State of Innovation in Alginate-Based Materials
Abstract
:1. Introduction
2. Chemical Structure and Properties of Alginate
3. Alginate Extraction and Origin
4. Alginate Applications
4.1. In Cosmetics
4.2. In Food
4.3. In Medicine
4.4. In Dentistry
4.5. In Environmental Protection
5. Comparison of Existing Knowledge in the Field of Alginate-Based Materials
6. Alginate-Based Materials: The State of Innovation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaidi, S.; Bentiss, F.; Jama, C.; Khaya, K.; Belattmania, Z.; Reani, A.; Sabour, B. Isolation and Structural Characterization of Alginates from the Kelp Species Laminaria ochroleuca and Saccorhizapolyschides from the Atlantic Coast of Morocco. Colloids Interfaces 2022, 6, 51. [Google Scholar] [CrossRef]
- Chèze-Lange, H.; Beunard, D.; Dhulster, P.; Guillochon, D.; Cazé, A.; Morcellet, M.; Saude, N.; Junter, G. Production of microbial alginate in a membrane bioreactor. Enzym. Microb. Technol. 2002, 30, 656–661. [Google Scholar] [CrossRef]
- Oates, C.; Ledward, D. Studies on the effect of heat on alginates. Food Hydrocoll. 1990, 4, 215–220. [Google Scholar] [CrossRef]
- El Atouani, S.; Bentiss, F.; Reani, A.; Zrid, R.; Belattmania, Z.; Pereira, L.; Mortadi, A.; Cherkaoui, O.; Sabour, B. The invasive brown seaweed Sargassum muticum as new resource for alginate in Morocco: Spectroscopic and rheological characterization. Phycol. Res. 2016, 64, 185–193. [Google Scholar] [CrossRef]
- Draget, K.; Moe, S.; Skjak-Bræk, G.; Smidsrød, O. Food Polysaccharides and Their Applications, 2nd ed.; Chapter 9, Alginates; Steven, A., Philips, G., Williams, P., Eds.; Taylor & Francis: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2006; pp. 290–328. [Google Scholar]
- Suzuki, H.; Suzuki, K.; Inoue, A.; Ojima, T. A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydr. Res. 2006, 341, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.; Ma, P. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511–521. [Google Scholar] [CrossRef]
- Byeon, S.; Cho, M.; Shim, K.; Kim, H.; Song, H.; Shin, H. Development of a spirulina extract/alginate-imbedded pcl nanofibrous cosmetic patch. J. Microbiol. Biotechnol. 2017, 27, 1657–1663. [Google Scholar] [CrossRef] [Green Version]
- Dhoot, N.; Tobias, C.; Fischer, I.; Wheatley, M. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J. Biomed. Mater. Res. A 2004, 71, 191–200. [Google Scholar] [CrossRef]
- Chuang, J.; Huang, Y.; Lo, S.; Hsu, T.; Huang, W.; Huang, S.; Lin, Y. Effects of pH on the shape of alginate particles and its release behavior. Int. J. Polym. Sci. 2017, 2017, 3902704. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, S.; Chat, O.; Maswal, M.; Ashraf, U.; Rather, G.; Dar, A. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen. Carbohydr. Polym. 2015, 133, 144–153. [Google Scholar] [CrossRef]
- Russo, R.; Malinconico, M.; Santagata, G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007, 8, 3193–3197. [Google Scholar] [CrossRef]
- Lee, K.; Rowley, J.; Eiselt, P.; Moy, E.; Bouhadir, K.H.; Mooney, D. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 2000, 33, 4291–4294. [Google Scholar] [CrossRef]
- Hirst, E.; Percival, E.; Wold, J. The structure of alginic acid. Part IV. Partial hydrolysis of the reduced polysaccharide. J. Chem. Soc. 1964, 284, 1493–1499. [Google Scholar] [CrossRef]
- Jiao, W.; Chen, W.; Mei, Y.; Yun, Y.; Wang, B.; Zhong, Q.; Chen, H.; Chen, W. Effects of molecular weight and guluronic acid/mannuronic acid ratio on the rheological behavior and stabilizing property of sodium alginate. Molecules 2019, 24, 4374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakita, H.; Kamishima, H. Some properties of alginate gels derived from algal sodium alginate. In Nineteenth International Seaweed Symposium: Proceedings of the 19th International Seaweed Symposium, Held in Kobe, Japan, 26–31 March 2007; Springer: Dordrecht, The Netherlands, 2009; pp. 93–99. [Google Scholar]
- Becker, T.; Brandon, T. Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization. J. Biomed. Mater. Res. 2001, 54, 76–86. [Google Scholar] [CrossRef]
- Feng, L.; Cao, Y.; Xu, D.; Wang, S.; Zhang, J. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrason. Sonochem. 2017, 34, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Priego-Jimenez, R.; Peña, C.; Ramirez, O.; Galindo, E. Specific growth rate determines the molecular mass of the alginate produced by Azotobacter vinelandii. Biochem. Eng. J. 2005, 25, 187–193. [Google Scholar] [CrossRef]
- Tapia, C.; Costa, E.; Moris, M.; Sapag-Hagar, J.; Valenzuela, F.; Basualto, C. Study of the influence of the pH media dissolution, degree of polymerization, and degree of swelling of the polymers on the mechanism of release of diltiazem from matrices based on mixtures of chitosan/alginate. Drug Dev. Ind. Pharm. 2002, 28, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, J.; Laisak, E.; Gao, M.; Tang, Y. AIEgen Quantitatively Monitoring the Release of Ca2+ during Swelling and Degradation Process in Alginate Hydrogels. Mater. Sci. Eng. 2019, 104, 109951. [Google Scholar] [CrossRef]
- Murata, H.; Kawamura, M.; Hamada, T.; Chimori, H.; Nikawa, H. Physical properties and compatibility with dental stones of current alginate impression materials. J. Oral Rehabil. 2004, 31, 1115–1122. [Google Scholar] [CrossRef]
- Rashedy, S.; Abd El Hafez, M.; Dar, M.; Cotas, J.; Pereira, L. Evaluation and characterization of alginate extracted from brown seaweed collected in the Red Sea. Appl. Sci. 2021, 11, 6290. [Google Scholar] [CrossRef]
- Aarstad, O.; Stanisci, A.; Sætrom, G.; Tøndervik, A.; Sletta, H.; Aachmann, F.; Skjåk-Bræk, G. Biosynthesis and function of long guluronic acid-blocks in alginate produced by Azotobacter vinelandii. Biomacromolecules 2019, 20, 1613–1622. [Google Scholar] [CrossRef] [Green Version]
- Meena, S.; Tripathi, A.; Ts, R. Optimization and characterization of Alginic acid synthesized from a novel strain of Pseudomonas stutzeri. Biotechnol. Rep. 2020, 27, e00517. [Google Scholar]
- Fan, X.; Zhang, Y.; Zhao, F.; Liu, Y.; Zhao, Y.; Wang, S.; Liu, R.; Yang, C. Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int. J. Biol. Macromol. 2020, 163, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.; Kasiakou, S. Local administration of polymyxins into the respiratory tract for the prevention and treatment of pulmonary infections in patients without cystic fibrosis. Infection 2007, 35, 3–10. [Google Scholar] [CrossRef]
