Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model
Abstract
:1. Introduction
2. Results
2.1. Determination of Total Phenolic Content of Algal Extract
2.2. Molecular Networking (MN) and MRM Methodology
2.3. Docking Study
2.4. Analysis of 22 Full Factorial Design of the Developed Nanophytosomal Dispersions
2.5. Study of the Effect of Formulation Variables on EE%, PS, ZP, PDI, and Q6h of the Developed Nanophytosomes
2.6. Selection of the Optimum Nanophytosomal Formulation
2.7. Study of the Morphology of the Optimum Nanophytosomal Formulation (F4) Using TEM
2.8. FTIR Study
2.9. Stability Study
2.10. Characterization of the SPNP-Gel
2.11. Effect of SPNP-Gel Topical Application on Wound Contraction Rate
2.12. Effect of SPNP-Geltopical Application on High Mobility Group Box-1 (HMGB-1) Expression, and Inflammatory Markers in Wounded Rats
2.13. Effect of SPNP-Gel Topical Application on Anti-Oxidative Stress Markers in Wounded Rats
2.14. Effect of SPNP-Gel Topical Application on Autophagy Markers in Wounded Rats
2.15. Effect of SPNP-Gel Topical Application on Apoptotic Markers in Wounded Rats
2.16. Effect of SPNP-Gel Topical Application on the Percentage Change of Vascular Endothelial Growth Factor (VEGF) in Wounded Rats
2.17. Effect of SPNP-Gel Topical Application on Histopathological Alterations and Collagen Formation in Wounded Rats
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Methods
4.2.1. Isolation and Purification of S. platensis
4.2.2. Cultivation of the Isolated Strains
4.2.3. Preparation of Algal Extract
4.2.4. Estimation of Total Phenolic Content of S. platensis Algal Extract
4.2.5. Liquid Chromatography Coupled to Mass Spectrometry (LC-MS)
4.2.6. Liquid Chromatography Coupled to High Resolution Mass Spectrometry (LC-HRMS)
4.2.7. Molecular Networking and Annotation of Molecules
4.2.8. Docking Study
4.2.9. Preparation of Nanophytosomes Loaded with Dried S. platensis Extract
4.2.10. Entrapment Efficiency Percentage Determination (EE%)
4.2.11. Particle Size, Zeta Potential Determination of Formulated Nanophtosomes
4.2.12. Determination of Percentage of Drug Released after 6 h (Q6h)
4.2.13. Experimental Design and Selection of the Best Achieved Nanophytosomal Formula
4.2.14. Fourier Transform-Infrared Spectroscopy (FTIR)
4.2.15. Stability Study of Optimum Nanophytosomal Dispersion (SPNP)
4.2.16. Morphology Study of Optimum Nanophytosomal Dispersion
4.2.17. Formulation of SPNP Gel and S. platensis Gel
4.2.18. Creation of Excision Wound and Animal Distribution
4.2.19. Preparation of Blood and Tissue Samples
4.2.20. Determination of Serum Parameters
4.2.21. Western Blotting
4.2.22. Histopathological Evaluation
4.2.23. Immunohistochemistry Study
4.2.24. Statistical Analysis of In Vivo Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Akita, S. Wound repair and regeneration: Mechanisms, signaling. Int. J. Mol. Sci. 2019, 20, 6328. [Google Scholar] [CrossRef] [Green Version]
- Weyrich, A.S.; Zimmerman, G.A. Platelets: Signaling cells in the immune continuum. Trends Immunol. 2004, 25, 489–495. [Google Scholar] [CrossRef]
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. Future J. Pharm. Sci. 2021, 7, 53. [Google Scholar] [CrossRef]
- Somchit, M.; Rahmah, S.S.; Zuraini, A.; Bustamam, A.A.; Zakaria, Z.; Shamsuddin, L. Gastroprotective activity of Spirulina platensis in acetic acid and ethanol induced ulcers in rats. J. Nat. Remedies 2007, 7, 37–42. [Google Scholar]
