Nanoparticles from Microalgae and Their Biomedical Applications
Abstract
:1. Introduction
2. Biological Synthesis
2.1. Microalgal Metabolites
2.1.1. Proteins
2.1.2. Carbohydrates
2.1.3. Lipids
2.2. Intracellular Synthesis
2.3. Extracellular Synthesis
3. Biomedical Applications of Microalgal NPs
3.1. Anticancer Activity
Types of NPs | Microalgae Species Used | General Environment | Size and Morphology of NPs | Tested Cancerous Cell Lines | Ref. |
---|---|---|---|---|---|
Silver NPs (Ag NPs) | Arthrospira platensis | marine, freshwater | 2.23–14.68 nm, spherical | A549, HCT, Hep2 and WISH | [58] |
Copper NPs (CuO NPs) | Arthrospira platensis | marine, freshwater | 3.75–12.4 nm, spherical | A549, HCT, Hep2 and WISH | [58] |
Silver NPs (Ag NPs) | Arthrospira platensis | marine, freshwater | 30 nm, spherical | A-549, MCF-7 | [59] |
Au/cellulose nanocomposite | Chlorella vulgaris | freshwater | 113–203 nm, spherical | A-549 | [60] |
Gold NPs (Au NPs) | Dunaliella salina | marine | 22.4 nm, spherical | MCF-7 | [61] |
Carbon quantum dots | Pectinodesmu sp. | freshwater | 67 nm, spherical | HCC 1954, HCT 116 | [62] |
Silver NPs (Ag NPs) | Trichodesmium erythraeum | marine | 26.5 nm, cubical | MCF-7, He La | [63] |
Silver NPs (Ag2O/|AgO NPs) | Oscillatoria sp. | Freshwater | 4.42–48.97 nm, quasi-spherical | CaCo-2, HeLa | [64] |
3.2. Biomedical Sensor
3.3. Drug Delivery
3.4. Immunomodulatory Action
3.5. Antibacterial Activity
3.6. Antifungal Activity
3.7. Functionalization to Reduce Toxicity
4. Conclusions and Future Prospectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Causes of Death, Our World in Data. Available online: https://ourworldindata.org/causes-of-death (accessed on 16 April 2023).
- Inda-Díaz, J.S.; Lund, D.; Parras-Moltó, M.; Johnning, A.; Bengtsson-Palme, J.; Kristiansson, E. Latent Antibiotic Resistance Genes Are Abundant, Diverse, and Mobile in Human, Animal, and Environmental Microbiomes. Microbiome 2023, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Díaz, P.; Rico, M.; Rivero, A.; Santana-Casiano, M. Bioactive Metabolites of Microalgae from Canary Islands for Functional Food and Feed Uses. Chem. Biodivers. 2022, 19, e202200230. [Google Scholar] [CrossRef]
- Ray, A.; Nayak, M.; Ghosh, A. A Review on Co-Culturing of Microalgae: A Greener Strategy towards Sustainable Biofuels Production. Sci. Total Environ. 2022, 802, 149765. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, T.N.B.T.; Feisal, N.A.S.; Kamaludin, N.H.; Cheah, W.Y.; How, V.; Bhatnagar, A.; Ma, Z.; Show, P.L. Biological Active Metabolites from Microalgae for Healthcare and Pharmaceutical Industries: A Comprehensive Review. Bioresour. Technol. 2023, 372, 128661. [Google Scholar] [CrossRef]
- Cai, Y.; Lim, H.R.; Khoo, K.S.; Ng, H.-S.; Cai, Y.; Wang, J.; Tak-Yee Chan, A.; Show, P.L. An Integration Study of Microalgae Bioactive Retention: From Microalgae Biomass to Microalgae Bioactives Nanoparticle. Food Chem. Toxicol. 2021, 158, 112607. [Google Scholar] [CrossRef]
- Maqbool, Q.; Yigit, N.; Stöger-Pollach, M.; Ruello, M.L.; Tittarelli, F.; Rupprechter, G. Operando Monitoring of a Room Temperature Nanocomposite Methanol Sensor. Catal. Sci. Technol. 2023, 13, 624–636. [Google Scholar] [CrossRef]
- Soru, S.; Malavasi, V.; Caboni, P.; Concas, A.; Cao, G. Behavior of the Extremophile Green Alga Coccomyxa Melkonianii SCCA 048 in Terms of Lipids Production and Morphology at Different PH Values. Extremophiles 2019, 23, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Soru, S.; Malavasi, V.; Concas, A.; Caboni, P.; Cao, G. A Novel Investigation of the Growth and Lipid Production of the Extremophile Microalga Coccomyxa Melkonianii SCCA 048 under the Effect of Different Cultivation Conditions: Experiments and Modeling. Chem. Eng. J. 2019, 377, 120589. [Google Scholar] [CrossRef]
- Tsvetanova, F.; Yankov, D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022, 10, 2290. [Google Scholar] [CrossRef]
- Gao, P.; Guo, L.; Gao, M.; Zhao, Y.; Jin, C.; She, Z. Regulation of Carbon Source Metabolism in Mixotrophic Microalgae Cultivation in Response to Light Intensity Variation. J. Environ. Manag. 2022, 302, 114095. [Google Scholar] [CrossRef]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of Microalgae with High Lipid Content and Their Potential as Sources of Nutraceuticals. Phytochem. Rev. 2022; in press. [Google Scholar] [CrossRef]