- Mekonnen, H.; Seid, A.; Molla Fenta, G.; Gebrecherkos, T. Antimicrobial resistance profiles and associated factors of Acinetobacter and Pseudomonas aeruginosa nosocomial infection among patients admitted at Dessie comprehensive specialized Hospital, North-East Ethiopia. A cross-sectional study. PLoS ONE 2021, 16, e0257272. [Google Scholar] [CrossRef]
- El-Halim, A.; Nora, Z. Phenotypic and molecular characteristics of Pseudomonas Aeruginosa isolated from burn unit. NEJMI 2021, 30, 19–28. [Google Scholar]
- Ali, H.; Awad, A.; Maarouf, A.; Ahmed, W. Molecular Detection of some Virulence Factors of Pseudomonas aeruginosa Isolated from Freshwater Fishes at Qalubiya Governorate, Egypt. BVMJ 2023, 43, 80–84. [Google Scholar] [CrossRef]
- Dharshini, R.; Manickam, R.; Curtis, W.; Rathinasabapathi, P.; Ramya, M. Genome analysis of alginate synthesizing Pseudomonas aeruginosa strain SW1 isolated from degraded seaweeds. Antonie Van Leeuwenhoek 2021, 114, 2205–2217. [Google Scholar] [CrossRef]
- Daboor, S.; Raudonis, R.; Cohen, A.; Rohde, J.; Cheng, Z. Marine bacteria, a source for alginolytic enzyme to disrupt Pseudomonas aeruginosa biofilms. Mar. Drugs 2019, 17, 307. [Google Scholar] [CrossRef] [Green Version]
- Gheorghita, A.; Li, Y.; Kitova, E.; Bui, D.; Pfoh, R.; Low, K.; Whitfield, H.; Walvoort, M.; Zhang, Q.; Codee, J.; et al. Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa. Nat. Commun. 2022, 13, 7631. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Sunsunwal, S.; Gautam, V.; Singh, M.; Ramya, T. Biofilm inhibitory effect of alginate lyases on mucoid P. aeruginosa from a cystic fibrosis patient. Biochem. Biophys. Rep. 2021, 26, 101028. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Zhu, Y.; Tao, J.; Zhu, F.; Chen, J.; Li, L.; Zhao, J.; Wang, L.; Sun, S.; Yang, Y.; et al. Alginate lyase guided silver nanocomposites for eradicating Pseudomonas aeruginosa from lungs. ACS Appl. Mater. Interfaces 2020, 12, 9050–9061. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, D.; Tang, M.; Ma, L. The advance of assembly of exopolysaccharide Psl biosynthesis machinery in Pseudomonas aeruginosa. MicrobiologyOpen 2019, 8, e857. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, J.; Pérez-Burgos, M.; Herfurth, M.; Glatter, T.; Søgaard-Andersen, L. Evidence for a widespread third system for bacterial polysaccharide export across the outer membrane comprising a composite OPX/β-barrel translocon. Mbio 2022, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Huang, J.; Jia, T.; Guan, Y.; Yang, F.; Zhou, H.; Huang, P.; Wang, J.; Yang, L.; Dai, L. Deep Profiling of the Proteome Dynamics of Pseudomonas aeruginosa Reference Strain PAO1 under Different Growth Conditions. J. Proteome Res. 2023, 22, 1747–1761. [Google Scholar] [CrossRef] [PubMed]
- Harty, C.; Martins, D.; Doing, G.; Mould, D.; Clay, M.; Occhipinti, P.; Nguyen, D.; Hogan, D.A. Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in Pseudomonas aeruginosa. J. Bacteriol. Res. 2019, 201, e00794-18. [Google Scholar] [CrossRef] [Green Version]
- Panmanee, W.; Su, S.; Schurr, M.; Lau, G.; Zhu, X.; Ren, Z.; McDaniel, C.; Lu, L.; Ohman, D.; Muruve, D.; et al. The anti-sigma factor MucA of Pseudomonas aeruginosa: Dramatic differences of a mucA22 vs. a Δ mucA mutant in anaerobic acidified nitrite sensitivity of planktonic and biofilm bacteria in vitro and during chronic murine lung infection. PLoS ONE 2019, 14, e0216401. [Google Scholar] [CrossRef] [Green Version]
- Schurr, M.; Yu, H.; Martinez-Salazar, J.; Boucher, J.; Deretic, V. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J. Bacteriol. 1996, 178, 4997–5004. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Hershberger, C.; Shankar, S.; Ye, R.; Chakrabarty, A. Sigma factor-anti-sigma factor interaction in alginate synthesis: Inhibition of AlgT by MucA. J. Bacteriol. 1996, 178, 4990–4996. [Google Scholar] [CrossRef] [Green Version]
- Mathee, K.; McPherson, C.; Ohman, D. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol. 1997, 179, 3711–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, D.; Eisinger, V.; Rowen, D.; Yu, H. Regulated proteolysis controls mucoid conversion inPseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2007, 104, 8107–8112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentine, M.; Kirby, B.; Withers, T.; Johnson, S.; Long, T.; Hao, Y.; Lam, J.; Niles, R.; Yu, H. Generation of a highly attenuated strain ofPseudomonas aeruginosafor commercial production of alginate. Appl. Microbiol. 2019, 13, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayın, S.; Depci, T.; Naz, M.; Sezer, S.; Karaaslan, M.G.; Aras, A.; Uğur, S.; Çetin, Z.; Saygılı, İ.; Ateş, B. Characterization and evaluation of the antimicrobial properties of algal alginate; a potential natural protective for cosmetics. J. Res. Pharm. 2022, 26, 198–209. [Google Scholar]
- Belattmania, Z.; Kaidi, S.; El Atouani, S.; Katif, C.; Bentiss, F.; Jama, C.; Reani, A.; Sabour, B.; Vasconcelos, V. Isolation and FTIR-ATR and 1H NMR characterization of alginates from the main alginophyte species of the atlantic coast of Morocco. Molecules 2020, 25, 4335. [Google Scholar] [CrossRef] [PubMed]
- Kostas, E.; Williams, O.; Duran-Jimenez, G.; Tapper, A.J.; Cooper, M.; Meehan, R.; Robinson, J. Microwave pyrolysis of Laminaria digitata to produce unique seaweed-derived bio-oils. Biomass Bioenergy 2019, 125, 41–49. [Google Scholar] [CrossRef]
- Paul, S.; Salavarría, E.; Gil-Kodaka, P.; Villena, G. A de novo transcriptomic approach to study the influence of marine water depth in Macrocystis pyrifera alginate production. Aquat. Bot. 2020, 163, 103211. [Google Scholar] [CrossRef]
- Ma, W.L.; Mou, C.; Chen, S.; Li, Y.; Deng, H. A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers 2022, 14, 1165. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, H. Preparation of aroma microcapsules with sodium alginate and tetradecylallyldimethylammonium bromide (TADAB) and its potential applications in cosmetics. Flavour. Fragr. J. 2017, 33, 160–165. [Google Scholar] [CrossRef]
- AVEKA. 2015. Available online: http://www.aveka.com/encapsula-tion-microencapsulation-services.html (accessed on 29 May 2023).
- CAPSUM. 2015. Available online: http://www.capsum.net (accessed on 29 May 2023).