- Wang, J.; Wang, Y.; Wang, Z.; Li, L.; Qin, J.; Lai, W.; Fu, Y.; Suter, P.M.; Russell, R.M.; Grusak, M.A. Vitamin A equivalence of spirulina β-carotene in Chinese adults as assessed by using a stable-isotope reference method. Am. J. Clin. Nutr. 2008, 87, 1730–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mala, R.; Sarojini, M.; Saravanababu, S.; Umadevi, G. Screening for antimicrobial activity of crude extracts of Spirulina platensis. J. Cell Tissue Res. 2009, 9, 1951. [Google Scholar]
- Sidorowicz, A.; Margarita, V.; Fais, G.; Pantaleo, A.; Manca, A.; Concas, A.; Rappelli, P.; Fiori, P.L.; Cao, G. Characterization of nanomaterials synthesized from Spirulina platensis extract and their potential antifungal activity. PLoS ONE 2022, 17, e0274753. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.-M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Aldhumri, S.A.; Ouda, S.M.; Mesalam, N.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J. Biol. Sci. 2022, 29, 1197–1209. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and medical applications of spirulina microalgae. Mini Rev. Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef]
- Canan, S.G.; Deniz, K.E.; Ilyas, O.; Pergin, A.; Nur, C.; Ismet, D.G. In vitro and in vivo investigations of the wound healing effect of crude Spirulina extract and C-phycocyanin. J. Med. Plants Res. 2013, 7, 425–433. [Google Scholar]
- Elbialy, Z.I.; Assar, D.H.; Abdelnaby, A.; Asa, S.A.; Abdelhiee, E.Y.; Ibrahim, S.S.; Abdel-Daim, M.M.; Almeer, R.; Atiba, A. Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed. Pharmacother. 2021, 137, 111349. [Google Scholar] [CrossRef]
- Jung, S.-M.; Min, S.K.; Lee, H.C.; Kwon, Y.S.; Jung, M.H.; Shin, H.S. Spirulina-PCL nanofiber wound dressing to improve cutaneous wound healing by enhancing antioxidative mechanism. J. Nanomater. 2016, 2016, 6135727. [Google Scholar] [CrossRef] [Green Version]
- Seghiri, R.; Essamri, A. In vivo wound healing activity of Spirulina platensis. Phytothérapie 2020, 18, 6–16. [Google Scholar] [CrossRef]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Deliloglu Gurhan, I. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Guo, R.; Gao, S.; Guo, J.; Sun, W. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem. PLoS ONE 2015, 10, e0123160. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Gnananath, K.; Nataraj, K.S.; Rao, B.G. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull. 2017, 7, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahanfar, S.; Gahavami, M.; Khosravi-Darani, K.; Jahadi, M.; Mozafari, M. Entrapment of rosemary extract by liposomes formulated by Mozafari method: Physicochemical characterization and optimization. Heliyon 2021, 7, e08632. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Sahebkar, A. Phytosome: A fatty solution for efficient formulation of phytopharmaceuticals. Recent Pat. Drug Deliv. Formul. 2016, 10, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Hanaya, T.; Yamamoto, H. Synthesis of biopterin and related pterin glycosides. IUBMB Life 2013, 65, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, A.P.A.; Muñoz, V.R.; Cintra, D.E.; Pauli, J.R. 12, 13-diHOME as a new therapeutic target for metabolic diseases. Life Sci. 2021, 120229. [Google Scholar]
