Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Volatile Compounds
2.2. Antioxidant Activity
2.3. Antimicrobial Activity
3. Materials and Methods
3.1. Sampling and Volatile Compunds Extraction
3.2. GC-MS Analysis
3.3. Antioxidant Activity
3.4. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sonina, A.V.; Androsova, V.I. Coastal Lichens. In Handbook of Halophytes; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–22. [Google Scholar]
- Chrismas, N.A.M.; Allen, R.; Hollingsworth, A.L.; Taylor, J.D.; Cunliffe, M. Complex photobiont diversity in the marine lichen Lichina pygmaea. J. Mar. Biol. Assoc. U. K. 2021, 101, 667–674. [Google Scholar] [CrossRef]
- Crisp, D.J. The Ecology of Rocky Shores. JR Lewis. English Universities Press, London, 1964. xii+ 323 pp. Illus. 42s. Science 1965, 147, 601. [Google Scholar] [CrossRef]
- Chu, F.J.; Seaward, M.R.D.; Hodgkiss, I.J. Effects of Wave Exposure and Aspect on Hong Kong Supralittoral Lichens. Lichenologist 2000, 32, 155–170. [Google Scholar] [CrossRef]
- Zhdanov, I.; Dudoreva, T. Lichens of maritime habitats of the coast and islands of Kandalakshsky Bay of the White Sea. Bot. Zhurnal 2003, 88, 34–41. [Google Scholar]
- Gilbert, O.L. The lichen flora of unprotected soft sea cliffs and slopes. Lichenologist 2003, 35, 245–254. [Google Scholar] [CrossRef]
- Prieto, A.; Leal, J.A.; Bernabé, M.; Hawksworth, D.L. A polysaccharide from Lichina pygmaea and L. confinis supports the recognition of Lichinomycetes. Mycol. Res. 2008, 112, 381–388. [Google Scholar] [CrossRef]
- Ortiz-Álvarez, R.; Rios, A.D.L.; Fernández-Mendoza, F.; Torralba-Burrial, A.; Pérez-Ortega, S. Ecological Specialization of Two Photobiont-Specific Maritime Cyanolichen Species of the Genus Lichina. PLoS ONE 2015, 10, e0132718. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.W. The Lichens of Great Britain and Ireland; Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W., Wolseley, P.A., Eds.; British Lichen Society: London, UK, 2009; pp. 556–557. [Google Scholar]
- Whitton, B.A. Ecology of Cyanobacteria II: Their Diversity in Space and Time; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–440. [Google Scholar]
- Crawford, S. Lichens as a Potential Source of Bioactive Secondary Metabolites. In Lichen Secondary Metabolites Bioactive Properties and Pharmaceutical Potential; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–26. ISBN 978-331-913-373-7. [Google Scholar]
- Karagöz, A.; Do, N.; Zeybek, Z.; Aslan, A. Antibacterial activity of some lichen extracts. J. Med. Plants Res. 2009, 3, 1034–1039. [Google Scholar]
- Oksanen, I. Ecological and biotechnological aspects of lichens. Appl. Microbiol. Biotechnol. 2006, 73, 723–734. [Google Scholar] [CrossRef]
- Kahriman, N.; Yazici, K.; Arslan, T.; Aslan, A.; Karaoglu, S.A.; Yayli, N. Chemical composition and antimicrobial activity of the essential oils from Evernia prunastri (L.) ach. and Evernia divaricata (L.) ach. Asian J. Chem. 2011, 23, 1937–1939. [Google Scholar]
- Maqbul, M.S.; Bin Alhasel, H.M.; Majid, D.H.; Momen, T.N.; Alhazmi, H.A.M.; Al Jeddani, F.M.S.; Al Malki, R.T.W.; Khan, A.A.; Iqubal, S.M.S. Chemical Analysis (GC-FID-MS) and Antimicrobial Activity of Parmotrema perlatum Essential Oil Against Clinical Specimens. Orient. J. Chem. 2019, 35, 1695–1701. [Google Scholar] [CrossRef]
- Leflaive, J.; Ten-Hage, L. Impairment of benthic diatom adhesion and photosynthetic activity by 2E,4E-decadienal. Res. Microbiol. 2011, 162, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A. Volatile Compounds and Associated Genes in Cyanobacteria. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloníki, Greece, 2017; p. 67. [Google Scholar]
- Wiesemeier, T.; Hay, M.; Pohnert, G. The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores. Aquat. Sci. 2007, 69, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- El Hattab, M. Algae Essential Oils: Chemistry, Ecology, and Biological Activities. In Essential Oils—Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Patra, J.K.; Das, G.; Baek, K.-H. Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L. Molecules 2015, 20, 12093–12113. [Google Scholar] [CrossRef] [Green Version]