- Yeong, B.; Kwon, C.; Kyou, S.; Hye, J.; Hyeon, G.; Hwa, S. Development of a Spirulina Extract/Alginate-Imbedded PCL Nanofibrous Cosmetic Patch. J. Microbiol. Biotechnol. 2017, 27, 1657–1663. [Google Scholar]
- Bouhadir, K.; Lee, K.; Alsberg, E.; Damm, K.; Anderson, K.; Mooney, D. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 2001, 17, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Alsberg, E.; Kaigler, D.; Lee, K.; Mooney, D. Controlling degradation of hydrogel via the size of cross-linked junctions. Adv. Mater. 2004, 16, 1917–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, B.; Jayakrishnan, A. Self-cross-linking biopolymers as injectablein situforming biodegradable scaffolds. Biomaterials 2005, 26, 3941–3951. [Google Scholar] [CrossRef] [PubMed]
- Gaserod, O.; Smidsrod, O.; Skjak-Braek, G. Microcapsules of alginate-chitosan I: A quantitative study of the interaction between alginate and chitosan. Biomaterials 1998, 19, 1815–1825. [Google Scholar] [CrossRef]
- Rowley, J.; Madlambayan, G.; Mooney, D. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53. [Google Scholar] [CrossRef]
- Nam, S.; Lee, S.; Jeon, S.; Kwon, Y. Effect of sodium alginate on gastrointestinal symptoms after esophagogastroduodenoscopy with biopsy: Randomized controlled trial. Gut Liver 2022, 16, 37. [Google Scholar] [CrossRef]
- Du, J.; Hu, X.; Su, Y.; Wei, T.; Jiao, Z.; Liu, T.; Wang, H.; Nie, Y.; Li, X.; Song, K. Gelatin/sodium alginate hydrogel-coated decellularized porcine coronary artery to construct bilayer tissue engineered blood vessels. Int. J. Biol. Macromol. 2022, 209, 2070–2083. [Google Scholar] [CrossRef]
- Qian, L.; Hongyi, L.; Jing, L.; Lu, L.; Huang, J.; Cao, Y.; Zhao, T.; McClements, D.; Chen, J.; Chengmei, L.; et al. Improving probiotic (Lactobacillus casei) viability by encapsulation in alginate-based microgels: Impact of polymeric and colloidal fillers. Food Hydrocoll. 2022, 134, 108028. [Google Scholar]
- Lupo, B.; Maestro, A.; Gutiérrez, J.; González, C. Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms. Food Hydrocoll. 2015, 49, 25–34. [Google Scholar] [CrossRef]
- Madhusha, C.; Munaweera, I.; Karunaratne, V.; Kottegoda, N. Facile mechanochemical approach to synthesizing edible food preservation coatings based on alginate/ascorbic acid-layered double hydroxide bio-nanohybrids. J. Agric. Food Chem. 2020, 68, 8962–8975. [Google Scholar] [CrossRef]
- Bierhalz, A.; Altenhofen da Silva, M.; Kieckbusch, T. Natamycin release from alginate/pectin films for food packaging applications. J. Food Eng. 2012, 110, 18–25. [Google Scholar] [CrossRef]
- Larsen, B.; Bjørnstad, J.; Pettersen, E.; Tonnesen, H.; Melvik, E. Rheological characterization of an injectable alginate gel system. BMC Biotechnol 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Thacker, A.; Sperger, D.M.; Boni, R.L.; Buckner, I. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS Pharm. Sci. Technol. 2011, 12, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampson, F.; Farndale, A.; Strugala, V.; Sykes, J.; Jolliffe, I. Alginate rafts and their characterization. Int. J. Pharm. 2005, 294, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A.; Taguchi, A.; Takizawa, T.; Adachi, T.; Kimura, S. The alginate reduce the postprandial glycaemic response by forming a gel with dietary calcium in the stomach of the rat. Int. J. Vitam. Nutr. Res. 1997, 67, 55–61. [Google Scholar]
- Rojas-Graü, M.; Tapia, M.; Belloso, O. Using polysaccharide-based edible coatings to maintain quality of fresh cut Fuji apples. LWT-Food Sci. Technol. 2008, 41, 139–147. [Google Scholar] [CrossRef]
- Nicolau-Lapeña, I.; Aguiló-Aguayo, I.; Kramer, B.; Abadias, M.; Viñas, I.; Muranyi, P. Combination of ferulic acid with Aloe vera gel or alginate coatings for shelf-life prolongation of fresh-cut apples. Food Packag. Shelf Life 2021, 27, 100620. [Google Scholar] [CrossRef]
- Noreen, S.; Ghumman, S.; Batool, F.; Ijaz, B.; Basharat, M.; Noureen, S.; Kausar, T.; Iqbal, S. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery Int. J. Biol. Macromol. 2020, 152, 1056–1067. [Google Scholar] [CrossRef]
- Reddy, O.; Subha, M.; Jithendra, T.; Madhavi, C.; Rao, K. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J. Pharm. Anal. 2021, 11, 191–199. [Google Scholar] [CrossRef]
- Ma, K.; Titan, A.; Stafford, M.; Zheng, C.H.; Levenston, M. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels. Acta Biomater. 2012, 8, 3754–3764. [Google Scholar] [CrossRef] [Green Version]
- Ayelet, D.; Shachar, M.; Leor, J.; Cohen, S. Cardiac tissue engineering Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 2002, 80, 305–312. [Google Scholar]
- Zhensheng, L.; Hassna, R.; Ramay, K.; Hauch, D.; Xiao, D.; Zhang, M. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005, 26, 3919–3928. [Google Scholar]
- Freeman, I.; Cohen, S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 2009, 30, 2122–2131. [Google Scholar] [CrossRef] [PubMed]
- Dalei, G.; Das, S.; Das, S. Evaluation of TEOS Plasma Polymerized Carboxymethyl Starch/Alginate Hydrogels as Controlled Drug Delivery Systems. Starke 2022, 74, 2100226. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X.; Liu, P.; Wei, Y.; Xiao, B. Blending of PLGA-PEG-PLGA for improving the erosion and drug release profile of PCL microspheres. Curr. Pharm. Biotechnol. 2020, 21, 1079–1087. [Google Scholar] [CrossRef]
- McCanless, J.; Jennings, L.; Bumgardner, J.; Cole, J.; Haggard, W. Hematoma-inspired alginate/platelet releasate/CaPO4 composite: Initiation of the inflammatory-mediated response associated with fracture repair in vitro and ex vivo injection delivery. J. Mater. Sci. Mater. Med. 2012, 23, 1971–1981. [Google Scholar] [CrossRef]
- De Vos, P.; Spasojevic, M.; de Haan, B.J.; Faas, M.M. The association between in vitro physicochemical changes and inflammatory responses against alginate-based microcapsules. Biomaterials 2012, 33, 5552–5559. [Google Scholar] [CrossRef] [Green Version]
- Vanacker, J.; Luyckx, V.; Dolmans, M.M.; Des Rieux, A.; Jaeger, J.; van Langendonckt, A.; Donnez, J.; Amorim, C.A. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: First step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 2012, 33, 6079–6085. [Google Scholar] [CrossRef]
- Xu, H.; Ma, L.; Shi, H.; Gao, C.; Han, C. Chitosan-hyaluronic acid hybrid film as a novel wound dressing: In vitro and in vitrostudies. Polym. Adv. Technol. 2007, 18, 869–875. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 2012, 437, 110–119. [Google Scholar] [CrossRef]