- Gheita, A.A.; Gheita, T.A.; Kenawy, S.A. The potential role of B5: A stitch in time and switch in cytokine. Phytother. Res. 2020, 34, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, D.S.; Kim, S.; Lorz, L.R.; Choi, E.; Lim, H.Y.; Hossain, M.A.; Jang, S.; Choi, Y.I.; Park, K.J. Loliolide presents antiapoptosis and antiscratching effects in human keratinocytes. Int. J. Mol. Sci. 2019, 20, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mapoung, S.; Arjsri, P.; Thippraphan, P.; Semmarath, W.; Yodkeeree, S.; Chiewchanvit, S.; Piyamongkol, W.; Limtrakul, P. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. S. Afr. J. Bot. 2020, 130, 198–207. [Google Scholar] [CrossRef]
- Patel, M.; Nakaji-Hirabayashi, T.; Matsumura, K. Effect of dual-drug-releasing micelle–hydrogel composite on wound healing in vivo in full-thickness excision wound rat model. J. Biomed. Mater. Res. Part A 2019, 107, 1094–1106. [Google Scholar] [CrossRef]
- Suliman, Y.A.; Bruni, C.; Johnson, S.R.; Praino, E.; Alemam, M.; Borazan, N.; Cometi, L.; Myers, B.; Khanna, D.; Allanore, Y. Defining skin ulcers in systemic sclerosis: Systematic literature review and proposed World Scleroderma Foundation (WSF) definition. J. Scleroderma Relat. Disord. 2017, 2, 115–120. [Google Scholar] [CrossRef]
- Viana, R.D.S.; Aquino, F.L.T.D.; Barreto, E. Effect of trans-cinnamic acid and p-coumaric acid on fibroblast motility: A pilot comparative study of in silico lipophilicity measure. Nat. Prod. Res. 2021, 35, 5872–5878. [Google Scholar] [CrossRef]
- Sinha, P.; Srivastava, N.; Rai, V.K.; Mishra, R.; Ajayakumar, P.; Yadav, N.P. A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: Combination of hydrophilic-lipophilic balance and response surface methodology. J. Drug Deliv. Sci. Technol. 2019, 52, 870–884. [Google Scholar] [CrossRef]
- Danielson, J.R.; Walter, R.J. Salicylic acid may be useful in limiting scar formation. Plast. Reconstr. Surg. 2004, 114, 1359–1361. [Google Scholar] [CrossRef] [PubMed]
- El-Zawawy, N.A.; Ali, S.S.; Khalil, M.A.; Sun, J.; Nouh, H.S. Exploring the potential of benzoic acid derived from the endophytic fungus strain Neurospora crassa SSN01 as a promising antimicrobial agent in wound healing. Microbiol. Res. 2022, 262, 127108. [Google Scholar] [CrossRef]
- Lacroix, B.; Didier, E.; Grenier, J. Effects of pantothenic acid on fibroblastic cell cultures. Res. Exp. Med. 1988, 188, 391–396. [Google Scholar] [CrossRef]
- Aprahamian, M.; Dentinger, A.; Stock-Damge, C.; Kouassi, J.; Grenier, J. Effects of supplemental pantothenic acid on wound healing: Experimental study in rabbit. Am. J. Clin. Nutr. 1985, 41, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Del Rosso, J.Q.; Bhatia, N. Azelaic acid gel 15% in the management of papulopustular rosacea: A status report on available efficacy data and clinical application. Cutis 2011, 88, 67–72. [Google Scholar]
- Ito, T.; Tokoro, M.; Hori, R.; Hemmi, H.; Yoshimura, T. Production of ophthalmic acid using engineered Escherichia coli. Appl. Environ. Microbiol. 2018, 84, e02806–e02817. [Google Scholar] [CrossRef] [Green Version]
