Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Australindolones A–D (1–4)
2.2. Meridianins A–H (5–12)
2.3. On the Stereochemistry of the Australindolones
2.4. Bioactivity of the Aminopyrimidines
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. X-ray Diffraction of Australindolone B (2)
3.5. Bioassay Procedure
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, L.Z. Tunicates. Curr. Biol. 2016, 26, R146–R152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palanisamy, S.K.; Rajendran, N.M.; Marino, A. Natural products diversity of marine ascidians (tunicates; ascidiacea) and successful drugs in clinical development. Nat. Prod. Bioprospec. 2017, 7, 1–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, E.W.; Donia, M.S.; McIntosh, J.A.; Fricke, W.F.; Ravel, J. Origin and variation of tunicate secondary metabolites. J. Nat. Prod. 2012, 75, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Puglisi, M.P.; Sneed, J.M.; Ritson-Williams, R.; Young, R. Marine chemical ecology in benthic environments. Nat. Prod. Rep. 2019, 36, 410–429. [Google Scholar] [CrossRef]
- Seldes, A.M.; Rodriguez Brasco, M.F.; Hernandez Franco, L.; Palermo, J.A. Identification of two meridianins from the crude extract of the tunicate Aplidium meridianum by tandem mass spectrometry. Nat. Prod. Res. 2007, 21, 555–563. [Google Scholar] [CrossRef]
- Franco, L.H.; Joffe, E.B.D.; Puricelli, L.; Tatian, M.; Seldes, A.M.; Palermo, J.A. Indole alkaloids from the tunicate Aplidium meridianum. J. Nat. Prod. 1998, 61, 1130–1132. [Google Scholar] [CrossRef]
- Reyes, F.; Fernandez, R.; Rodriguez, A.; Francesch, A.; Taboada, S.; Avila, C.; CuevaS, C. Aplicyanins A-F, new cytotoxic bromoindole derivatives from the marine tunicate Aplidium cyaneum. Tetrahedron 2008, 64, 5119–5123. [Google Scholar] [CrossRef]
- Noguez, J.H.; Diyabalanage, T.; Miyata, Y.; Xie, X.-S.; Valeriote, F.A.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Palmerolide macrolides from the Antarctic tunicate Synoicum adareanum. Bioorg. Med. Chem. 2011, 19, 6608–6614. [Google Scholar] [CrossRef]
- Diyabalanage, T.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Palmerolide A, a cytotoxic macrolide from the Antarctic tunicate Synoicum adareanum. J. Am. Chem. Soc. 2006, 128, 5630–5631. [Google Scholar] [CrossRef]
- Synoicum phipps. 1774. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=103479#images (accessed on 5 March 2022).
- Nunez-Pons, L.; Carbone, M.; Vazquez, J.; Rodriguez, J.; Nieto, R.M.; Varela, M.M.; Gavagnin, M.; Avila, C. Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: Variability and defensive role. Mar. Drugs 2012, 10, 1741–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, Y.; Diyabalanage, T.; Amsler, C.D.; McClintock, J.B.; Valeriote, F.A.; Baker, B.J. Ecdysteroids from the Antarctic tunicate Synoicum adareanum. J. Nat. Prod. 2007, 70, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Won, T.H.; Jeon, J.E.; Lee, S.H.; Rho, B.J.; Oh, K.B.; Shin, J. Beta-carboline alkaloids derived from the ascidian Synoicum sp. Bioorg. Med. Chem. 2012, 20, 4082–4087. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.; Bowden, B.; Coll, J. Studies of Australian ascidians. 3. A new tetrahydrocannabinol derivative from the ascidian Synoicum castellatum. Aust. J. Chem. 1993, 46, 1079–1083. [Google Scholar] [CrossRef]
- Carroll, A.; Healy, P.; Quinn, R.; Tranter, C. Prunolides A, B, and C: Novel tetraphenolic bis-spiroketals from the Australian ascidian Synoicum prunum. J. Org. Chem. 1999, 64, 2680–2682. [Google Scholar] [CrossRef]
- Hansen, I.; Isaksson, J.; Poth, A.; Hansen, K.; Andersen, A.; Richard, C.; Blencke, H.; Stensvag, K.; Craik, D.; Haug, T. Isolation and characterization of antimicrobial peptides with unusual disulfide connectivity from the colonial ascidian Synoicum turgens. Mar. Drugs 2020, 18, 51. [Google Scholar] [CrossRef] [Green Version]