- Hooper, S.; Percival, S.; Hill, K.; Thomas, D.; Hayes, A.; Williams, D. The visualisation and speed of kill of wound isolates on a silver alginate dressing. Int. Wound J. 2012, 9, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Popa, E.; Gomes, M.; Reis, L. Cell Delivery Systems Using Alginate–Carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications. Biomacromolecules 2011, 12, 3952–3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.; Sohail, M.; Khan, S.; Kousar, M. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater. Sci. Eng. C 2021, 126, 112169. [Google Scholar] [CrossRef] [PubMed]
- Reem, T.; Tsur-Gang, O.; Cohen, S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 2010, 31, 6746–6755. [Google Scholar] [CrossRef] [PubMed]
- Lubiatowski, P.; Kruczynski, J.; Gradys, A.; Trzeciak, T.; Jaroszewski, J. Articular cartilage repair by means of biodegradable scaffolds. Transpl. Proc. 2006, 38, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Henrionnet, C.; Wang, Y.; Roeder, E.; Gambier, N.; Galois, L.; Mainard, D.; Bensoussan, D.; Gillet, P.; Pinzano, A. Effect of dynamic loading on MSCs chondrogenic differentiation in3-D alginate culture. Biomed. Mater. Eng. 2012, 22, 209–218. [Google Scholar]
- Coates, E.; Riggin, C.; Fisher, J. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by a lginate-embedded zonal chondrocytes and mesenchymal stem cells. J. Orthop. Res. 2012, 30, 1886–1897. [Google Scholar] [CrossRef]
- Wang, C.; Yang, K.; Lin, K.; Liu, Y.; Liu, H.; Lin, F. Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold. Biomaterials 2012, 33, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Sang, B.; Kim, S.; Lee, Y. Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer 2002, 43, 7549–7558. [Google Scholar]
- Chen, R.; Curran, S.; Curran, J.; Hunt, J. The use of poly(l-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials 2006, 27, 4453–4460. [Google Scholar] [CrossRef]
- Grellier, M.; Granja, P.L.; Fricain, J.C.; Bidarra, S.J.; Renard, M.; Bareille, R.; Bourget, C.; Amédée, J.; Barbosa, M.A. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials 2009, 30, 3271–3278. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Kim, D.; Kim, T.; Shin, K.; Jung, J.; Park, H.; Yoon, S. In vitro evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2012, 51, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Franceschi, R.T.; Mooney, D.J. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 2001, 80, 2025–2029. [Google Scholar] [CrossRef] [PubMed]
- Rubert, M.; Monjo, M.; Lyngstadaas, S.P.; Ramis, J.M. Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation. Biomed. Mater. 2012, 7, 055003. [Google Scholar] [CrossRef]
- Abbah, S.; Lu, W.; Chan, D.; Cheung, K.; Liu, W.; Zhao, F.; Li, Z.; Leong, J.; Luk, K. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem. Biophys. Res. Commun. 2006, 347, 185–191. [Google Scholar] [CrossRef]
- Durrieu, M.; Pallu, S.; Guillemot, F.; Bareille, R.; Amedee, J.; Baquey, C.H.; Labrugère, C.; Dard, M. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J. Mater. Sci. Mater. Med. 2004, 15, 779–786. [Google Scholar] [CrossRef]
- Kolambkar, Y.; Dupont, K.; Boerckel, J.; Huebsch, N.; Mooney, D.; Hutmacher, D.; Guldberg, R. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011, 32, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhou, H.; Weir, M.; Bao, C.; Xu, H. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater. 2012, 8, 2297–2306. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Mei, F.; Duan, Y.; Gao, Y.; Xiong, Z.; Zhang, T.; Zhang, H. Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J. Biomed. Mater. Res. A 2012, 100, 1044–1050. [Google Scholar] [CrossRef]
- Nguyen, T.; Lee, B. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. J. Biomater. Appl. 2012, 27, 311–321. [Google Scholar] [CrossRef]
- Florczyk, S.; Leung, M.; Jana, S.; Li, Z.; Bhattarai, N.; Huang, J.; Hopper, R.; Zhang, M. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J. Biomed. Mater. Res. A 2012, 100, 3408–3415. [Google Scholar] [CrossRef] [PubMed]
- Brun, F.; Turco, G.; Accardo, A.; Paoletti, S. Automated quantitative characterization of alginate/hydroxyapatite bone tissue engineering scaffolds by means of micro-CT image analysis. J. Mater. Sci. Mater. Med. 2011, 22, 2617–2629. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Chen, W.; Weir, M.D.; Thein-Han, W.; Xu, H. Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater. 2012, 8, 3436–3445. [Google Scholar] [CrossRef] [Green Version]
- Abbah, S.; Liu, J.; Lam, R.; Goh, J.; Wong, H. In vitro bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J. Control. Rel. 2012, 162, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Shen, Q.; Jia, X.; Yuan, Z.; Xiong, D. Injectable nano-hybrid scaffold for biopharmaceuticals delivery and soft tissue engineering. Macromol. Rapid Commun. 2012, 33, 2015–2022. [Google Scholar] [CrossRef]
- Mi, F.L.; Shyu, S.; Linc, Y.; Wuc, Y.; Peng, C.; Tsai, Y. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: A new delivery system for protein. Biomaterials 2003, 24, 5023–5036. [Google Scholar] [CrossRef]
- Cao, Y.; Shen, X.C.; Chen, Y.; Guo, J.; Chen, Q.; Jiang, X.Q. pH-Induced self-assembly and capsules of sodium alginate. Biomacromolecules 2005, 6, 2189–2196. [Google Scholar] [CrossRef]
- Zhao, Q.; Mao, Z.; Gao, C.; Shen, J. Assembly of multilayer microcapsules on CaCO3 particles from biocompatible polysaccharides. J. Biomatter. Sci. Polym. Ed. 2006, 17, 997–1014. [Google Scholar] [CrossRef] [Green Version]
- Abdelraouf, R.; Bayoumi, R.; Hamdy, T. Effect of powder/water ratio variation on viscosity, tear strength and detail reproduction of dental alginate impression material (In vitro and clinical study). Polymers 2022, 13, 2923. [Google Scholar] [CrossRef]
- Borges de Olival, A.; da Penha Junior, N.; Frazão Câmara, J.; Corrêa Duarte Simões, A.; Estruc Verbicário dos Santos, J.; Groisman, S. Analysis of Chemical Composition of Different Irreversible Hydrocolloids. Dent. J. 2018, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Ulgey, M.; Gorler, O.; Yesilyurt, G. Importance of disinfection time and procedure with different alginate impression products to reduce dimensional instability. Niger. J. Clin. Pract. 2020, 23, 284–290. [Google Scholar] [PubMed]