- Khan, F.; Shahid, A.; Zhu, H.; Wang, N.; Javed, M.R.; Ahmad, N.; Xu, J.; Alam, M.A.; Mehmood, M.A. Prospects of Algae-Based Green Synthesis of Nanoparticles for Environmental Applications. Chemosphere 2022, 293, 133571. [Google Scholar] [CrossRef] [PubMed]
- Dinc, S.K.; Vural, O.A.; Kayhan, F.E.; San Keskin, N.O. Facile Biogenic Selenium Nanoparticle Synthesis, Characterization and Effects on Oxidative Stress Generated by UV in Microalgae. Particuology 2022, 70, 30–42. [Google Scholar] [CrossRef]
- Aratboni, H.A.; Rafiei, N.; Allaf, M.M.; Abedini, S.; Rasheed, R.N.; Seif, A.; Barati, B.; Wang, S.; Morones-Ramírez, J.R. Nanotechnology: An Outstanding Tool for Increasing and Better Exploitation of Microalgae Valuable Compounds. Algal Res. 2023, 71, 103019. [Google Scholar] [CrossRef]
- Chan, S.S.; Low, S.S.; Chew, K.W.; Ling, T.C.; Rinklebe, J.; Juan, J.C.; Ng, E.P.; Show, P.L. Prospects and Environmental Sustainability of Phyconanotechnology: A Review on Algae-Mediated Metal Nanoparticles Synthesis and Mechanism. Environ. Res. 2022, 212, 113140. [Google Scholar] [CrossRef]
- Zittelli, G.C.; Lauceri, R.; Faraloni, C.; Margarita, A.; Benavides, S.; Torzillo, G. Valuable Pigments from Microalgae: Phycobiliproteins, Primary Carotenoids, and Fucoxanthin. Photochem. Photobiol. Sci. 2023, 1, 1–57. [Google Scholar] [CrossRef]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a Sustainable Source of Edible Proteins and Bioactive Peptides—Current Trends and Future Prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef] [PubMed]
- Yucetepe, A. A Combination of Osmotic Shock and Ultrasound Pre-Treatments and the Use of Enzyme for Extraction of Proteins from Chlorella vulgaris Microalgae: Optimization of Extraction Conditions by RSM. J. Food Meas. Charact. 2022, 16, 1516–1527. [Google Scholar] [CrossRef]
- García-Gómez, C.; Márquez-Reyes, J.M.; Vidales-Contreras, J.A.; Nápoles-Armenta, J.; Luna-Maldonado, A.I. The Use of Microalgae and Cyanobacteria for Wastewater Treatment and the Sustainable Production of Biomass. In Omics for Environmental Engineering and Microbiology System; CRC Press: Boca Raton, FL, USA, 2022; pp. 269–282. [Google Scholar] [CrossRef]
- Shankar, P.D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V.S.; Arvindnarayan, S.; Kumar, G. A Review on the Biosynthesis of Metallic Nanoparticles (Gold and Silver) Using Bio-Components of Microalgae: Formation Mechanism and Applications. Enzyme Microb. Technol. 2016, 95, 28–44. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Ghosh, T.; Paliwal, C.; Maurya, R.; Ghosh, A.; Mishra, S. Green Synthesis, Characterization and Antioxidant Potential of Silver Nanoparticles Biosynthesized from de-Oiled Biomass of Thermotolerant Oleaginous Microalgae Acutodesmus Dimorphus. RSC Adv. 2016, 6, 72269–72274. [Google Scholar] [CrossRef]
- da Silva Ferreira, V.; ConzFerreira, M.E.; Lima, L.M.T.R.; Frasés, S.; de Souza, W.; Sant’Anna, C. Green Production of Microalgae-Based Silver Chloride Nanoparticles with Antimicrobial Activity against Pathogenic Bacteria. Enzyme Microb. Technol. 2017, 97, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, G.; Mutaf, T.; Agba, H.C.; Elibol, M. Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutum. Geomicrobiol. J. 2022, 39, 83–96. [Google Scholar] [CrossRef]
- Gouda, M.; Tadda, M.A.; Zhao, Y.; Farmanullah, F.; Chu, B.; Li, X.; He, Y. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front. Nutr. 2022, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Ran, W.; Wang, H.; Liu, Y.; Qi, M.; Xiang, Q.; Yao, C.; Zhang, Y.; Lan, X. Storage of Starch and Lipids in Microalgae: Biosynthesis and Manipulation by Nutrients. Bioresour. Technol. 2019, 291, 121894. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Taggar, M.S.; Kalia, A.; Singh, M. Nitrate-Induced Carbohydrate Accumulation in Chlorella sorokiniana and Its Potential for Ethanol Production. Bioenergy Res. 2022, 15, 253–263. [Google Scholar] [CrossRef]
- Manning, S.R.; Perri, K.A.; Blackwell, K. Bioactive Polysaccharides from Microalgae. In Polysaccharides of Microbial Origin: Biomedical Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 625–648. [Google Scholar] [CrossRef]