- De la Coba, F.; Aguilera, J.; Figueroa, F.L.; de Gálvez, M.V.; Herrera, E. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J. Appl. Phycol. 2008, 21, 161–169. [Google Scholar] [CrossRef]
- Álvarez-Gomez, F.; Korbee, N.; Figueroa, F.L. Analysis of antioxidant capacity and bioactive compounds in marine macroalgal and lichenic extracts using different solvents and evaluation methods. Cienc. Mar. 2016, 42, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, M.; Pedrielli, P.; Pedulli, G.F.; Valgimigli, L.; Gigmes, D.; Tordo, P. Bond Dissociation Energies of the N−H Bond and Rate Constants for the Reaction with Alkyl, Alkoxyl, and Peroxyl Radicals of Phenothiazines and Related Compounds. J. Am. Chem. Soc. 1999, 121, 11546–11553. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Zu, Y.; Fu, Y.; Wang, W. Composition and biological activities of the essential oil from Schisandra chinensis obtained by solvent-free microwave extraction. LWT 2011, 44, 2047–2052. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural Monoterpenes: Much More than Only a Scent. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Prakash, O.; Pant, A.; Isidorov, V.A.; Mathela, C. Chemical composition, antioxidant and myorelaxant activity of essential oils of Globba sessiliflora Sims. J. Essent. Oil Res. 2012, 24, 385–391. [Google Scholar] [CrossRef]
- Shebaby, W.; Daher, C.; El-Sibai, M.; Bodman-Smith, K.; Mansour, A.; Karam, M.C.; Mroueh, M. Antioxidant and hepatoprotective activities of the oil fractions from wild carrot (Daucus carota ssp. carota). Pharm. Biol. 2015, 53, 1285–1294. [Google Scholar] [CrossRef]
- Kavanaugh, N.L.; Ribbeck, K. Selected Antimicrobial Essential Oils Eradicate Pseudomonas spp. and Staphylococcus aureus Biofilms. Appl. Environ. Microbiol. 2012, 78, 4057–4061. [Google Scholar] [CrossRef] [Green Version]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-De-Oliveira, S.; Rodrigues, A.G. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Bakus, G.J.; Targett, N.M.; Schulte, B. Chemical ecology of marine organisms: An overview. J. Chem. Ecol. 1986, 12, 951–987. [Google Scholar] [CrossRef] [PubMed]
- Manojlovic, N.; Vasiljević, P.; Mašković, P.; Juskovic, M.; Bogdanovic-Dusanovic, G. Chemical Composition, Antioxidant, and Antimicrobial Activities of Lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evidence-Based Complement. Altern. Med. 2011, 2012, 452431. [Google Scholar] [CrossRef] [Green Version]
- Aoussar, N.; Laasri, F.E.; Bourhia, M.; Manoljovic, N.; Mhand, R.A.; Rhallabi, N.; Ullah, R.; Shahat, A.A.; Noman, O.M.; Nasr, F.A.; et al. Phytochemical Analysis, Cytotoxic, Antioxidant, and Antibacterial Activities of Lichens. Evidence-Based Complement. Altern. Med. 2020, 2020, 8104538. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sood, S.; Das, P.; Kaur, P.; Mahajan, I.; Gulati, A.; Singh, B. Synthesis of novel antimicrobial aryl himachalene derivatives from naturally occurring himachalenes. EXCLI J. 2014, 13, 1216. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical composition and In Vitro antibacterial activity of the essential oil of Cedrus atlantica. Int. J. Agric. Biol. 2010, 12, 381–385. [Google Scholar]
- Elias, A.; Shebaby, W.; Nehmeh, B.; Faour, W.; Bassil, B.; El Hakim, J.; Iskandar, R.; Dib-Jalbout, N.; Mroueh, M.; Daher, C.; et al. In Vitro and In Vivo Evaluation of the Anticancer and Anti-inflammatory Activities of 2-Himachelen-7-ol isolated from Cedrus Libani. Sci. Rep. 2019, 9, 12855. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Moguel, O.; Pino, J.A.; Ayora-Talavera, G.; Sauri-Duch, E.; Cuevas-Glory, L. Biological activities of volatile extracts from two varieties of Habanero pepper (Capsicum chinense Jacq.). Int. J. Food Prop. 2017, 20, S3042–S3051. [Google Scholar] [CrossRef] [Green Version]
- Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Hassani, L.I. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Med. 2015, 25, e118–e127. [Google Scholar] [CrossRef]