- Ortega, M.; Zubia, E.; Ocana, J.; Naranjo, S.; Salva, J. New rubrolides from the ascidian Synoicum blochmanni. Tetrahedron 2000, 56, 3963–3967. [Google Scholar] [CrossRef]
- Lebar, M.D.; Heimbegner, J.L.; Baker, B.J. Cold-water marine natural products. Nat. Prod. Rep. 2007, 24, 774–797. [Google Scholar] [CrossRef]
- Soldatou, S.; Baker, B.J. Cold-water marine natural products, 2006 to 2016. Nat. Prod. Rep. 2017, 34, 585–626. [Google Scholar] [CrossRef]
- Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep. 2014, 31, 999–1025. [Google Scholar] [CrossRef]
- Liu, J.T.; Lu, X.L.; Liu, X.Y.; Gao, Y.; Hu, B.; Jiao, B.H.; Zheng, H. Bioactive natural products from the Antarctic and Arctic organisms. Mini Rev. Med. Chem. 2013, 13, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, Y.L.; Zhao, F.C. Secondary metabolites from polar organisms. Mar. Drugs 2017, 15, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dueñas, L.F.; Tracey, D.M.; Crawford, A.J.; Wilke, T.; Alderslade, P.; Sánchez, J.A. The Antarctic Circumpolar Current as a diversification trigger for deep-sea octocorals. BMC Evol. Biol. 2016, 16, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClintock, J.B.; Amsler, C.D.; Baker, B.J. Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula. Integr. Comp. Biol. 2010, 50, 967–980. [Google Scholar] [CrossRef]
- Wilson, N.G.; Maschek, J.A.; Baker, B.J. A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS ONE 2013, 8, e80277. [Google Scholar] [CrossRef] [Green Version]
- Patton, E.E.; Zon, L.I.; Langenau, D.M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 2021, 20, 611–628. [Google Scholar] [CrossRef]
- Wiley, D.S.; Redfield, S.E.; Zon, L.I. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol. 2017, 138, 651–679. [Google Scholar] [CrossRef] [Green Version]
- Patton, E.E.; Tobin, D.M. Spotlight on zebrafish: The next wave of translational research. Dis. Models Mech. 2019, 12, dmm039370. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Inoue, A.; Sasagawa, S.; Koiwa, J.; Kawaguchi, K.; Kawase, R.; Maruyama, T.; Kim, S.; Tanaka, T. Using zebrafish in systems toxicology for developmental toxicity testing. Cong. Anom. 2015, 56, 18–27. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Freeman, J.L. Making waves: New developments in toxicology with the zebrafish. Toxicol. Sci. 2018, 163, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Crawford, A.D.; Esguerra, C.V.; De Witte, P.A. Fishing for drugs from nature: Zebrafish as a technology platform for natural product discovery. Planta Med. 2008, 74, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, A.D.; Liekens, S.; Kamuhabwa, A.R.; Maes, J.; Munck, S.; Busson, R.; Rozenski, J.; Esguerra, C.V.; De Witte, P.A. Zebrafish bioassay-guided natural product discovery: Isolation of angiogenesis inhibitors from East African medicinal plants. PLoS ONE 2011, 6, e14694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challal, S.; Bohni, N.; Buenafe, O.E.; Esguerra, C.V.; De Witte, P.A.; Wolfender, J.L.; Crawford, A.D. Zebrafish bioassay-guided microfractionation for the rapid in vivo identification of pharmacologically active natural products. Chimia 2012, 66, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Pitchai, A.; Rajaretinam, R.K.; Freeman, J.L. Zebrafish as an emerging model for bioassay-guided natural product drug discovery for neurological disorders. Medicines 2019, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, K.H.; Crawford, A.D. Marine biodiscovery goes deeper: Using in vivo bioassays based on model organisms to identify biomedically relevant marine metabolites. Planta Med. 2016, 82, 754–760. [Google Scholar] [CrossRef]