- Jensen, E.L.; Yangüez, K.; Carrière, F.; Gontero, B. Storage Compound Accumulation in Diatoms as Response to Elevated CO2 Concentration. Biology 2019, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Yang, R.; Guo, Y.; Zhang, C. Isolation, Characterization and Immunomodulatory Activity Evaluation of Chrysolaminarin from the Filamentous Microalga Tribonema Aequale. Mar. Drugs 2022, 21, 13. [Google Scholar] [CrossRef]
- Abadi, B.; Hosseinalipour, S.; Nikzad, S.; Pourshaikhali, S.; Fathalipour-Rayeni, H.; Shafiei, G.; Adeli-Sardou, M.; Shakibaie, M.; Forootanfar, H. Capping Agents for Selenium Nanoparticles in Biomedical Applications. J. Clust. Sci. 2022, 1, 1–22. [Google Scholar] [CrossRef]
- Ghanbariasad, A.; Taghizadeh, S.M.; Show, P.L.; Nomanbhay, S.; Berenjian, A.; Ghasemi, Y.; Ebrahiminezhad, A. Controlled Synthesis of Iron Oxyhydroxide (FeOOH) Nanoparticles Using Secretory Compounds from Chlorella vulgaris Microalgae. Bioengineered 2019, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Navarro Gallón, S.M.; Alpaslan, E.; Wang, M.; Larese-Casanova, P.; Londoño, M.E.; Atehortúa, L.; Pavón, J.J.; Webster, T.J. Characterization and Study of the Antibacterial Mechanisms of Silver Nanoparticles Prepared with Microalgal Exopolysaccharides. Mater. Sci. Eng. C 2019, 99, 685–695. [Google Scholar] [CrossRef]
- Jakhu, S.; Sharma, Y.; Sharma, K.; Vaid, K.; Dhar, H.; Kumar, V.; Singh, R.P.; Shekh, A.; Kumar, G. Production and Characterization of Microalgal Exopolysaccharide as a Reducing and Stabilizing Agent for Green Synthesis of Gold-Nanoparticle: A Case Study with a Chlorella Sp. from Himalayan High-Altitude Psychrophilic Habitat. J. Appl. Phycol. 2021, 33, 3899–3914. [Google Scholar] [CrossRef]
- Callejón, M.J.J.; Medina, A.R.; Sánchez, M.D.M.; Moreno, P.A.G.; López, E.N.; Cerdán, L.E.; Grima, E.M. Supercritical Fluid Extraction and Pressurized Liquid Extraction Processes Applied to Eicosapentaenoic Acid-Rich Polar Lipid Recovery from the Microalga Nannochloropsis Sp. Algal Res. 2022, 61, 102586. [Google Scholar] [CrossRef]
- Khoo, K.S.; Ahmad, I.; Chew, K.W.; Iwamoto, K.; Bhatnagar, A.; Show, P.L. Enhanced Microalgal Lipid Production for Biofuel Using Different Strategies Including Genetic Modification of Microalgae: A Review. Prog. Energy Combust. Sci. 2023, 96, 101071. [Google Scholar] [CrossRef]
- Vrana, I.; Bakija Alempijević, S.; Novosel, N.; Ivošević DeNardis, N.; Žigon, D.; Ogrinc, N.; Gašparović, B. Hyposalinity Induces Significant Polar Lipid Remodeling in the Marine Microalga Dunaliella tertiolecta (Chlorophyceae). J. Appl. Phycol. 2022, 34, 1457–1470. [Google Scholar] [CrossRef]
- Zheng, G.; Gu, F.; Cui, Y.; Lu, L.; Hu, X.; Wang, L.; Wang, Y. A Microfluidic Droplet Array Demonstrating High-Throughput Screening in Individual Lipid-Producing Microalgae. Anal. Chim. Acta 2022, 1227, 340322. [Google Scholar] [CrossRef]
- Karimi, K.; Saidi, M.; Moradi, P.; Taheri Najafabadi, A. Biodiesel Production from Nannochloropsis Microalgal Biomass-Derived Oil: An Experimental and Theoretical Study Using the RSM-CCD Approach. Can. J. Chem. Eng. 2023; in press. [Google Scholar] [CrossRef]
- Kafil, M.; Berninger, F.; Koutra, E.; Kornaros, M. Utilization of the Microalga Scenedesmus Quadricauda for Hexavalent Chromium Bioremediation and Biodiesel Production. Bioresour. Technol. 2022, 346, 126665. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, M.; Samadhiya, K.; Ghosh, A.; Anand, V.; Shirage, P.M.; Bala, K. Screening of Microalgae for Biosynthesis and Optimization of Ag/AgCl Nano Hybrids Having Antibacterial Effect. RSC Adv. 2019, 9, 25583–25591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gusain, D.; Renuka, N.; Guldhe, A.; Bux, F. Use of Microalgal Lipids and Carbohydrates for the Synthesis of Carbon Dots via Hydrothermal Microwave Treatment. Inorg. Chem. Commun. 2021, 134, 109021. [Google Scholar] [CrossRef]
- Algal, M.; Alprol, A.E.; Tageldein Mansour, A.; El-Beltagi, H.S.; Ashour, M. Algal Extracts for Green Synthesis of Zinc Oxide Nanoparticles: Promising Approach for Algae Bioremediation. Materials 2023, 16, 2819. [Google Scholar] [CrossRef]