- Ghaffari, T.; Kafil, H.S.; Asnaashari, S.; Farajnia, S.; Delazar, A.; Baek, S.C.; Hamishehkar, H.; Kim, K.H. Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Pinus eldarica Grown in Northwestern Iran. Molecules 2019, 24, 3203. [Google Scholar] [CrossRef] [Green Version]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Samri, S.E.; Mezrioui, N.; Abbad, A.; Hassani, L. Antioxidative Effect and First Evidence of Synergistic Antimicrobial Effects of Ficus carica (L.) Leaf Essential Oil with Conventional Antibiotics. J. Essent. Oil Bear. Plants 2019, 22, 1289–1298. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Nafis, A.; Ouedrhiri, W.; Iriti, M.; Mezrioui, N.; Marraiki, N.; Elgorban, A.M.; Syed, A.; Hassani, L. Chemical composition and synergistic effect of three Moroccan lavender EOs with ciprofloxacin against foodborne bacteria: A promising approach to modulate antimicrobial resistance. Lett. Appl. Microbiol. 2021, 72, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crop. Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]
- Nafis, A.; Oubaha, B.; Elhidar, N.; Ortlieb, N.; Kulik, A.; Niedermeyer, T.; Hassani, L.; Barakate, M. Novel Production of Two New Nonpolyenic Antifungal Macrolide Derivatives by Streptomyces Z26 Isolated from Moroccan Rhizospheric Soil. Online J. Biol. Sci. 2018, 18, 176–185. [Google Scholar] [CrossRef]
- Nafis, A.; Hassani, L.; Marraiki, N.; Al-Rashed, S.; Elgorban, A.M.; Syed, A.; Iriti, M. Antimicrobial and synergistic effect of Moroccan native Argania spinosa essential oil for modulating of antibiotics resistance. Nat. Prod. Res. 2020, 35, 6078–6082. [Google Scholar] [CrossRef] [PubMed]
RI | Coumpound Name | Relative Abundance (%) |
---|---|---|
769 | 2,3-dibutyloxirane | 1.14 |
1258 | 1-decanol | 0.76 |
1250 | (Z)-2-decenal | 3.13 |
1261 | (E)-2-decenal | 0.3 |
1311 | (E,E)-2,4-decadienal | 4.1 |
1314 | (2E,4E)-2,4-decadienal | 8.59 |
1315 | (E)-2-pentenol | 0.35 |
1350 | limonene oxide | 0.43 |
1364 | 2-undecenal | 2.71 |
1380 | (E)-4,5-epoxy-2-decenal | 2.3 |
1469 | α-longipinene | 0.31 |
1473 | ς-muurolene | 0.31 |
1478 | E-β-farnesene | 1.45 |
1484 | 1-methyl-4-(6-methylheptan-2-yl)benzene | 0.93 |
1490 | 4,5-di-epi-aristolochene | 0.36 |
1506 | (R)-cuparene | 0.61 |
1663 | α-himachalene | 7.62 |
1708 | γ-himachalene | 37.51 |
1723 | β-himachalene | 11.71 |
1730 | 1,3,5-himachalatriene | 3.25 |
1735 | naphthalene | 1.77 |
1770 | guaiazulene | 1.26 |
1986 | caryophyllene oxide | 0.35 |
2233 | cadalene | 1.72 |
2913 | n-hexadecanoic acid | 0.57 |
Total | 93.54 |
Lichina pygmaea Volatile Compounds | MIC Ciprofloxacine | MIC Fluconazol | ||
---|---|---|---|---|
IZ | MIC | |||
Gram positive bacteria | ||||
S. aureus(CCMM B3) | 14.0 ± 0.33 | 13.5 ± 0.00 | 0.01 ± 0.00 | - |
Gram negative bacteria | ||||
E. coli (ATCC 8739) | 9.5 ± 0.26 | 1.69 ± 0.00 | 0.06 ± 0.00 | - |
P. aeruginosa (DSM 50090) | 11.0 ± 0.78 | 13.5 ± 0.00 | 0.25 ± 0.00 | - |
Pathognic yeast | ||||
C. albicans (CCMM-L4) | 16.0 ± 0.24 | 13.5 ± 0.00 | - | 1 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanad, H.; Belattmania, Z.; Nafis, A.; Hassouani, M.; Mazoir, N.; Reani, A.; Hassani, L.; Vasconcelos, V.; Sabour, B. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Mar. Drugs 2022, 20, 169. https://doi.org/10.3390/md20030169
Sanad H, Belattmania Z, Nafis A, Hassouani M, Mazoir N, Reani A, Hassani L, Vasconcelos V, Sabour B. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Marine Drugs. 2022; 20(3):169. https://doi.org/10.3390/md20030169
Chicago/Turabian StyleSanad, Hiba, Zahira Belattmania, Ahmed Nafis, Meryem Hassouani, Noureddine Mazoir, Abdeltif Reani, Lahcen Hassani, Vitor Vasconcelos, and Brahim Sabour. 2022. "Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds" Marine Drugs 20, no. 3: 169. https://doi.org/10.3390/md20030169
APA StyleSanad, H., Belattmania, Z., Nafis, A., Hassouani, M., Mazoir, N., Reani, A., Hassani, L., Vasconcelos, V., & Sabour, B. (2022). Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Marine Drugs, 20(3), 169. https://doi.org/10.3390/md20030169