- Gebruers, E.; Cordero-Maldonado, M.L.; Gray, A.I.; Clements, C.; Harvey, A.L.; Edrada-Ebel, R.; De Witte, P.A.; Crawford, A.D.; Esguerra, C.V. A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling. PLoS ONE 2013, 8, e83293. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemas, S. Lewis acid-catalyzed enantioselective hydroxylation reactions of oxindoles and beta-keto esters using DBFOX ligand. J. Am. Chem. Soc. 2006, 128, 16488–16489. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Shelxt–integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with shelxl. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Spek, A. Single-crystal structure validation with the program platon. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
1 | 2 | 3 | 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Position | δC a | δH b | HMBC | δC a | δH b | HMBC | δC a | δH b | HMBC | δC a | δH b | HMBC |
1 NH | 10.41 (1H, s) | 3 | 10.57 (1H, s) | 10.57 (1H, s) | 10.74 (1H, s) | |||||||
2 | 177.4, C | 176.9, C | 177.3, C | 177.2, C | ||||||||
3 | 78.1, C | 78.1, C | 77.8, C | 78.3, C | ||||||||
3-OH | 6.74 (1H, brs) | 6.91 (1H, brs) | 6.85 (1H, brs) | 7.00 (1H, s) | ||||||||
3a | 133.1, C | 135.4, C | 132.5, C | 135.2, C | ||||||||
4 | 124.1, CH | 6.99 (1H, d, 7.2) | 3, 6, 7a | 126.8, CH | 7.12 (1H, d, 2.0) | 3, 5, 6, 7, 7a | 126.0, CH | 6.95 (1H, d, 7.8) | 3, 6, 7a | 129.2, CH | 7.32 (1H, s) | 3, 3a, 5, 6, 7a |
5 | 121.6, CH | 6.89 (1H, dd, 7.5, 7.5) | 3a, 7 | 113.2, C | 124.2, CH | 7.08 (1H, dd, 8.1, 2.0) | 3a, 6, 7 | 115.8 C | ||||
6 | 129.4, CH | 7.20 (1H, dd, 7.5, 7.5) | 4, 7a | 132.0, CH | 7.39 (1H, dd, 8.2, 2.1) | 4, 5, 7a | 121.8, C | 124.6 C | ||||
7 | 109.8, CH | 6.84 (1H, d, 7.7) | 3a, 5 | 111.9, CH | 6.81(1H, d, 8.2) | 3, 3a, 4, 5, 7a | 112.6, CH | 6.99 (1H, d, 2.0) | 5, 6, 7a | 115.1, CH | 7.21 (1H, s) | 3a, 5, 6, 7a |
7a | 142.8, C | 142.2, C | 144.6, C | 144.0, C | ||||||||
1′ | - | - | - | - | - | - | - | - | - | |||
2′ | 162.9, C | 162.9, C | 162.9, C | 163.4, C | ||||||||
2′-NH2 | 6.48 (2H, brs) | 6.53 (2H, brs) | 6.51 (2H, brs) | 6.55 (2H, brs) | 2′, 4′, 6′ | |||||||
3′ | - | - | - | - | - | - | - | - | - | |||
4′ | 170.6, C | 170.0, C | 170.1, C | 169.9, C | ||||||||
5′ | 105.8, CH | 6.97 (1H, d, 5.1) | 3, 6′ | 105.8, C | 6.99 (1H, d, 5.1) | 3, 4′, 6′ | 105.7, CH | 6.97 (1H, d, 4.9) | 6′ | 106.3, CH | 7.00 (1H, d, 5.0) | 3, 4′, 6′ |
6′ | 158.9, CH | 8.28 (1H, d, 5.1) | 2′, 4′, 5′ | 159.1, C | 8.30 (1H, d, 5.1) | 3, 2′, 4′, 5′ | 159.0, CH | 8.30 (1H, d, 4.9) | 4′,5′ | 159.7, CH | 8.33 (1H, d, 5.0) | 3, 2′, 4′, 5′ |
12 | |||
---|---|---|---|
Position | δCa | δHb | HMBC |
1 | 12.14 (1H, s) | ||
2 | 130.0, CH | 8.34 (1H, s) | 3, 3a, 7a |
3 | 114.7, C | ||
3a | 116.3, C | ||
4 | 148.7, C | ||
4-OH | 15.07 (1H, s) | 3a, 4, 5 | |
5 | 99.1, C | ||
6 | 128.6, CH | 7.42 (1H, s) | 4, 5, 7, 7a |
7 | 93.0, C | ||
7a | 136.1, C | ||
1′ | - | - | - |
2′ | 161.4, C | ||
2′-NH2 | 6.91 (2H, brs) | ||
3′ | - | - | - |
4′ | 159.3, C | ||
5′ | 104.6, CH | 7.23 (1H, d, 5) | 3, 4′, 6′ |
6′ | 159.4, CH | 8.17 (1H, d, 5) | 4′, 5′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkaliari, S.; Pham, K.; Shahbazi, N.; Calcul, L.; Wojtas, L.; Wilson, N.G.; Crawford, A.D.; Baker, B.J. Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp. Mar. Drugs 2022, 20, 196. https://doi.org/10.3390/md20030196
Kokkaliari S, Pham K, Shahbazi N, Calcul L, Wojtas L, Wilson NG, Crawford AD, Baker BJ. Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp. Marine Drugs. 2022; 20(3):196. https://doi.org/10.3390/md20030196
Chicago/Turabian StyleKokkaliari, Sofia, Kim Pham, Nargess Shahbazi, Laurent Calcul, Lukasz Wojtas, Nerida G. Wilson, Alexander D. Crawford, and Bill J. Baker. 2022. "Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp." Marine Drugs 20, no. 3: 196. https://doi.org/10.3390/md20030196
APA StyleKokkaliari, S., Pham, K., Shahbazi, N., Calcul, L., Wojtas, L., Wilson, N. G., Crawford, A. D., & Baker, B. J. (2022). Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp. Marine Drugs, 20(3), 196. https://doi.org/10.3390/md20030196