- Li, X.; Mao, X.; Xie, W.; Liu, B.; Chen, F. Intracellular Biosynthesis of Gold Nanoparticles for Monitoring Microalgal Biomass via Surface-Enhanced Raman Spectroscopy. ACS Sustain. Chem. Eng. 2022, 10, 4872–4880. [Google Scholar] [CrossRef]
- Kashyap, M.; Samadhiya, K.; Ghosh, A.; Anand, V.; Lee, H.; Sawamoto, N.; Ogura, A.; Ohshita, Y.; Shirage, P.M.; Bala, K. Synthesis, Characterization and Application of Intracellular Ag/AgCl Nanohybrids Biosynthesized in Scenedesmus Sp. as Neutral Lipid Inducer and Antibacterial Agent. Environ. Res. 2021, 201, 111499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, J.; Yang, Q.; Lan, K.; Yan, Z.; Chen, J. Eco-Friendly Intracellular Microalgae Synthesis of Fluorescent CdSe QDs as a Sensitive Nanoprobe for Determination of Imatinib. Sensors Actuators B Chem. 2018, 263, 625–633. [Google Scholar] [CrossRef]
- Yilmaz Öztürk, B. Intracellular and Extracellular Green Synthesis of Silver Nanoparticles Using Desmodesmus Sp.: Their Antibacterial and Antifungal Effects. Caryologia 2019, 72, 29–43. [Google Scholar] [CrossRef]
- Hardiningtyas, S.D.; Putri, F.A.; Setyaningsih, I. Antibacterial Activity of Ethanolic Spirulina Platensis Extract-Water Soluble Chitosan Nanoparticles. IOP Conf. Ser. Earth Environ. Sci. 2022, 1033, 012053. [Google Scholar] [CrossRef]
- Muthusamy, G.; Thangasamy, S.; Raja, M.; Chinnappan, S.; Kandasamy, S. Biosynthesis of Silver Nanoparticles from Spirulina Microalgae and Its Antibacterial Activity. Environ. Sci. Pollut. Res. 2017, 24, 19459–19464. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Matter, I.A.; Eida, M.F.; Moawad, H.; Oh, Y.K. Influence of Nitrogen Source and Growth Phase on Extracellular Biosynthesis of Silver Nanoparticles Using Cultural Filtrates of Scenedesmus obliquus. Appl. Sci. 2019, 9, 1465. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, R.; Ezhumalai, G.; Gnanadesigan, M. A Green Approach for the Synthesis of Silver Nanoparticles by Chlorella vulgaris and Its Application in Photocatalytic Dye Degradation Activity. Environ. Technol. Innov. 2021, 21, 101282. [Google Scholar] [CrossRef]
- Shalaby, S.M.; Madkour, F.F.; El-Kassas, H.Y.; Mohamed, A.A.; Elgarahy, A.M. Green Synthesis of Recyclable Iron Oxide Nanoparticles Using Spirulina Platensis Microalgae for Adsorptive Removal of Cationic and Anionic Dyes. Environ. Sci. Pollut. Res. 2021, 28, 65549–65572. [Google Scholar] [CrossRef]
- Hamida, R.S.; Ali, M.A.; Almohawes, Z.N.; Alahdal, H.; Momenah, M.A.; Bin-Meferij, M.M. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae Coelastrella Aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and Antioxidant Activities. Pharmaceutics 2022, 14, 2002. [Google Scholar] [CrossRef]
- Fani, A.; Varmazyar, S.; Akbari, F.; Garfami, M.; Mohaghegh, R.; Balkhi, S.; Mojdehi, S.R.; Tabassi, N.R.; Hosseinpour, T.; Ghanbari, Z.; et al. Green Synthesis of a Novel PtFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Anti-Cancer Studies in Gastric Cancer Cell Line. J. Clust. Sci. 2023, 34, 535–546. [Google Scholar] [CrossRef]
- Sharif, A.P.; Habibi, K.; Bijarpas, Z.K.; Tolami, H.F.; Alkinani, T.A.; Jameh, M.; Dehkaei, A.A.; Monhaser, S.K.; Daemi, H.B.; Mahmoudi, A.; et al. Cytotoxic Effect of a Novel GaFe2O4@Ag Nanocomposite Synthesized by Scenedesmus Obliquus on Gastric Cancer Cell Line and Evaluation of BAX, Bcl-2 and CASP8 Genes Expression. J. Clust. Sci. 2022, 34, 1065–1075. [Google Scholar] [CrossRef]
- Kardan, M.; Pouraei, A.; Jaahbin, N.; Ghasemipour, T.; Mehraban, F.; Jahani Sayyad Noveiri, M.; Hedayati, M.; Salehzadeh, A. Cytotoxicity of Bio-Synthesized MgFe2O4@Ag Nanocomposite on Gastric Cancer Cell Line and Evaluation Its Effect on Bax, P53 and Bcl-2 Genes Expression. J. Clust. Sci. 2022, 33, 1579–1588. [Google Scholar] [CrossRef]
- İnan, B.; Mutlu, B.; Karaca, G.A.; Koç, R.Ç.; Özçimen, D. Bioprospecting Antarctic Microalgae as Anticancer Agent against PC-3 and AGS Cell Lines. Biochem. Eng. J. 2023, 195, 108900. [Google Scholar] [CrossRef]
- Doman, K.M.; Gharieb, M.M.; Abd El-Monem, A.M.; Morsi, H.H. Synthesis of Silver and Copper Nanoparticle Using Spirulina Platensis and Evaluation of Their Anticancer Activity. Int. J. Environ. Health Res. 2023; in press. [Google Scholar] [CrossRef]
