pollut. Bull. 2023, 193, 115120. [Google Scholar] [CrossRef]
- Imeson, A. Food Stabilisers, Thickeners and Gelling Agents; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Advances in the Biorefinery of Sargassum Muticum: Valorisation of the Alginate Fractions. Ind. Crops Prod. 2019, 138, 111483. [Google Scholar] [CrossRef]
- Yoo, H.J.; You, D.J.; Lee, K.W. Characterization and Immunomodulatory Effects of High Molecular Weight Fucoidan Fraction from the Sporophyll of Undaria pinnatifida in Cyclophosphamide-Induced Immunosuppressed Mice. Mar. Drugs 2019, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shi, K.K.; Chen, S.; Wang, J.; Hassouna, A.; White, L.N.; Merien, F.; Xie, M.; Kong, Q.; Li, J.; et al. Fucoidan Extracted from the New Zealand Undaria Pinnatifida—Physicochemical Comparison against Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Cell Lines. Mar. Drugs 2018, 16, 461. [Google Scholar] [CrossRef] [PubMed]
- Birgersson, P.S.; Oftebro, M.; Strand, W.I.; Aarstad, O.A.; Sætrom, G.I.; Sletta, H.; Arlov, Ø.; Aachmann, F.L. Sequential Extraction and Fractionation of Four Polysaccharides from Cultivated Brown Algae Saccharina latissima and Alaria esculenta. Algal Res. 2023, 69, 102928. [Google Scholar] [CrossRef]
- Graikini, D.; Soro, A.B.; Sivagnanam, S.P.; Tiwari, B.K.; Sánchez, L. Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens. Mar. Drugs 2023, 21, 478. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, Q.; Wu, J.; Yang, X.; Yang, S.; Zhu, W.; Liu, Y.; Tang, W.; Nie, S.; Hassouna, A.; et al. Fucoidan Extracted From Sporophyll of Undaria pinnatifida Grown in Weihai, China—Chemical Composition and Comparison of Antioxidant Activity of Different Molecular Weight Fractions. Front. Nutr. 2021, 8, 636930. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, A.D.; Tuvikene, R.; Somasiri, M.N.R.; De Silva, M.; Adhikari, R.; Ranahewa, T.H.; Wijesundara, R.; Wijesekera, S.K.; Dissanayake, I.; Wangchuk, P.; et al. A Novel Therapeutic Effect of Mannitol-Rich Extract from the Brown Seaweed Sargassum ilicifolium Using in Vitro and in Vivo Models. BMC Complement. Med. Ther. 2023, 23, 26. [Google Scholar] [CrossRef]
- Yang, F.; Nagahawatta, D.P.; Yang, H.W.; Ryu, B.; Lee, H.G.; Je, J.G.; Heo, M.S.; Jeon, Y.J. In Vitro and in Vivo Immuno-Enhancing Effect of Fucoidan Isolated from Non-Edible Brown Seaweed Sargassum thunbergii. Int. J. Biol. Macromol. 2023, 253, 127212. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Bruggisser, R.; von Daeniken, K.; Jundt, G.; Schaffner, W.; Tullberg-Reinert, H. Interference of Plant Extracts, Phytoestrogens and Antioxidants with the MTT Tetrazolium Assay. Planta Med. 2002, 68, 445–448. [Google Scholar] [CrossRef]
- Akter, S.; Addepalli, R.; Netzel, M.E.; Tinggi, U.; Fletcher, M.T.; Sultanbawa, Y.; Osborne, S.A. Antioxidant-Rich Extracts of Terminalia ferdinandiana Interfere with Estimation of Cell Viability. Antioxidants 2019, 8, 191. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; López-García, M.; González-Muñoz, M.J.; Vilariño, J.M.L.; Domínguez, H. Ultrasound-Assisted Extraction of Fucoidan from Sargassum muticum. J. Appl. Phycol. 2017, 29, 1553–1561. [Google Scholar] [CrossRef]
- Namvar, F.; Mohamad, R.; Baharara, J.; Zafar-Balanejad, S.; Fargahi, F.; Rahman, H.S. Antioxidant, Antiproliferative, and Antiangiogenesis Effects of Polyphenol-Rich Seaweed (Sargassum muticum). Biomed. Res. Int. 2013, 2013, 604787. [Google Scholar] [CrossRef] [PubMed]
- Namvar, F.; Rahman, H.S.; Mohamad, R.; Azizi, S.; Tahir, P.M.; Chartrand, M.S.; Yeap, S.K. Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines. Evid. Based Complement. Altern. Med. 2015, 2015, 593014. [Google Scholar] [CrossRef] [PubMed]