- Kopal, C.; Deveci, M.; Ozturk, S.; Sengezer, M. Effects of topical glutathione treatment in rat ischemic wound model. Ann. Plast. Surg. 2007, 58, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.A.; Zhao, L.; Bamat, M.; von Borstel, R.; Mustoe, T. Acceleration of wound healing with topically applied deoxyribonucleosides. Arch. Surg. 1999, 134, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korotkina, R.; Nosova, I.; Zaĭdenberg, M.; Karelin, A. Effect of cyclic guanosine monophosphate on certain indices of muscle tissue carbohydrate metabolism during the wound process. Biull. Eksp. Biol. Med. 1980, 90, 361–363. [Google Scholar] [CrossRef]
- Chuah, X.Q.; Okechukwu, P.N.; Amini, F.; Teo, S.S. Eicosane, pentadecane and palmitic acid: The effects in in vitro wound healing studies. Asian Pac. J. Trop. Biomed. 2018, 8, 490. [Google Scholar]
- Fathi, F.; Ebrahimi, S.N.; Prior, J.A.; Machado, S.M.; Kouchaksaraee, R.M.; Oliveira, M.B.P.; Alves, R.C. Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics 2022, 14, 112. [Google Scholar] [CrossRef]
- Liu, D.-Z.; Chen, W.-Y.; Tasi, L.-M.; Yang, S.-P. Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids Surf. A Physicochem. Eng. Asp. 2000, 172, 57–67. [Google Scholar] [CrossRef]
- Refai, H.; Hassan, D.; Abdelmonem, R. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate. Drug Deliv. 2017, 24, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sułkowski, W.; Pentak, D.; Korus, W.; Sułkowska, A. Effect of temperature on liposome structures studied using EPR spectroscopy. Spectroscopy 2005, 19, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Subczynski, W.K.; Pasenkiewicz-Gierula, M.; Widomska, J.; Mainali, L.; Raguz, M. High cholesterol/low cholesterol: Effects in biological membranes: A review. Cell Biochem. Biophys. 2017, 75, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Czura, C.J.; Wang, H.; Tracey, K.J. Dual roles for HMGB1: DNA binding and cytokine. J. Endotoxin Res. 2001, 7, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakike, E.; Adami, M.-E.; Lada, M.; Gkavogianni, T.; Koutelidakis, I.M.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Tsangaris, I. Late peaks of HMGB1 and sepsis outcome: Evidence for synergy with chronic inflammatory disorders. Shock 2019, 52, 334–339. [Google Scholar] [CrossRef]
- Salem, R.M.; El-fallah, A.A.; Shaker, R. HMGB1-RAGE-moesin axis may be indicted for acne vulgaris. J. Cosmet. Dermatol. 2022, 21, 1642–1646. [Google Scholar] [CrossRef]
- Zhang, Q.; O’Hearn, S.; Kavalukas, S.L.; Barbul, A. Role of high mobility group box 1 (HMGB1) in wound healing. J. Surg. Res. 2012, 176, 343–347. [Google Scholar] [CrossRef]
- Tripathi, A.; Shrinet, K.; Singh, V.K.; Kumar, A. Molecular modelling and docking of Mus musculus HMGB1 inflammatory protein with CGA. Bioinformation 2019, 15, 467. [Google Scholar] [CrossRef]
- Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Investig. Dermatol. 2007, 127, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Liou, S.-S.; Tzeng, T.-F.; Lee, S.-L.; Liu, I.-M. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med. 2012, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K.; Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2008, 1780, 1348–1361. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K. Wound healing essentials: Let there be oxygen. Wound Repair Regen. 2009, 17, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.C.; Kang, K.A.; Zhang, R.; Piao, M.J.; Kim, G.Y.; Kang, M.Y.; Lee, S.J.; Lee, N.H.; Surh, Y.-J.; Hyun, J.W. Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int. J. Biochem. Cell Biol. 2010, 42, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yu, H.; Pan, H.; Zhou, X.; Ruan, Q.; Kong, D.; Chu, Z.; Li, H.; Huang, J.; Huang, X. Nrf2 suppression delays diabetic wound healing through sustained oxidative stress and inflammation. Front. Pharmacol. 2019, 10, 1099. [Google Scholar] [CrossRef] [PubMed]