- Soror, A.F.S.; Ahmed, M.W.; Hassan, A.E.A.; Alharbi, M.; Alsubhi, N.H.; Al-Quwaie, D.A.; Alrefaei, G.I.; Binothman, N.; Aljadani, M.; Qahl, S.H.; et al. Evaluation of Green Silver Nanoparticles Fabricated by Spirulina Platensis Phycocyanin as Anticancer and Antimicrobial Agents. Life 2022, 12, 1493. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Abd El Maksoud, A.I.; Wageed, M.; Alotaibi, A.S.; Elebeedy, D.; Khalil, H.; Hassan, A.; Abdella, A. Characterization and Anticancer Activity of Biosynthesized Au/Cellulose Nanocomposite from Chlorella vulgaris. Polymers 2021, 13, 3340. [Google Scholar] [CrossRef]
- Singh, A.K.; Tiwari, R.; Singh, V.K.; Singh, P.; Khadim, S.R.; Singh, U.; Laxmi; Srivastava, V.; Hasan, S.H.; Asthana, R.K. Green Synthesis of Gold Nanoparticles from Dunaliella Salina, Its Characterization and in Vitro Anticancer Activity on Breast Cancer Cell Line. J. Drug Deliv. Sci. Technol. 2019, 51, 164–176. [Google Scholar] [CrossRef]
- Amjad, M.; Iqbal, M.; Faisal, A.; Junjua, A.M.; Hussain, I.; Hussain, S.Z.; Ghramh, H.A.; Khan, K.A.; Janjua, H.A. Hydrothermal Synthesis of Carbon Nanodots from Bovine Gelatin and PHM3 Microalgae Strain for Anticancer and Bioimaging Applications. Nanoscale Adv. 2019, 1, 2924–2936. [Google Scholar] [CrossRef] [Green Version]
- Sathishkumar, R.S.; Sundaramanickam, A.; Srinath, R.; Ramesh, T.; Saranya, K.; Meena, M.; Surya, P. Green Synthesis of Silver Nanoparticles by Bloom Forming Marine Microalgae Trichodesmium Erythraeum and Its Applications in Antioxidant, Drug-Resistant Bacteria, and Cytotoxicity Activity. J. Saudi Chem. Soc. 2019, 23, 1180–1191. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Hassan, L.H.S.; Morsi, H.H. Assessment of the In Vitro Anticancer Activities of Cyanobacteria Mediated Silver Oxide and Gold Nanoparticles in Human Colon CaCo-2 and Cervical HeLa Cells. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100556. [Google Scholar] [CrossRef]
- Huang, G.; Chen, X.; Li, N.; Xie, T.; Guo, Y.; Fu, Y.; Jiao, T. A Convenient Synthesis of Gold Nanoparticles in Spirulina Extract for Rapid Visual Detection of Dopamine in Human Urine. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129675. [Google Scholar] [CrossRef]
- Ameen, F.; Hamidian, Y.; Mostafazadeh, R.; Darabi, R.; Erk, N.; Islam, M.A.; Orfali, R. A Novel Atropine Electrochemical Sensor Based on Silver Nano Particle-Coated Spirulina Platensis Multicellular Blue-Green Microalga. Chemosphere 2023, 324, 138180. [Google Scholar] [CrossRef]
- Jafari, S.M.; Masoum, S.; Tafreshi, S.A.H. A Microlagal-Based Carbonaceous Sensor for Enzymatic Determination of Glucose in Blood Serum. J. Ind. Eng. Chem. 2021, 101, 195–204. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Sun, L.; Zhang, S.; Gong, D.; Li, X.; Yue, S.; Feng, L.; Zhang, D. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS Appl. Mater. Interfaces 2019, 11, 4745–4756. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Lin, D.; Yang, J.; Jiao, N.; Wang, Y.; Liu, L. A Diatom-Based Biohybrid Microrobot with a High Drug-Loading Capacity and PH-Sensitive Drug Release for Target Therapy. Acta Biomater. 2022, 154, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Dutta, A.; Kapoor, N.; Kumar, A.; Tiwari, A. Envisaging Marine Diatom Thalassiosira Weissflogii as a “SMART” Drug Delivery System for Insoluble Drugs. J. Drug Deliv. Sci. Technol. 2022, 68, 102983. [Google Scholar] [CrossRef]
- İnan, B.; Özçimen, D. Preparation and Characterization of Microalgal Oil Loaded Alginate/Poly (Vinyl Alcohol) Electrosprayed Nanoparticles. Food Bioprod. Process. 2021, 129, 105–114. [Google Scholar] [CrossRef]
- Chandrarathna, H.P.S.U.; Liyanage, T.D.; Edirisinghe, S.L.; Dananjaya, S.H.S.; Thulshan, E.H.T.; Nikapitiya, C.; Oh, C.; Kang, D.H.; de Zoysa, M. Marine Microalgae, Spirulina Maxima-Derived Modified Pectin and Modified Pectin Nanoparticles Modulate the Gut Microbiota and Trigger Immune Responses in Mice. Mar. Drugs 2020, 18, 175. [Google Scholar] [CrossRef] [Green Version]
- Rajapaksha, D.C.; Edirisinghe, S.L.; Nikapitiya, C.; Dananjaya, S.H.S.; Kwun, H.J.; Kim, C.H.; Oh, C.; Kang, D.H.; De Zoysa, M. Spirulina Maxima Derived Pectin Nanoparticles Enhance the Immunomodulation, Stress Tolerance, and Wound Healing in Zebrafish. Mar. Drugs 2020, 18, 556. [Google Scholar] [CrossRef]