- Namvar, F.; Rahman, H.S.; Mohamad, R.; Baharara, J.; Mahdavi, M.; Amini, E.; Chartrand, M.S.; Yeap, S.K. Cytotoxic Effect of Magnetic Iron Oxide Nanoparticles Synthesized via Seaweed Aqueous Extract. Int. J. Nanomed. 2014, 9, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.; Flórez-Fernández, N.; Simón-Vázquez, R.; Giménez-Abián, J.F.; Díaz, J.F.; González-Fernández, Á.; Domínguez, H. Fucoidans: The Importance of Processing on Their Anti-Tumoral Properties. Algal Res. 2020, 45, 101748. [Google Scholar] [CrossRef]
- do-Amaral, C.C.F.; Pacheco, B.S.; Seixas, F.K.; Pereira, C.M.P.; Collares, T. Antitumoral Effects of Fucoidan on Bladder Cancer. Algal Res. 2020, 47, 101884. [Google Scholar] [CrossRef]
- van Weelden, G.; Bobi, M.; Okła, K.; van Weelden, W.J.; Romano, A.; Pijnenborg, J.M.A. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar. Drugs 2019, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Qi, X.; Liu, H.; Xue, K.; Xu, S.; Tian, Z. The Anti-Cancer Effects of Fucoidan: A Review of Both in Vivo and in Vitro Investigations. Cancer Cell Int. 2020, 20, 154. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, H.; Wang, X.; Zhang, X.; Liu, W.; Wang, Y.; Zhang, Y.; Pan, H.; Wang, Q.; Han, Y. Effect of Polysaccharide from Undaria pinnatifida on Proliferation, Migration and Apoptosis of Breast Cancer Cell MCF7. Int. J. Biol. Macromol. 2019, 121, 734–742. [Google Scholar] [CrossRef]
- Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) Resistance and the New Strategy to Enhance the Sensitivity against Cancer: Implication of DNA Repair Inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.E.; Talbot, D.C. Cisplatin and Its Analogues in the Treatment of Advanced Breast Cancer: A Review. Br. J. Cancer 1992, 65, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, M.; Gandhi, S.; Ishikawa, T.; Takabe, K. Neoadjuvant Chemotherapy for Breast Cancer: Past, Present, and Future. Breast Cancer 2020, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Chang, Y.-C.; Chung-Chi, H.; Cheng-Han, L.; Chen, I.-J.; Yen-Ting, W.; Yu-Yan, L. Fucoidan Enhances Cisplatin-Induced Effects on SCC-25 Human Oral Cancer Cells by Inhibiting the PI3K/AKT Pathway. Anticancer Res. 2023, 43, 4015. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Chen, Y.C.; Yin, T.C.; Chen, P.J.; Chang, T.K.; Su, W.C.; Ma, C.J.; Li, C.C.; Tsai, H.L.; Wang, J.Y. Low-Molecular-Weight Fucoidan as Complementary Therapy of Fluoropyrimidine-Based Chemotherapy in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 8041. [Google Scholar] [CrossRef] [PubMed]
- Hyung, J.K.; Yoon, Y.M.; Jun, H.L.; Sang, H.L. Protective Role of Fucoidan on Cisplatin-Mediated ER Stress in Renal Proximal Tubule Epithelial Cells. Anticancer Res. 2019, 39, 5515. [Google Scholar] [CrossRef]
- González-López, N.; Moure, A.; Domínguez, H. Hydrothermal Fractionation of Sargassum muticum Biomass. J. Appl. Phycol. 2012, 24, 1569–1578. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; da, S. Pereira, L.O.; Marquez, U.M.L. Amino Acid Composition, Protein Content and Calculation of Nitrogen-to-Protein Conversion Factors for 19 Tropical Seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of Solubre, Cell-Wall-Bound and Exuded Phlorotannins in the Brown Alga Fucus vesiculosus, with Implications on Their Ecological Functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S. Determination of Inorganic Sulphate in Studies on the Enzymic and Non-Enzymic Hydrolysis of Carbohydrate and Other Sulphate Esters. Biochem. J. 1961, 78, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ke, N.; Wang, X.; Xu, X.; Abassi, Y.A. The XCELLigence System for Real-Time and Label-Free Monitoring of Cell Viability. In Mammalian Cell Viability: Methods and Protocols; Stoddart, M.J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 33–43. ISBN 978-1-61779-108-6. [Google Scholar]