- Bellahcen, T.O.; AAmiri, A.; Touam, I.; Hmimid, F.; El Amrani, A.; Cherif, A.; Cherki, M. Evaluation of Moroccan microalgae: Spirulina platensis as a potential source of natural antioxidants. J. Complement. Integr. Med. 2020, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.; Zhao, F.; Zhang, Q.; Huang, X.; Wang, Z. Autophagy and skin wound healing. Burn. Trauma 2022, 10, tkac003. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, X.; Zhang, Z.; Deng, K.; An, S.; Gao, X.; Wang, Z.; Liu, Z.; Wang, F.; Liu, D. Spirulina supplementation improves lipid metabolism and autophagic activities in the liver and muscle of Hu lambs fed a high-energy diet. Arch. Anim. Nutr. 2020, 74, 476–495. [Google Scholar] [CrossRef]
- Lawrence, J.; Nho, R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Int. J. Mol. Sci. 2018, 19, 778. [Google Scholar] [CrossRef] [Green Version]
- Thorburn, A. Apoptosis and autophagy: Regulatory connections between two supposedly different processes. Apoptosis 2008, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Riwaldt, S.; Corydon, T.J.; Pantalone, D.; Sahana, J.; Wise, P.; Wehland, M.; Krüger, M.; Melnik, D.; Kopp, S.; Infanger, M. Role of apoptosis in wound healing and apoptosis alterations in microgravity. Front. Bioeng. Biotechnol. 2021, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Ramaesh, T.; Ramaesh, K.; Leask, R.; Springbett, A.; Riley, S.C.; Dhillon, B.; West, J.D. Increased apoptosis and abnormal wound-healing responses in the heterozygous Pax6+/− mouse cornea. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, H.K.; Susin, S.A. Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist. Updat. 2007, 10, 235–255. [Google Scholar] [CrossRef] [PubMed]
- Cregan, S.P.; Dawson, V.L.; Slack, R.S. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004, 23, 2785–2796. [Google Scholar] [CrossRef] [Green Version]
- Manucha, W.; Valles, P.G. Apoptosis modulated by oxidative stress and inflammation during obstructive nephropathy. Inflamm. Allergy-Drug Targets 2012, 11, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Zhong, J.; Zhang, S.; Zhang, Y.; Yu, Q.; Yang, P.; Wang, M.-H.; Fulton, D.J.; Shi, H.; Dong, Z. Loss of methyl-CpG–binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury. Circulation 2011, 123, 2964–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honnegowda, T.M.; Kumar, P.; Udupa, E.G.P.; Kumar, S.; Kumar, U.; Rao, P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast. Aesthetic Res. 2015, 2, 243–249. [Google Scholar]
- Lerman, O.Z.; Galiano, R.D.; Armour, M.; Levine, J.P.; Gurtner, G.C. Cellular dysfunction in the diabetic fibroblast: Impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am. J. Pathol. 2003, 162, 303–312. [Google Scholar] [CrossRef]
- Galiano, R.D.; Tepper, O.M.; Pelo, C.R.; Bhatt, K.A.; Callaghan, M.; Bastidas, N.; Bunting, S.; Steinmetz, H.G.; Gurtner, G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol. 2004, 164, 1935–1947. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Midha, S.; Giri, S.; Mohanty, S. Functional skin grafts: Where biomaterials meet stem cells. Stem Cells Int. 2019, 2019, 1286054. [Google Scholar] [CrossRef] [Green Version]
