Investigation of the In Vivo, In Vitro, and In Silico Wound Healing Potential of Pinctada martensii Purified Peptides
Abstract
:1. Introduction
2. Results
2.1. Screening and Purification of Peptides Fractions
2.2. Identification of PMPPs Peptide Sequences by LC-MS/MS
2.3. Effect of PMPPs on Wound Healing in Mice
2.3.1. Macroscopic Effects of PMPPs on Wound Healing
2.3.2. Effects of the PMPPs on Wound Cytokines in Mice
2.3.3. Effects of PMPPs on Wound Tissue Regeneration
2.4. Effects of PMPPs on Wound Collagen and Scar Formation
2.5. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of PMPs
4.3. Gel Permeation or Ultrafiltration Purification of PMPPs
4.4. Cell Proliferation Assay In Vitro
4.5. Peptide Sequence Analysis of PMPPs
4.6. Animal Grouping and Establishment of Trauma Model
4.7. Percentage of Wound Closure and Residual Scar Rate
4.8. Tissue Preparation for Histological Assessment
4.9. ELISA Analysis
4.10. Hematoxylin and Eosin Staining for Microscopic Analysis
4.11. Immunohistochemistry
4.12. Sirius Red Picric Acid Dyeing
4.13. Molecular Docking
4.14. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.Z.; Zhai, X.Y.; Ma, T.F.; Huang, Y.K.; Yan, C.H.; Du, Y.P. Multifunctional cerium doped carbon dots nanoplatform and its applications for wound healing. Chem. Eng. J. 2021, 423, 130301. [Google Scholar] [CrossRef]
- Boniakowski, A.E.; Kimball, A.S.; Jacobs, B.N.; Kunkel, S.L.; Gallagher, K.A. Macrophage-mediated inflammation in normal and diabetic wound healing. J. Immunol. 2017, 199, 17. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.M.; Zhao, D.; Zhang, K.; Wang, Z.C.; Wang, Y.X.; Wu, C.C.; Cui, S.H.; Guo, T.T.; Chen, L.Q.; Chen, J.D. Oral delivery of marine shellfish supramolecule peptides for skin wound healing. Colloids Surf. B Biointerfaces 2022, 216, 112592. [Google Scholar] [CrossRef]
- Costa, A.M.A.; Peyrol, S.; Pôrto, L.C.; Comparin, J.-P.; Foyatier, J.-L.; Desmoulière, A. Mechanical forces induce scar remodeling: Study in Non-pressure-treated versus pressure-treated hypertrophic scars. Am. J. Pathol. 1999, 155, 1671–1679. [Google Scholar] [CrossRef]
- Wu, K.K.; Fu, M.M.; Zhao, Y.T.; Gerhard, E.; Li, Y.; Yang, J.; Guo, J.S. Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing. Bioact. Mater. 2023, 20, 93–110. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine Peptides: Bioactivities and Applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef]
- Sridhar, K.; Inbaraj, B.S.; Chen, B.H. Recent developments on production, purification and biological activity of marine peptides. Food Res. Int. 2021, 147, 110468. [Google Scholar] [CrossRef]
- Berthon, J.-Y.; Nachat-Kappes, R.; Bey, M.; Cadoret, J.-P.; Renimel, I.; Filaire, E. Marine algae as attractive source to skin care. Free Radical Res. 2017, 51, 555–567. [Google Scholar] [CrossRef]
- Khotimchenko, Y. Pharmacological potential of sea cucumbers. Int. J. Mol. Sci. 2018, 19, 1342. [Google Scholar] [CrossRef] [Green Version]
- Lazcano-Perez, F.; Roman-Gonzalez, S.A.; Sanchez-Puig, N.; Arreguin- Espinosa, R. Bioactive peptides from marine organisms: A short overview. Protein Pept. Lett. 2012, 19, 700–707. [Google Scholar] [CrossRef]
- Anjum, K.; Abbas, S.Q.; Akhter, N.; Shagufta, B.I.; Shah, S.A.A.; Hassan, S.S.u. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chem. Biol. Drug Des. 2017, 90, 12–30. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Ding, Y.; Dai, X.; Li, Y. Oral administration of marine collagen peptides from chum salmon skin enhances cutaneous wound healing and angiogenesis in rats. J. Sci. Food Agric. 2011, 91, 2173–2179. [Google Scholar] [CrossRef]