Properties | Sargassum muticum [15] | Sargassum muticum Pressed | Solid Residue | |
---|---|---|---|---|
Moisture (%, d.b. *) | 85.59 ± 0.53 | 67.85 ± 1.23 | 11.60 ± 0.02 | |
Ash (%, d.b. *) | 17.15 ± 0.07 | 17.73 ± 0.45 | 20.88 ± 0.07 | |
Sulfates (%, d.b. *) | 3.46 ± 0.09 | 0.04 ± 0.00 | 0.03 ± 0.00 | |
Proteins (%, d.b. *) | 8.47 ± 0.34 | 8.73 ± 0.67 | 8.88 ± 0.08 | |
AIR ** (%, d.b. *) | 31.10 ± 0.05 | 3.83 ± 1.57 | 24.76 ± 0.19 | |
Carbohydrates (%, d.b. *) | 15.49 ± 0.67 | 34.85 ± 1.15 | 24.22 ± 0.43 | |
Minerals (g/kg) | Calcium (Ca2+) | 18.83 ± 2.23 | 1.42 ± 0.03 | 16.22 ± 0.60 |
Potasium (K+) | 23.25 ± 0.35 | 3.12 ± 0.03 | 8.60 ± 0.26 | |
Magnesium (Mg2+) | 7.50 ± 0.14 | 5.44 ± 0.06 | 7.31 ± 0.10 | |
Sodium (Na+) | 7.25 ± 0.07 | 1.26 ± 0.00 | 43.14 ± 2.21 | |
Zinc (Zn2+) | <10 | 0.11 ± 0.11 | 0.04 ± 0.00 | |
Heavy metals (mg/kg) | Copper (Cu+) | <7 | 5.50 ± 0.08 | 7.36 ± 0.84 |
Cadmium (Cd2+) | <2 | <0.5 | 0.90 ± 0.07 | |
Iron (Fe2+) | 87.33 ± 10.21 | 265.85 ± 16.98 | 230.41 ± 10.02 | |
Lead (Pb2+) | <2 | 0.64 ± 0.02 | 1.77 ± 0.71 |
Fractions | pH | Concentration (g extract/L) | Conductivity (Eq-g CaCl2/L) | Phloroglucinol Content (g/100 g) | TEAC Value (g/100 g) | Sulfate Content (g/100 g) | Protein Content (g/100 g) |
---|---|---|---|---|---|---|---|
L170 | 4.87 ± 0.01 | 57.20 ± 0.02 | 54.58 ± 1.62 | 0.93 ± 0.01 | 2.35 ± 0.01 | 2.67 ± 0.09 | 0.08 ± 0.01 |
R100 | 5.28 ± 0.01 | 5.27 ± 0.01 | 1.16 ± 0.01 | 4.18 ± 0.02 | 10.13 ± 0.01 | 16.71 ± 1.29 | 0.53 ± 0.02 |
R50 | 6.65 ± 0.01 | 12.65 ± 0.01 | 12.78 ± 1.32 | 0.77 ± 0.01 | 1.18 ± 0.06 | 7.52 ± 0.31 | 0.10 ± 0.01 |
R30 | 5.74 ± 0.01 | 11.62 ± 0.01 | 14.80 ± 0.31 | 0.60 ± 0.01 | 1.43 ± 0.07 | 6.20 ± 0.02 | 0.05 ± 0.01 |
R10 | 5.77 ± 0.01 | 12.79 ± 0.01 | 15.31 ± 0.35 | 0.67 ± 0.01 | 2.60 ± 0.49 | 6.41 ± 0.02 | 0.07 ± 0.01 |
R5 | 5.68 ± 0.01 | 12.40 ± 0.01 | 15.16 ± 0.45 | 0.61 ± 0.01 | 0.87 ± 0.03 | 5.60 ± 0.01 | 0.05 ± 0.01 |
P5 | 5.56 ± 0.01 | 11.55 ± 0.01 | 15.71 ± 0.26 | 0.56 ± 0.01 | 1.24 ± 0.07 | 4.33 ± 0.02 | 0.04 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diego-González, L.; Álvarez-Viñas, M.; Simón-Vázquez, R.; Domínguez, H.; Torres, M.D.; Flórez-Fernández, N. Characterization of the Antiproliferative Activity of Sargassum muticum Low and High Molecular Weight Polysaccharide Fractions. Mar. Drugs 2024, 22, 16. https://doi.org/10.3390/md22010016
Diego-González L, Álvarez-Viñas M, Simón-Vázquez R, Domínguez H, Torres MD, Flórez-Fernández N. Characterization of the Antiproliferative Activity of Sargassum muticum Low and High Molecular Weight Polysaccharide Fractions. Marine Drugs. 2024; 22(1):16. https://doi.org/10.3390/md22010016
Chicago/Turabian StyleDiego-González, Lara, Milena Álvarez-Viñas, Rosana Simón-Vázquez, Herminia Domínguez, Maria Dolores Torres, and Noelia Flórez-Fernández. 2024. "Characterization of the Antiproliferative Activity of Sargassum muticum Low and High Molecular Weight Polysaccharide Fractions" Marine Drugs 22, no. 1: 16. https://doi.org/10.3390/md22010016
APA StyleDiego-González, L., Álvarez-Viñas, M., Simón-Vázquez, R., Domínguez, H., Torres, M. D., & Flórez-Fernández, N. (2024). Characterization of the Antiproliferative Activity of Sargassum muticum Low and High Molecular Weight Polysaccharide Fractions. Marine Drugs, 22(1), 16. https://doi.org/10.3390/md22010016