- El-Deeb, N.M.; Abo-Eleneen, M.A.; Al-Madboly, L.A.; Sharaf, M.M.; Othman, S.S.; Ibrahim, O.M.; Mubarak, M.S. Biogenically Synthesized Polysaccharides-Capped Silver Nanoparticles: Immunomodulatory and Antibacterial Potentialities Against Resistant Pseudomonas aeruginosa. Front. Bioeng. Biotechnol. 2020, 8, 643. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, M.; Khalid, N.; Ahmed, I.; Hanif, R.; Ismail, M.; Janjua, H.A. Comparative Studies of Three Novel Freshwater Microalgae Strains for Synthesis of Silver Nanoparticles: Insights of Characterization, Antibacterial, Cytotoxicity and Antiviral Activities. J. Appl. Phycol. 2017, 29, 1851–1863. [Google Scholar] [CrossRef]
- Suganya, K.S.U.; Govindaraju, K.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M. Size Controlled Biogenic Silver Nanoparticles as Antibacterial Agent against Isolates from HIV Infected Patients. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 266–272. [Google Scholar] [CrossRef]
- Omomowo, I.O.; Adenigba, V.O.; Ogunsona, S.B.; Adeyinka, G.C.; Oluyide, O.O.; Adedayo, A.A.; Fatukasi, B.A. Antimicrobial and Antioxidant Activities of Algal-Mediated Silver and Gold Nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 805, 12010. [Google Scholar] [CrossRef]
- Jena, J.; Pradhan, N.; Dash, B.P.; Sukla, L.B.; Panda, P.K. Biosynthesis and Characterization of Silver Nanoparticles Using Microalga Chlorococcum humicola and Its Antibacterial Activity. Int. J. Nanomater. Biostruct. 2013, 3, 1–8. [Google Scholar]
- Jena, J.; Pradhan, N.; Nayak, R.R.; Dash, B.P.; Sukla, L.B.; Panda, P.K.; Mishra, B.K. Microalga Scenedesmus Sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis. J. Microbiol. Biotechnol. 2014, 24, 522–533. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Bagheri, M.; Taghizadeh, S.M.; Berenjian, A.; Ghasemi, Y. Biomimetic Synthesis of Silver Nanoparticles Using Microalgal Secretory Carbohydrates as a Novel Anticancer and Antimicrobial. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 15018. [Google Scholar] [CrossRef]
- Sahoo, C.R.; Maharana, S.; Mandhata, C.P.; Bishoyi, A.K.; Paidesetty, S.K.; Padhy, R.N. Biogenic Silver Nanoparticle Synthesis with Cyanobacterium Chroococcus minutus Isolated from Baliharachandi Sea-Mouth, Odisha, and in Vitro Antibacterial Activity. Saudi J. Biol. Sci. 2020, 27, 1580–1586. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Hussein, M.H.; Abo-elmagd, R.A.; Bawazir, S.S. Synthesis and Biological Characterization of Silver Nanoparticles Derived from the Cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. [Google Scholar] [CrossRef] [Green Version]
- Bishoyi, A.K.; Sahoo, C.R.; Sahoo, A.P.; Padhy, R.N. Bio-Synthesis of Silver Nanoparticles with the Brackish Water Blue-Green Alga Oscillatoria princeps and Antibacterial Assessment. Appl. Nanosci. 2021, 11, 389–398. [Google Scholar] [CrossRef]
- Patel, V.; Berthold, D.; Puranik, P.; Gantar, M. Screening of Cyanobacteria and Microalgae for Their Ability to Synthesize Silver Nanoparticles with Antibacterial Activity. Biotechnol. Rep. 2015, 5, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, N.; Faraz, M.; Pandey, R.; Shakir, M.; Fatma, T.; Varma, A.; Barman, I.; Prasad, R. Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir 2015, 31, 11605–11612. [Google Scholar] [CrossRef] [PubMed]
- Salari, Z.; Danafar, F.; Dabaghi, S.; Ataei, S.A. Sustainable Synthesis of Silver Nanoparticles Using Macroalgae Spirogyra varians and Analysis of Their Antibacterial Activity. J. Saudi Chem. Soc. 2016, 20, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh, S.M.; Lal, N.; Ebrahiminezhad, A.; Moeini, F.; Seifan, M.; Ghasemi, Y.; Berenjian, A. Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent. Nanomaterials 2020, 10, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira Platensis (Class: Cyanophyceae) and Evaluation of Their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef]