- Nallamuthu, N.; Braden, M.; Oxford, J.; Williams, D.; Patel, M. Modification of pH Conferring Virucidal Activity on Dental Alginates. Materials 2015, 8, 1966–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porrelli, D.; Berton, F.; Piloni, A.; Kobau, I.; Stacchi, C.; Di Lenarda, R.; Rizzo, R. Evaluating the stability of extended-pour alginate impression materials by using an optical scanning and digital method. J. Prosthet. Dnet. 2021, 125, 189.e1–189.e7. [Google Scholar] [CrossRef] [PubMed]
- Cesur, M.; Omurlu, I.; Ozer, T. Evaluation of digital model accuracy and time-dependent deformation of alginate impressions. Niger. J. Clin. Pract. 2017, 20, 1175–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpinar, Y.; Yilmaz, B.; Tatar, N.; Demirtağ, Z. Changing the bonding force of impression tray to edentulous maxillary jaw simulator with impression valve system: In vitro study. Niger. J. Clin. Pract. 2015, 18, 115–119. [Google Scholar]
- Al Qahtani, M.; Alrefaie, M.; Altamimi, A.; Aljowyed, I.; Al Qahtani, M.; AlQahtani, A.; Habib, S. Evaluation of pre-alginate impression preparation methods in the surface accuracy of dental cast. Saudi Dent. J. 2019, 31, 451–456. [Google Scholar] [CrossRef]
- Bud, E.; Bocanet, V.; Muntean, M.; Vlasa, A.; Păcurar, M.; Zetu, I.; Soporan, B.; Bud, A. Extra-Oral Three-Dimensional (3D) Scanning Evaluation of Three Different Impression Materials—An In Vitro Study. Polymers 2022, 14, 3678. [Google Scholar] [CrossRef]
- Ullah, N.; Ur Rehman, M.; Ahmad, B.; Ali, I.; Younas, M.; Aslam, M.; Rahman, A.; Taheri, E.; Fatehizadeh, A.; Rezakazemi, M. Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. PLoS ONE 2022, 17, e0267719. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahdi, M.; Nurnabi, M.; Alam, M.; Choudhury, T. Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicol. Rep. 2022, 9, 346–355. [Google Scholar] [CrossRef]
- Shah, B.; Chudasama, U. Kinetics, thermodynamics and metal separation studies of transition (Co2+, Ni2+, Cu2+, Zn2+) and heavy metal ions (Cd2+, Hg2+, Pb2+) using novel hybrid ion exchanger—Zirconium amino tris methylene phosphonic acid. Sep. Sci. Technol. 2019, 54, 1560–1572. [Google Scholar] [CrossRef]
- Phang, Y.; Chee, S.-Y.; Lee, C.-O.; Teh, Y.-L. Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym. Degrad. Stab. 2011, 96, 1653–1661. [Google Scholar] [CrossRef]
- Song, Y.; Seo, J.; Kim, H.; Beak, K. Structural control of cellulose nanofibrous composite membrane with metal organic framework (ZIF-8) for highly selective removal of cationic dye. Carbohydr. Polym. 2019, 222, 115018. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, M.; Isik, B.; Cakar, F.; Cankurtaran, O. Comparison of the adsorption efficiency of cationic (Crystal Violet) and anionic (Congo Red) dyes on Valeriana officinalis roots: Isotherms, kinetics, thermodynamic studies, and error functions. Mater. Chem. Phys. 2022, 291, 126763. [Google Scholar] [CrossRef]
- Ayuba, A.; Idoko, B. Kinetic, equilibrium and thermodynamic studies on the adsorption of Crystal Violet dye from Aqueous Solution using Activated Cowpea (Vigna Unguiculata) Husk. Appl. J. Environ. Eng. Sci. 2020, 6, 182–195. [Google Scholar]
- Gul, S.; Gul, S.; Gul, H.; Khitab, F.; Khattak, R.; Khan, M.; Ullah, R.; Ullah, R.; Wasil, Z.; Krauklis, A.; et al. Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. Separations 2023, 10, 165. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Hosseini, S.H.; Seidi, F.; Soleyman, R. Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym. Int. 2013, 62, 1038–1044. [Google Scholar] [CrossRef]
- He, H.; Yang, S.; Yu, K.; Ju, Y.; Sun, C.; Wang, L. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. J. Hazard. Mater. 2010, 173, 393–400. [Google Scholar] [CrossRef]
- Fayoumi, L.; Ezzedine, M.; Akel, H.; El Jamal, M. Kinetic Study of the Degradation of Crystal Violet by K2S2O8, Comparison with Malachite Green. Port. Electrochim. Acta 2012, 30, 121–133. [Google Scholar] [CrossRef]
- Elwakeel, K.; El-Bindary, A.; El-Sonbati, A.; Hawas, A. Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Can. J. Chem. 2017, 95, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Elwakeel, K.; Daher, A.; Abd El-Fatah, A.; Monem, H.; Khalil, M. Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. J. Dispers. Sci. Technol. 2017, 38, 145–151. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Jalalat, V.; Zare-Dorabei, R. Adsorption of La (III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica. Mater. Res. Bull. 2015, 61, 113–119. [Google Scholar] [CrossRef]
- Jacinto, J.; Henriques, B.; Duarte, A.; Vale, C.; Pereira, E. Removal and recovery of Critical Rare Elements from contaminated waters by living Gracilaria gracilis. J. Hazard. Mater. 2018, 344, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Awwad, N.; Gad, H.; Ahmad, M.; Aly, H. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk. Colloids Surf. B Biointerfaces 2020, 81, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Madrigal, M.; Torras, J.; Casanovas, J.; Häring, M.; Aleman, C.; Díaz, D. A paradigm shift for preparing versatile M2+-free gels from unmodified sodium alginate. Biomacromolecules 2017, 18, 2967–2979. [Google Scholar] [CrossRef]
- Oh, H.; Lu, A.X.; Javvaji, V.; DeVoe, D.L.; Raghavan, S.R. Light-Directed Self-Assembly of Robust Alginate Gels at Precise Locations in Microfluidic Channels. ACS Appl. Mater. Interfaces 2016, 8, 17529–17538. [Google Scholar] [CrossRef]
- Plieva, F.; Karlsson, M.; Aguilar, M.; Gomez, D.; Mikhalovsky, S.; Galaev, I. Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 2005, 1, 303–309. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A.; Brouers, F. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int. J. Biol. Macromol. 2020, 154, 104–113. [Google Scholar] [CrossRef]
- Shan, L.; Gao, Y.; Zhang, Y.; Yu, W.; Yang, Y.; Shen, S.; Zhang, S.; Zhu, L.; Xu, L.; Tian, B.; et al. Fabrication and Use of Alginate-Based Cryogel Delivery Beads Loaded with Urea and Phosphates as Potential Carriers for Bioremediation. Ind. Eng. Chem. Res. 2016, 55, 7655–7660. [Google Scholar] [CrossRef]
- Ho, M.-H.; Kuo, P.-Y.; Hsieh, H.-J.; Hsien, T.-Y.; Hou, L.-T.; Lai, J.-Y.; Wang, D.-M. Preparation of porous scaffolds by using freeze–extraction and freeze-gelation methods. Biomaterials 2004, 25, 129–138. [Google Scholar] [CrossRef]
- Afjoul, H.; Shamloo, A.; Kamali, A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Mater. Sci. Eng. C 2020, 113, 110957. [Google Scholar] [CrossRef]
- Tkalec, G.; Kranvogl, R.; PervaUzunalić, A.; Knez, Ž.; Novak, Z. Optimisation of critical parameters during alginate aerogels production. J. Non-Cryst. Solids 2016, 443, 112–117. [Google Scholar] [CrossRef]