- Kallis, P.J.; Friedman, A.J. Collagen powder in wound healing. J. Drugs Dermatol. 2018, 17, 403–408. [Google Scholar] [PubMed]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Loupit, G.g.; Prigent, S.; Franc, C.; De Revel, G.; Richard, T.; Cookson, S.J.; Fonayet, J.V. Polyphenol profiles of just pruned grapevine canes from wild Vitis accessions and Vitis vinifera cultivars. J. Agric. Food Chem. 2020, 68, 13397–13407. [Google Scholar] [CrossRef] [PubMed]
- Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform. 2009, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Solis, F.J.; Wets, R.J.-B. Minimization by random search techniques. Math. Oper. Res. 1981, 6, 19–30. [Google Scholar] [CrossRef]
- Deepak, S.; Hari, B.V. Optimization, development and evaluation of microemulsion for the release of combination of guaifenesin and phenylephrine. J. Appl. Pharm. Sci. 2013, 3, 48–56. [Google Scholar]
- Mori, H.-M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med. 2016, 16, 144. [Google Scholar] [CrossRef] [Green Version]
- Hou, B.; Qi, M.; Sun, J.; Ai, M.; Ma, X.; Cai, W.; Zhou, Y.; Ni, L.; Hu, J.; Xu, F. Preparation, characterization and wound healing effect of vaccarin-chitosan nanoparticles. Int. J. Biol. Macromol. 2020, 165, 3169–3179. [Google Scholar] [CrossRef] [PubMed]
- El-Gazar, A.A.; Emad, A.M.; Ragab, G.M.; Rasheed, D.M. Mentha pulegium L. (Pennyroyal, Lamiaceae) Extracts Impose Abortion or Fetal-Mediated Toxicity in Pregnant Rats; Evidenced by the Modulation of Pregnancy Hormones, MiR-520, MiR-146a, TIMP-1 and MMP-9 Protein Expressions, Inflammatory State, Certain Related Signaling Pathways, and Metabolite Profiling via UPLC-ESI-TOF-MS. Toxins 2022, 14, 347. [Google Scholar]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Bakr, R.O.; Amer, R.I.; Attia, D.; Abdelhafez, M.M.; Al-Mokaddem, A.K.; El-Gendy, A.E.-N.G.; El-Fishawy, A.M.; Fayed, M.A.; Gad, S.S. In-vivo wound healing activity of a novel composite sponge loaded with mucilage and lipoidal matter of Hibiscus species. Biomed. Pharmacother. 2021, 135, 111225. [Google Scholar] [CrossRef]
- Gendy, A.M.; El-Gazar, A.A.; Ragab, G.M.; Al-Mokaddem, A.K.; El-Haddad, A.E.; Selim, H.M.R.M.; Yousef, E.M.; Hamed, N.O.; Ibrahim, S.S.A. Possible Implication of Nrf2, PPAR-γ and MAPKs Signaling in the Protective Role of Mangiferin against Renal Ischemia/Reperfusion in Rats. Pharmaceuticals 2022, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Tas, Ç.; Özkan, Y.; Savaser, A.; Baykara, T. In vitro release studies of chlorpheniramine maleate from gels prepared by different cellulose derivatives. Il Farmaco 2003, 58, 605–611. [Google Scholar] [CrossRef]
- Abdellatif, M.M.; Elakkad, Y.E.; Elwakeel, A.A.; Allam, R.M.; Mousa, M.R. Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment. Saudi Pharm. J. 2021, 29, 1238–1249. [Google Scholar] [CrossRef]
- Elakkad, Y.E.; Younis, M.K.; Allam, R.M.; Mohsen, A.F.; Khalil, I.A. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int. J. Pharm. 2021, 601, 120483. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, Y.; Yin, C.; Tang, T. Terminal iterative learning control based station stop control of a train. Int. J. Control. 2011, 84, 1263–1274. [Google Scholar] [CrossRef]