- Sellimi, S.; Maalej, H.; Rekik, D.M.; Benslima, A.; Ksouda, G.; Hamdi, M.; Sahnoun, Z.; Li, S.; Nasri, M.; Hajji, M. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from cystoseira barbata seaweed. Int. J. Biol. Macromol. 2018, 119, 633–644. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, K.; Li, B.; Hou, H. Effects of oral administration of peptides with low molecular weight from alaska pollock (theragra chalcogramma) on cutaneous wound healing. J. Funct. Foods 2018, 48, 682–691. [Google Scholar] [CrossRef]
- Yang, F.; Qin, X.; Zhang, T.; Zhang, C.; Lin, H. Effect of oral administration of active peptides of pinctada martensii on the repair of skin wounds. Mar. Drugs 2019, 17, 697. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Qin, X.; Zhang, T.; Lin, H.; Zhang, C. Evaluation of small molecular polypeptides from the mantle of pinctada martensii on promoting skin wound healing in mice. Molecules 2019, 24, 4231. [Google Scholar] [CrossRef] [Green Version]
- Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today 2022, 27, 151–164. [Google Scholar] [CrossRef]
- Chouhan, D.; Dey, N.; Bhardwaj, N.; Mandal, B.B. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials 2019, 216, 119267. [Google Scholar] [CrossRef]
- St-Cyr, D.; Ceccarelli, D.F.; Orlicky, S.; van der Sloot, A.M.; Tang, X.; Kelso, S.; Moore, S.; James, C.; Posternak, G.; Coulombe-Huntington, J.; et al. Identification and optimization of molecular glue compounds that inhibit a noncovalent E2 enzyme-ubiquitin complex. Sci. Adv. 2021, 7, eabi5797. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, S.; Wu, T.; Fang, X.; Zhao, L. Discovery of TGFBR1 (ALK5) as a potential drug target of quercetin glycoside derivatives (QGDs) by reverse molecular docking and molecular dynamics simulation. Biophys. Chem. 2022, 281, 106731. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, S.; Wu, K.; Zhao, R.; Cao, L.; Wang, H. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review. J. Cosmet. Dermatol. 2020, 19, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Bhar, B.; Chakraborty, B.; Nandi, S.K.; Mandal, B.B. Silk-based phyto-hydrogel formulation expedites key events of wound healing in full-thickness skin defect model. Int. J. Biol. Macromol. 2022, 203, 623–637. [Google Scholar] [CrossRef]
- Luo, M.; Wang, M.; Niu, W.; Chen, M.; Cheng, W.; Zhang, L.; Xie, C.; Wang, Y.; Guo, Y.; Leng, T.; et al. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration. Chem. Eng. J. 2021, 412, 128471. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, D.; Tang, Q.; Ma, H.-W.; Dong, X.-Y.; Chen, Y.-L.; Ni, W.-F.; Wang, B.-L.; Xu, H.-Z.; Shen, L.-Y. Charge-switchable, anti-oxidative molecule tuned polyelectrolyte multilayered films: Amplified polyelectrolyte diffusivity and accelerated diabetes wound healing. Chem. Eng. J. 2021, 416, 129521. [Google Scholar] [CrossRef]
- El Ayadi, A.; Jay, J.W.; Prasai, A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int. J. Mol. Sci. 2020, 21, 1105. [Google Scholar] [CrossRef] [Green Version]
- Kiritsi, D.; Nyström, A. The role of TGFβ in wound healing pathologies. Mech. Ageing Dev. 2018, 172, 51–58. [Google Scholar] [CrossRef]
- Penn, J.W.; Grobbelaar, A.O.; Rolfe, K.J. The role of the TGF-β family in wound healing, burns and scarring: A review. Int. J. Burns Trauma 2012, 2, 18–28. [Google Scholar]