- Baldino, L.; Cardea, S.; De Marco, I.; Reverchon, E. Chitosan scaffolds formation by a supercritical freeze extraction process. J. Supercrit. Fluids 2014, 90, 27–34. [Google Scholar] [CrossRef]
- Loeb, S.; Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane. In Saline Water Conversion—II; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1963; Volume 38, pp. 117–132. [Google Scholar]
- Lee, H.; Lee, W.; Chung, J.; Kwak, S. Enhanced permeability of cellulose acetate ultrafiltration membrane by incorporation of cellulose graft copolymer. Cellulose 2022, 29, 9753–9775. [Google Scholar] [CrossRef]
- Anokhina, T.; Dmitrieva, E.; Volkov, A. Recovery of Model Pharmaceutical Compounds from Water and Organic Solutions with Alginate-Based Composite Membranes. Membranes 2022, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Paharia, A.; Yadav, A.K.; Rai, G.; Jain, S.K.; Pancholi, S.S.; Agrawal, G.P. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech 2007, 8, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Sawant, S.; Kalla, S.; Murthy, Z. Enhanced properties of the PVDF membrane with carboxylated MWCNT and sodium alginate for membrane distillation. J. Environ. Chem. Eng. 2023, 11, 109259. [Google Scholar] [CrossRef]
- Fricke, M.; Weinrich, D.; Lölsberg, W.; Subrahmanyam, R.; Smirnova, I.; Gurikov, P. Process for Producing Porous Alginate-Based Aerogels. Patent WO2015177081 A1, 26 November 2015. [Google Scholar]
- Draget, K.; Østgaard, K.; Smidsrød, O. Homogeneous alginate gels: A technical approach. Carbohydr. Polym. 1990, 14, 159–178. [Google Scholar] [CrossRef]
- Gurikov, P.; Raman, S.; Weinrich, D.; Fricke, M.; Smirnova, I. A novel approach to alginate aerogels: Carbon dioxide induced gelation. RSC Adv. 2015, 5, 7812–7818. [Google Scholar] [CrossRef]
- Raman, S.; Gurikov, P.; Smirnova, I. Hybrid alginate-based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications. J. Supercrit. Fluids 2015, 106, 23–33. [Google Scholar] [CrossRef]
- Bruchet, M.; Melman, A. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr. Polym. 2015, 131, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Vicini, S.; Mauri, M.; Wichert, J.; Castellano, M. Alginate gelling process: Use of bivalent ions rich microspheres. Polym. Eng. Sci. 2017, 57, 531–536. [Google Scholar] [CrossRef]
- Zafar, K.; Zia, K.; Alzhrani, R.; Almalki, A.; Alshehri, S. Biocompatibility and Hemolytic Activity Studies of Synthesized Alginate-Based Polyurethanes. Polymers 2022, 14, 2019. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.; Waterfall, M.; McIntyre, M.; Baird, J.D. Microencapsulated islet grafts in the BB/E rat: A possible role for cytokines in graft failure. Diabetologia 1992, 35, 231–237. [Google Scholar] [CrossRef] [Green Version]
- De Vos, P.; De Haan, B.; Pater, J.; Van Schilfgaarde, R. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 1996, 62, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, U.; Klock, G.; Federlin, K.; Hannig, K.; Kowalski, M.; Bretzel, R.G.; Horcher, A.; Entenmann, H.; Sieber, U.; Zekorn, T. Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 1992, 13, 269–274. [Google Scholar] [CrossRef]
- Mumper, R.; Huffman, A.; Puolakkainen, P.; Bouchard, L.; Gombotz, W. Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): Stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads. J. Control. Release 1994, 30, 241–251. [Google Scholar] [CrossRef]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release Off. J. Control. Release Soc. 2006, 114, 1–14. [Google Scholar] [CrossRef]
- Chickering, D.E.; Mathiowitz, E. Bioadhesive microspheres: I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa. Control. Release 1995, 34, 251–261. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, N.; Razaque, G.; Shah, S.; Shahid, M.; Albarqi, H.; Alquahtani, A.; Alasiri, A.; Basit, H.M. Microwave-Treated Physically Cross-Linked Sodium Alginate and Sodium Carboxymethyl Cellulose Blend Polymer Film for Open Incision Wound Healing in Diabetic Animals—A Novel Perspective for Skin Tissue Regeneration Application. Pharmaceutics 2023, 15, 418. [Google Scholar] [CrossRef]
- Nouri, A.; Jelkmann, M.; Khoee, S.; Bernkop-Schnurch, A. Diaminated starch: A competitor of chitosan with highly mucoadhesive properties due to increased local cationic charge density. Biomacromolecules 2020, 21, 999–1008. [Google Scholar] [CrossRef]
- Liu, P.; Krishnan, T.R. Alginate-pectin-poly-L-lysine particulate as a potential controlled release formulation. J. Pharm. Pharmacol. 1999, 51, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Torre, M.L.; Giunchedi, P.; Maggi, L.; Stefli, R.; Machiste, E.O.; Conte, U. Formulation and characterization of calcium alginate beads containing ampicillin. Pharm. Dev. Technol. 1998, 3, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.W.; Heng, P.W. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials 2002, 23, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Soppimath, K.; Aralaguppi, M.; Aminabhavi, T.; Rudzinski, W. Preparation of cross-linked sodium alginate microparticles using glutaraldehyde in methanol. Drug Dev. Ind. Pharm. 2000, 26, 1121–1124. [Google Scholar] [CrossRef]
- Kulkarni, A.; Soppimath, K.; Aminabhavi, T.; Dave, A.; Mehta, M. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Control. Release Off. J. Control. Release Soc. 2000, 63, 97–105. [Google Scholar] [CrossRef]
- Kulkarni, A.; Soppimath, K.; Aminabhavi, T.; Rudzinski, W. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. EV 2001, 51, 127–133. [Google Scholar] [CrossRef]
- Xu, T.; Ma, C.; Aytac, Z.; Hu, X.; Ng, K.; White, J.; Demokritou, P. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 2020, 8, 9537–9548. [Google Scholar] [CrossRef]
- Del Gaudio, P.; Amante, C.; Civale, R.; Bizzarro, V.; Petrella, A.; Pepe, G.; Campiglia, P.; Russo, P.; Aquino, R. In situ gelling alginate-pectin blend particles loaded with Ac2-26: A new weapon to improve wound care armamentarium. Carbohydr. Polym. 2020, 227, 115305. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, Q.; Zhang, R.; Jiang, B.; Wu, Q.; Chen, J.; Zhang, T. Improving thermostability of a PL 5 family alginate lyase with combination of rational design strategies. Int. J. Biol. Macromol. 2023, 242, 124871. [Google Scholar] [CrossRef]