- Soliman, S.M.; Malak, N.A.; El-Gazayerly, O.N.; Abdel Rehim, A.A. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: In vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov. Ther. 2010, 4, 459–471. [Google Scholar]
- Cartwright, A.C. The British Pharmacopoeia, 1864 to 2014: Medicines, International Standards and the State; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Jiang, H.; Fall, M.; Yilmaz, E.; Li, Y.; Yang, L. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol. 2020, 372, 258–266. [Google Scholar] [CrossRef]
Polyphenols | Retention Time (min) | Molecular Weight | Transition Time 1 (m/z) | Transition Time 2 (m/z) |
---|---|---|---|---|
Salicylic acid | 8.17 | 138 | 139 → 95 | 139 → 77.1 |
Cinnamic acid | 19.22 | 148 | 149 → 131 | 149 → 103 |
Benzoic acid | 15.02 | 122 | 123 → 79.1 | 123 → 77.1 |
4-hydroxybenzoic acid | 15.61 | 138 | 139 → 65 | 139 → 39 |
Compound | Docking Score kcal/mol |
---|---|
12,13-DiHome | −7.12962 |
16-Hydroxypalmitic acid | −6.89744 |
Guanosine-5′-monophosphate | −6.50226 |
Ophthalmic acid | −6.28422 |
Deoxyguanosine | −5.83886 |
Azelaic acid | −5.37260 |
Pantothenic acid | −5.33000 |
Loliolide | −4.69992 |
Cinnamic acid | −4.63100 |
Pterin | −4.57262 |
4-Hydroxybenzoic acid | −4.45834 |
Salicylic acid | −4.29606 |
Benzoic acid | −4.23322 |
Factors (Independent Variables) | Levels |
---|---|
X1: PC amount (mg) | 50 100 |
X2: CH amount (mg) | 50 100 |
Responses (dependent variables) | Constraints |
Y1: EE (%) | Maximize |
Y2: PS (nm) | Maximize |
Y3: PDI | Minimize |
Y4: ZP (mV) | Maximize (absolute value) |
Y5: Q6h (%) | Minimize |
Formula | PC (mg) | CH (mg) | EE (%) | PS (nm) | PDI | ZP (mV) | Q6h (%) |
---|---|---|---|---|---|---|---|
F1 | 50 | 0 | 37.81 ± 1.61 | 175.1 ± 0.77 | 0.43 ± 0.06 | −13.60 ± 0.57 | 89.00 ± 3.50 |
F2 | 100 | 0 | 42.36 ± 6.04 | 206.36 ± 4.11 | 0.46 ± 0.06 | −11.66 ± 0.57 | 79.00 ± 2.90 |
F3 | 50 | 50 | 51.19 ± 1.84 | 494.23 ± 48.05 | 0.69 ± 0.13 | −11.13 ± 0.20 | 80.00 ± 4.00 |
F4 | 100 | 50 | 62.76 ± 1.75 | 598.40 ± 9.68 | 0.62 ± 0.07 | −19.80 ± 0.49 | 74.00 ± 1.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refai, H.; El-Gazar, A.A.; Ragab, G.M.; Hassan, D.H.; Ahmed, O.S.; Hussein, R.A.; Shabana, S.; Waffo-Téguo, P.; Valls, J.; Al-Mokaddem, A.K.; et al. Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Mar. Drugs 2023, 21, 149. https://doi.org/10.3390/md21030149
Refai H, El-Gazar AA, Ragab GM, Hassan DH, Ahmed OS, Hussein RA, Shabana S, Waffo-Téguo P, Valls J, Al-Mokaddem AK, et al. Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Marine Drugs. 2023; 21(3):149. https://doi.org/10.3390/md21030149
Chicago/Turabian StyleRefai, Hanan, Amira A. El-Gazar, Ghada M. Ragab, Doaa H. Hassan, Omar S. Ahmed, Rehab A. Hussein, Samah Shabana, Pierre Waffo-Téguo, Josep Valls, Asmaa K. Al-Mokaddem, and et al. 2023. "Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model" Marine Drugs 21, no. 3: 149. https://doi.org/10.3390/md21030149
APA StyleRefai, H., El-Gazar, A. A., Ragab, G. M., Hassan, D. H., Ahmed, O. S., Hussein, R. A., Shabana, S., Waffo-Téguo, P., Valls, J., Al-Mokaddem, A. K., Selim, H. M. R. M., Yousef, E. M., Ali, S. K., Salman, A., Abo-Zalam, H. B., & Albash, R. (2023). Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Marine Drugs, 21(3), 149. https://doi.org/10.3390/md21030149