- Martins-Santana, L.; Rezende, C.P.; Rossi, A.; Martinez-Rossi, N.M.; Almeida, F. Addressing Microbial Resistance Worldwide: Challenges over Controlling Life-Threatening Fungal Infections. Pathogens 2023, 12, 293. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; Pagnussatt, F.A.; Lemos, A.C.; Nicolli, C.P.; Del Ponte, E.M.; Badiale-Furlong, E. Nannochloropsis Sp. and Spirulina Sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium Graminearum Species Complex. Curr. Microbiol. 2019, 76, 930–938. [Google Scholar] [CrossRef]
- Sidorowicz, A.; Margarita, V.; Fais, G.; Pantaleo, A.; Manca, A.; Concas, A.; Rappelli, P.; Fiori, P.L.; Cao, G. Characterization of Nanomaterials Synthesized from Spirulina platensis Extract and Their Potential Antifungal Activity. PLoS ONE 2022, 17, e0274753. [Google Scholar] [CrossRef]
- Gürsoy, N.; Yilmaz Öztürk, B.; Dağ, İ. Synthesis of Intracellular and Extracellular Gold Nanoparticles with a Green Machine and Its Antifungal Activity. Turk. J. Biol. 2021, 45, 196–213. [Google Scholar] [CrossRef]
- Annamalai, J.; Nallamuthu, T. Characterization of Biosynthesized Gold Nanoparticles from Aqueous Extract of Chlorella vulgaris and Their Anti-Pathogenic Properties. Appl. Nanosci. 2015, 5, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Win, T.T.; Khan, S.; Bo, B.; Zada, S.; Fu, P.C. Green Synthesis and Characterization of Fe3O4 Nanoparticles Using Chlorella-K01 Extract for Potential Enhancement of Plant Growth Stimulating and Antifungal Activity. Sci. Rep. 2021, 11, 21996. [Google Scholar] [CrossRef] [PubMed]
- Torres-Díaz, M.; Abreu-Takemura, C.; Díaz-Vázquez, L.M. Microalgae Peptide-Stabilized Gold Nanoparticles as a Versatile Material for Biomedical Applications. Life 2022, 12, 831. [Google Scholar] [CrossRef] [PubMed]
- Rudi, L.; Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Peshkova, A.; Cepoi, A.; Grozdov, D. Accumulation and Effect of Silver Nanoparticles Functionalized with Spirulina Platensis on Rats. Nanomaterials 2021, 11, 2992. [Google Scholar] [CrossRef]
- Liu, C.; Fu, Y.; Li, C.E.; Chen, T.; Li, X. Phycocyanin-Functionalized Selenium Nanoparticles Reverse Palmitic Acid-Induced Pancreatic β Cell Apoptosis by Enhancing Cellular Uptake and Blocking Reactive Oxygen Species (ROS)-Mediated Mitochondria Dysfunction. J. Agric. Food Chem. 2017, 65, 4405–4413. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tang, Q.; Zhong, X.; Bai, Y.; Chen, T.; Zhang, Y.; Li, Y.; Zheng, W. Surface Decoration by Spirulina polysaccharide Enhances the Cellular Uptake and Anticancer Efficacy of Selenium Nanoparticles. Int. J. Nanomed. 2012, 7, 835–844. [Google Scholar] [CrossRef] [Green Version]
Types of NPs | Microalgae Species Used | General Environment | Size and Morphology of NPs | Bacteria Species Tested | Ref. |
---|---|---|---|---|---|
Gold NPs (AuNPs) | Arthrospira platensis | marine, freshwater | 5 nm, spherical | S. aureus, B. subtilis | [77] |
Gold NPs (AuNPs) | Neodesmus pupukensis (MG257914) | freshwater | 5–34 nm, circular | Pseudomonas sp., Serratia marcescens | [78] |
Silver NPs (AgNPs) | Chlorococcum humicola (IMMTCC-17) | freshwater | 2–16 nm, spherical | E. coli (ATCC-1105) | [79] |
Silver NPs (AgNPs) | Scenedesmus sp. (IMMTCC-25) | marine, freshwater | 5–10 nm, spherical | S. cutans, E. coli | [80] |
Silver NPs (AgNPs) | Chlorella vulgaris sp. | freshwater, terrestrial | 7 nm, spherical | S. aureus, E. coli | [81] |
Silver NPs (AgNPs) | Chroococcus minutus | freshwater | crystalline | E. coli, S. aureus, P. aeruginosa, | [82] |
Silver NPs (AgNPs) | Oscillatoria limnetica | freshwater | 3.30–17.97 nm, spherical/anisotropic | E. coli, B. cereus | [83] |
Silver NPs (AgNPs) | Oscillatoria princeps | marine, brackish, freshwater, | 3.30–17.97 nm, spherical | S. aureus, S. pyogenes, E. coli, | [84] |
Silver NPs (AgNPs) | Anabaena sp. 66-2, Cylindrospermopsis sp. USC-CRB3, Synechocystis sp. 48-3, B. braunii, | marine, brackish, freshwater | 13–25 nm, spherical/elongated | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Chlorella pyrenoidosa NCIM 2738 | freshwater | 8 nm, irregular | K. pneumoniae, A. hydrophila, Acenetobacter sp., S. aureus | [86] |
Silver NPs (AgNPs) | Chlorella vulgaris sp. (C. vulgaris) | freshwater | 1.6–34.4 nm, spherical | Staphilococcus Aureus, Klebsiella Pneumonia | [23] |
Silver NPs (AgNPs) | Neodesmus pupukensis (MG257914) | freshwater | 52–179 nm, spherical | Pseudomonas aeruginosa, E. coli, K. Pneumoniae, S. marcescens | [78] |