- Athamneh, T.; Amin, A.; Benke, E.; Ambrus, R.; Leopold, C.; Gurikov, P.; Smirnova, I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercritic. Fluids 2019, 150, 49–55. [Google Scholar] [CrossRef]
- Feng, S.; Tang, Q.; Xu, Z.; Huang, K.; Li, H.; Zou, Z. Development of novel Co-MOF loaded sodium alginate-based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring. Food Hydrocoll. 2023, 135, 108193. [Google Scholar] [CrossRef]
- Aziz, K.; El Achaby, M.; Mamouni, R.; Saffaj, N.; Aziz, F. A novel hydrogel beads based copper-doped Cerastoderma edule shells@Alginate biocomposite for highly fungicide sorption from aqueous medium. Chemosphere 2023, 311, 136932. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Mushtaq, B.; Ahmad, S.; Rasheed, A.; Nawab, Y. A Novel Composite of Hemp Fiber and Alginate Hydrogel for Wound Dressings. J. Polym. Environ. 2023, 31, 2294–2305. [Google Scholar] [CrossRef]
- Echeverria Molina, M.; Chen, C.A.; Martinez, J.; Tran, P.; Komvopoulos, K. Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering. Materials 2023, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, H.; Guo, X.; Qin, Y.; Shen, P.; Peng, Q. A Novel Sodium Alginate-Carnauba Wax Film Containing Calcium Ascorbate: Structural Properties and Preservative Effect on Fresh-Cut Apples. Molecules 2023, 28, 367. [Google Scholar] [CrossRef]
- Ma, H.; Yu, K.; Wang, H.; Liu, J.; Cheng, Y.; Kang, Y.; Wang, H.; Zhang, J.; Song, K. Fabrication and detection of a novel hybrid conductive scaffold based on alginate/gelatin/carboxylated carbon nanotubes (Alg/Gel/mMWCNTs) for neural tissue engineering. Tissue Cell 2023, 80, 101995. [Google Scholar] [CrossRef] [PubMed]
- Elhamrouni, I.; Ishak, M.; Johari, W.; Halimoon, N. A novel characterization of alginate-attapulgite-calcium carbonate (AAC) gel adsorption in bacterial biodegradation of used engine oil (UEO). Biotechnol. Biotechnol. Equip. 2023, 37, 126–138. [Google Scholar] [CrossRef]
- Xiang, X.; Yi, X.; Zheng, W.; Li, Y.; Zhang, C.; Wang, X.; Chen, Z.; Huan, M.; Ying, G. Enhanced biodegradation of thiamethoxam with a novel polyvinyl alcohol (PVA)/sodium alginate (SA)/biochar immobilized Chryseobacteriumsp H5. J. Hazard. Mater. 2023, 443, 130247. [Google Scholar] [CrossRef]
- Alrebaki, M.; Ba-Abbad, M.; Abdullah, A. Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater. Arab. J. Sci. Eng. 2023, 48, 1–13. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, H.; Shi, C.; Ma, R.; Liu, S.; Huang, Z. Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized β-cyclodextrin and graphene oxide. RSC Adv. 2017, 7, 31549–31557. [Google Scholar] [CrossRef] [Green Version]
- Heidarizad, M.; Şengör, S.S. Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J. Mol. Liq. 2016, 224, 607–617. [Google Scholar] [CrossRef]
- Thakur, S.; Pandey, S.; Arotiba, O.A. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 2016, 153, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A 2013, 1, 7433–7443. [Google Scholar] [CrossRef]
- Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Res. Sci. Technol. 2013, 5, 98–99. [Google Scholar]
- Ren, H.; Gao, Z.; Wu, D.; Yang, J.; Sun, Y.; Luo, C. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydr. Polym. 2016, 137, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gao, B.; Wan, Y.S. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). J. Ind. Eng. Chem. 2018, 61, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wen, Y.; Song, X.; Zhu, J.L.; Li, J. A Smart Thermoresponsive Adsorption System for Efficient Copper Ion Removal Based on Alginate-g-poly(N-isopropylacrylamide) Graft Copolymer. Carbohydr. Polym. 2019, 219, 280–289. [Google Scholar] [CrossRef]
- Liu, H.Y.; Sun, Y.C.; Yu, T.; Zhang, J.; Zhang, X.Y.; Zhang, H.; Zhao, K.Y.; Wei, J.F. Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI). Chem. Eng. J. 2019, 378, 122120. [Google Scholar] [CrossRef]
- Gao, X.; Li, M.; Zhao, Y.; Zhang, Y. Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chem. Eng. J. 2019, 378, 122096. [Google Scholar] [CrossRef]
- Abed, M.; Faisal, A. Green Synthesis of Calcium/Iron-Layered Double Hydroxides-Sodium Alginate Nanoadsorbent as Reactive Barrier for Antibiotic Amoxicillin Removal from Groundwater. Adsorp. Sci. Technol. 2023, 2003, 1475278. [Google Scholar] [CrossRef]
- Vu, T.; Le, P.; Truong, T.; Nguyen, P.; Dinh, T.; Tran, T.; Huang, T.; Pham, T. Highly Adsorptive Removal of Antibiotic and Bacteria using Lysozyme Protein Modified Nanomaterials. J. Mol. Liq. 2023, 382, 121903. [Google Scholar] [CrossRef]
- Pellegrini, A.; Thomas, U.; von Fellenberg, R.; Wild, P. Bactericidal activity of lysozyme and aprotinin against Gram-negative and Gram-positive bacteria related to their basic character. J. Appl. Bacteriol. 1992, 72, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Karami, F.; Saber-Samandari, S. Synthesis and characterization of a novel hydrogel based on carboxymethyl chitosan/sodium alginate with the ability to release simvastatin for chronic wound healing. Biomed. Mat. 2023, 18, 025001. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Miao, Y.; Tan, H.; Zhou, T.; Ling, Z.; Chen, Y.; Xing, X.; Hu, X. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater. Sci. Eng. C 2016, 63, 274–284. [Google Scholar] [CrossRef]
- Hao, T.; Li, J.; Yao, F.; Dong, D.; Wang, Y.; Yang, B.; Wang, C. Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. ACS Nano 2017, 11, 5474–5488. [Google Scholar] [CrossRef]
- Farasatkia, A.; Kharaziha, M. Robust and double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA-alginate for stroma tissue engineering. Int. J. Biol. Macromol. 2021, 183, 1013–1025. [Google Scholar] [CrossRef]
- Rubio-Elizalde, I.; Bernáldez-Sarabia, J.; Moreno-Ulloa, A.; Vilanova, C.; Juárez, P.; Licea-Navarro, A.; Castro-Ceseña, A. Scaffolds based on alginate-PEG methyl ether methacrylate-Moringa oleifera-Aloe vera for wound healing applications. Carbohydr. Polym. 2019, 206, 455–467. [Google Scholar] [CrossRef]
- Mohabatpour, F.; Yazdanpanah, Z.; Papagerakis, S.; Chen, X.; Papagerakis, P. Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration. J. Funct. Biomater. 2022, 13, 71. [Google Scholar] [CrossRef]
- Ahn, D.G.; Lee, J.; Park, S.Y.; Kwark, Y.J.; Lee, K.Y. Doxorubicin-Loaded Alginate-g-poly(N-Isopropylacrylamide) Micelles for Cancer Imaging and Therapy. ACS Appl. Mater. Interfaces 2014, 6, 22069–22077. [Google Scholar] [CrossRef]
- Kim, H.; Jung, G.; Yoon, J.; Han, J.; Park, Y.; Kim, D.; Zhang, M.; Kim, D. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mat. Sci. Eng. C 2015, 54, 20–25. [Google Scholar] [CrossRef]