- Wang, Y.; Feng, Z.; Yang, M.; Zeng, L.; Qi, B.e.; Yin, S.; Li, B.; Li, Y.; Fu, Z.; Shu, L.; et al. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol. Res. 2021, 163, 105296. [Google Scholar] [CrossRef]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Reviews. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol. 2021, 192, 298–322. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Deng, J.; Zhang, Z.; Sui, H.; Shi, W.; Yuan, B.; Lin, H.; Yang, X.; Cao, J.; Zhu, X.; et al. Spatiotemporal manipulation of L-arginine release from bioactive hydrogels initiates rapid skin wound healing accompanied with repressed scar formation. Appl. Mater. Today 2021, 24, 101116. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.Q.; Wang, T.; Gao, Y.; Wu, J.; Xie, Z.; Zhao, J.; He, C.; Zhu, M.; Zhang, S.; et al. Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing. Mater. Sci. Eng. Mater. Biol. Appl. 2021, 127, 112202. [Google Scholar] [CrossRef] [PubMed]
- Kisling, A.; Lust, R.M.; Katwa, L.C. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci. 2019, 228, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Morales, P.L.; del Corral, R.D.; Olivera-Martínez, I.; Quiroga, A.C.; Das, R.M.; Barbas, J.A.; Storey, K.G.; Morales, A.V. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. J. Cell Biol. 2011, 194, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Wongrattanakamon, P.; Nimmanpipug, P.; Sirithunyalug, B.; Chaiyana, W.; Jiranusornkul, S. Investigation of the Skin Anti-photoaging Potential of Swertia chirayita Secoiridoids Through the AP-1/Matrix Metalloproteinase Pathway by Molecular Modeling. Int. J. Pept. Res. Ther. 2018, 25, 517–533. [Google Scholar] [CrossRef]
Sequence | Peptide Sequence of PMPPs | Molecular Mass (Da) | Score |
---|---|---|---|
1 | RGVVDSEDLPLNISRE | 1512.78 | 58.46 |
2 | KEAFSLFDKDGDGTITTKE | 1843.89 | 56.77 |
3 | FIMDNCEELIPEYLN | 1653.73 | 47.74 |
4 | RYESLTDPSKLDSGKD | 1538.75 | 46.45 |
5 | RELISNSSDALDKIRY | 1559.82 | 45.27 |
6 | FAFQAEIAQLMS | 1136.56 | 42.91 |
7 | RELISNSSDALDKI | 1290.63 | 41.91 |
8 | FAFQAEIAQLMS | 1120.56 | 41.40 |
9 | KFYEQFSKN | 947.43 | 39.76 |
10 | KHFSVEGQLEFRA | 1347.66 | 39.38 |
11 | LISNSSDALDKIRYE | 1480.75 | 38.97 |
12 | KLTDEEVDEMIRE | 1348.62 | 38.78 |
13 | FIMDNCEELIPEYLN | 1637.73 | 36.49 |
14 | KYRHPDGSYSA | 1080.46 | 36.41 |
15 | FLRELISNSSDALDKIRYE | 1992.06 | 33.79 |
16 | YSNKEIFLRELI | 1247.69 | 33.05 |
17 | KLTDEEVDEMIRE | 1364.62 | 32.39 |
18 | YESLTDPSKLD | 988.51 | 31.40 |
19 | RHVMTNLGEKL | 1043.51 | 30.61 |
20 | WEDHLAVKHFS | 1094.55 | 30.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yang, F.; Qin, X.; Yang, X.; Zhang, C.; Wan, Z.; Lin, H. Investigation of the In Vivo, In Vitro, and In Silico Wound Healing Potential of Pinctada martensii Purified Peptides. Mar. Drugs 2022, 20, 417. https://doi.org/10.3390/md20070417
Zhang T, Yang F, Qin X, Yang X, Zhang C, Wan Z, Lin H. Investigation of the In Vivo, In Vitro, and In Silico Wound Healing Potential of Pinctada martensii Purified Peptides. Marine Drugs. 2022; 20(7):417. https://doi.org/10.3390/md20070417
Chicago/Turabian StyleZhang, Ting, Faming Yang, Xiaoming Qin, Xianmei Yang, Chaohua Zhang, Zhaoyi Wan, and Haisheng Lin. 2022. "Investigation of the In Vivo, In Vitro, and In Silico Wound Healing Potential of Pinctada martensii Purified Peptides" Marine Drugs 20, no. 7: 417. https://doi.org/10.3390/md20070417
APA StyleZhang, T., Yang, F., Qin, X., Yang, X., Zhang, C., Wan, Z., & Lin, H. (2022). Investigation of the In Vivo, In Vitro, and In Silico Wound Healing Potential of Pinctada martensii Purified Peptides. Marine Drugs, 20(7), 417. https://doi.org/10.3390/md20070417