Silver NPs (AgNPs) | Spirogyra varians | freshwater | 17.6 nm, spherical | B. cereus, P. aeruginosa and Klebsiella, S. aureus, L. monocytogenes, E. coli | [87] |
Silver NPs (AgNPs) | Coelastrella aeroterrestrica | freshwater | 14.5 nm, hexagonal | Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa | [53] |
Silver NPs (AgNPs) | Limnothrix sp. 37-2-1 | freshwater | 31.86 nm, elongated | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Anabaena sp. 66-2 | brackish | 24.13 nm, irregular | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Synechocystis sp. 48-3 | marine, brackish | 14.64 nm, irregular | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Botryococcus braunii | freshwater | 15.67 nm, spherical | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Coelastrum sp. 143-1 | freshwater | 19.28 nm, spherical | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Limnothrix sp. 37-2-1 | freshwater | 25.65 nm, spherical and elongated | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Silver NPs (AgNPs) | Arthrospira platensis | marine, freshwater | 13.85 nm, spherical | B. megaterium, E. coli, B. subtilis, M. luteus, P. aeruginosa, S. aureus | [85] |
Zinc oxide NPs (ZnO) | Chlorella vulgaris sp. (C. vulgaris) | freshwater | 150 nm crystalline structure/21 nm rod-like appearance | Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa | [88] |
Zinc oxide NPs (ZnO) | Arthrospira platensis | marine, freshwater | 30.0–55.0 nm, spherical | Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli | [89] |
Types of NPs | Microalgae Species Used | General Environment | Size and Morphology of NPs | Species of Fungi Tested | Ref. |
---|---|---|---|---|---|
Cobalt hydroxide NPs (Co(OH)2 NMs) | Arthrospira platensis | marine, freshwater | 3.52 nm, nanoflake | C. albicans, C. glabrata, C. krusei. | [92] |
Cobalt oxide NPs (Co3O4 NMs) | Arthrospira platensis | marine, freshwater | 13.28 nm, nanoflake | C. albicans, C. glabrata, C. krusei. | [92] |
Gold NPs (AuNPs) | Neodesmus pupukensis (MG257914) | freshwater | 5–34 nm, circular shape | A. niger, A. fumigatus, A. flavus, F. solani C. albicans | [78] |
Gold NPs (AuNPs) | Chlorella sorokiniana | freshwater | 20–40 nm, spherical | C. tropicalis, C. glabrata, and C. albicans | [93] |
Gold NPs (AuNPs) | Chlorella Vulgaris | freshwater | 2–10 nm, spherical | C. albicans | [94] |
Iron oxide NPs (Fe3O4 NPs) | Chlorella K01 | freshwater | 50–100 nm, spherical | Fusarium oxysporum, Fusarium tricinctum, Fusarium maniliforme, Rhizoctonia solani, and Phythium sp. | [95] |
Silver NPs (AgNPs) | Arthrospira platensis | marine, freshwater | 9.72 nm (before calcination)/26.01 nm (after calcination), oval-shaped | C. albicans, C. glabrata, C. krusei. | [92] |
Titanium dioxide NPs (TIO2 NPs) | Arthrospira platensis | marine, freshwater | 4.81 nm (before calcination)/4.62 nm (after calcination), spherical-shaped | C. albicans, C. glabrata, C. krusei. | [92] |
Zinc oxide NPs (ZnO) | Arthrospira platensis | marine, freshwater | ≈30.0 to 55.0 nm, spherical | C. albicans | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorowicz, A.; Fais, G.; Casula, M.; Borselli, M.; Giannaccare, G.; Locci, A.M.; Lai, N.; Orrù, R.; Cao, G.; Concas, A. Nanoparticles from Microalgae and Their Biomedical Applications. Mar. Drugs 2023, 21, 352. https://doi.org/10.3390/md21060352
Sidorowicz A, Fais G, Casula M, Borselli M, Giannaccare G, Locci AM, Lai N, Orrù R, Cao G, Concas A. Nanoparticles from Microalgae and Their Biomedical Applications. Marine Drugs. 2023; 21(6):352. https://doi.org/10.3390/md21060352
Chicago/Turabian StyleSidorowicz, Agnieszka, Giacomo Fais, Mattia Casula, Massimiliano Borselli, Giuseppe Giannaccare, Antonio Mario Locci, Nicola Lai, Roberto Orrù, Giacomo Cao, and Alessandro Concas. 2023. "Nanoparticles from Microalgae and Their Biomedical Applications" Marine Drugs 21, no. 6: 352. https://doi.org/10.3390/md21060352
APA StyleSidorowicz, A., Fais, G., Casula, M., Borselli, M., Giannaccare, G., Locci, A. M., Lai, N., Orrù, R., Cao, G., & Concas, A. (2023). Nanoparticles from Microalgae and Their Biomedical Applications. Marine Drugs, 21(6), 352. https://doi.org/10.3390/md21060352