- Bhagyasree, K.; Mukherjee, D.; Azamthulla, M.; Debnath, S.; Sundar, L.; Hulikal, S.; Teja, B.; Bhatt, S.; Kamnoore, D. Thiolated sodium alginate/polyethylene glycol/hydroxyapatite nanohybrid for bone tissue engineering. J. Drug Deliv. Sci. Technol. 2022, 76, 103813. [Google Scholar] [CrossRef]
- Müller, W.; Schröder, H.; Feng, Q.; Schlossmacher, U.; Link, T.; Wang, X. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: Biosilica-alginate hydrogel for SaOS-2 cell cultivation. J. Tissue Eng. Regen. Med. 2015, 9, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yeh, Y. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Mahou, R.; Vlahos, A.; Shulman, A.; Sefton, M. Interpenetrating alginate-collagen polymer network microspheres for modular tissue engineering. ACS Biomater. Sci. Eng. 2017, 4, 3704–3712. [Google Scholar] [CrossRef]
Year | Invention | Description | Application | Field | References |
---|---|---|---|---|---|
2023 | SA/Co-MOF | Cobalt-based metal-organic framework (Co-MOF) nanoparticles with ammonia-sensitive and antibacterial functions introduced into sodium alginate (SA) matrix | Intelligent active packaging material | Food industry | [177] |
2023 | Ce–Cu@Alg | A novel hydrogel-beads-based copper-doped Cerastodermaedule shells@Alginate biocomposite for highly fungicide sorption from aqueous medium | New generation biosorbent for utilizing pesticides from wastewater | Environmental protection | [178] |
2023 | Alginate hydrogel hemp nonwoven composite | An eco-friendly material with anti-inflammatory hemp and alginate hydrogel | Wound dressings | Medicine | [179] |
2023 | (PCL)/calcium alginate (CA) | Three-dimensional fibrous scaffolds consisting of poly(ε-caprolactone) and calcium alginate used to induce keratinocyte differentiation through the action of calcium leaching | Transplantable skin substitutes | Tissue engineering | [180] |
2023 | Sodium alginate–carnauba wax film containing calcium ascorbate | A new type of edible composite film with water-blocking agent carnauba wax, plasticizer glycerin, antioxidant, and nutritional enhancer sodium ascorbate on the basis of traditional sodium alginate composite film | Fresh-cut fruit preservation | Food industry | [181] |
2023 | Alg/Gel/mMWCNTs conductive scaffolds | Novel hybrid conductive scaffold based on alginate/gelatin/carboxylated carbon nanotubes | Nerve regeneration | Tissue engineering | [182] |
2023 | (AAC) gel | Alginate–attapulgite–calcium carbonate gel adsorption in bacterial biodegradation of used engine oil | Adsorptive granular formulas for bioremediation of used engine oil | Environmental protection | [183] |
2023 | PVA/SA/biochar beads with Chryseobacterium sp H5 immobilization | Polyvinyl alcohol (PVA)/sodium alginate (SA)/biochar bead with functional microbe immobilization | Effective bioremediation of thiamethoxam contamination | Environmental protection | [184] |
2023 | (CuO-Fe3O4-Fe0/Abs) | Fe0 Embedded alginate beads and coated with CuO-Fe3O4 | Sustainable catalyst for photo-Fenton degradation of oxytetracycline in wastewater | Environmental protection | [185] |
2017 | SCGG | Sodium alginate/ß-cyclodextrin/graphene oxide nanocomposite adsorbent | Bioremediation of dyes | Environmental protection | [186,187] |
2016 | SA/acrylic acid/TiO2 | Sodium alginate/acrylic acid/titanium dioxide composite hydrogel | Bioremediation of dyes | Environmental protection | [188] |
2013 | GO/SA/polyacrylamide ternary hydrogel | Graphene oxide/sodium alginate/polyacrylamide ternary hydrogel | Bioremediation of dyes | Environmental protection | [189,190] |
2016 | SA-CMC | Alginate–carboxymethyl cellulose gel beads | Bioremediation of heavy metals: Pb (II) | Environmental protection | [191] |
2018 | CA-BMB | Ca-alginate entrapped ball-milled biochar | Bioremediation of heavy metals Cd2+ | Environmental protection | [192] |
2019 | Alg-g-PNIPAAm | Alginate-g-poly(N-isopropylacrylamide) graft copolymer | Bioremediation of heavy metals Cu (II) | Environmental protection | [193] |
2019 | FeNPs-CaAlg | Iron nanoparticles–calcium alginate hydrogel membrane | Bioremediation of heavy metals: Cr (VI) | Environmental protection | [194] |
2019 | Alg-B | Porous alginate beads | Bioremediation of heavy metals: Hg2+ | Environmental protection | [195] |
2023 | (Ca/Fe)-LDH-SA beads | Calcium/iron-layered double hydroxides–sodium alginate nanoadsorbent | Bioremediation of antibiotics: Amoxicillin | Environmental protection | [196] |
2023 | Lys-protein nanomaterial | Lysozyme protein modified nanomaterials | Bioremediation of bacteria and antibiotics | Environmental protection | [197,198] |
2023 | Carboxymethyl chitosan/sodium alginate hydrogel | Hydrogel based on carboxymethyl chitosan/sodium alginate with the ability to release simvastatin for chronic wound healing | Wound healing | Medicine | [199] |
2016 | Hap-GMs-CaCO3-GDL | Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres | Bone tissue regeneration | Tissue engineering/ Medicine | [200] |
2017 | Fullerenol/Alg Hydrogel | Injectable fullerenol/alginate hydrogel | Cardiovascular tissue regeneration | Tissue engineering/ Medicine | [201] |
2021 | Silk nanofibril/GelMA-alginate | Double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA–alginate | Stroma tissue engineering of human cornea | Tissue engineering/ Medicine | [202] |
2019 | Ca-alginate-PEGMA/A. vera/M. oleifera | Alginate–PEG methyl ether methacrylate–moringa oleifera–aloe vera scaffolds | Wound healing | Tissue engineering/ Medicine | [203] |
2022 | OA-CC hydrogels | Self-crosslinkable oxidized alginate–carboxymethyl chitosan hydrogels | Dental enamel regeneration | Tissue engineering/ Dentistry | [204] |
2014 | PNIPAAm | Doxorubicin-loaded alginate-g-poly(N-Isopropylacrylamide) micelles | Cancer imaging and therapy | Medicine | [205] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiak, K.; Sionkowska, A. State of Innovation in Alginate-Based Materials. Mar. Drugs 2023, 21, 353. https://doi.org/10.3390/md21060353
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials. Marine Drugs. 2023; 21(6):353. https://doi.org/10.3390/md21060353
Chicago/Turabian StyleAdamiak, Katarzyna, and Alina Sionkowska. 2023. "State of Innovation in Alginate-Based Materials" Marine Drugs 21, no. 6: 353. https://doi.org/10.3390/md21060353
APA StyleAdamiak, K., & Sionkowska, A. (2023). State of Innovation in Alginate-Based Materials. Marine Drugs, 21(6), 353. https://doi.org/10.3390/md21060353