Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Analyses Using Dynamic Light Scattering (DLS)
2.1.1. Effect of Ovalbumin (OVA) Loading
2.1.2. Effect of ALG Coating
2.1.3. Effect of PEG Coating
2.2. Analytical Characteristics
2.3. Scanning Electron Microscopy (SEM)
2.4. Stability of Nanoparticles in Simulated Fluids
2.5. In Vitro OVA Release from Nanoparticles
2.6. SDS–Polyacrylamide Gel Electrophoresis (SDS–PAGE) Analysis
2.7. Circular Dichroism
2.8. In Vitro Mucin Binding Mucoadhesion Assay
2.9. Ex Vivo Mucoadhesion Test
3. Materials and Methods
3.1. Materials
3.2. Preparation of Chitosan Nanoparticles
3.3. Loading of OVA into Chitosan Nanoparticles
3.4. Preparation of ALG- and PEG-Coated Chitosan Nanoparticles
3.5. Analytical Characterization
3.6. Scanning Electron Microscopy (SEM)
3.7. Preparation of Simulated Fluids
3.8. Stability of Nanoparticles in Simulated Fluids
3.9. In Vitro Protein Release Study
3.10. SDS–Polyacrylamide Gel Electrophoresis (SDS–PAGE)
3.11. Circular Dichroism
3.12. In Vitro Mucin Binding Mucoadhesion Assay
3.13. Ex Vivo Mucoadhesion Study
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevceva, L.; Abimiku, A.G.; Franchini, G. Targeting the mucosa: Genetically engineered vaccines and mucosal immune responses. Genes Immun. 2000, 1, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Neutra, R.M.; Kozlowski, A.P. Mucosal vaccines: The promise and the challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Nils, L. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–603. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, Y.S. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp. Mol. Med. 2014, 46, 1–8. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs—A review. J. Contr. Rel. 2006, 114, 1–14. [Google Scholar] [CrossRef]
- Koker, D.S.; Lambrecht, B.N.; Willart, M.A.; Kooyk, Y.V.; Grooten, J.; Vervaet, C.; Remon, J.P.; Geest, B.G.D. Designing polymeric particles for antigen delivery. Chem. Soc. Rev. 2011, 40, 320–339. [Google Scholar] [CrossRef]
- Rajeev, S.; Udita, A.; Nishi, M.; Suresh, P.V. Polymer nanotechnology-based approaches in mucosal vaccine delivery: Challenges and opportunities. Biotech. Adv. 2015, 33, 64–79. [Google Scholar] [CrossRef]
- Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan Nanoparticles: A promising system in novel drug delivery. Chem. Pharm. Bull. 2010, 58, 1423–1430. [Google Scholar] [CrossRef]
- Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is Chitosan Mucoadhesive? Biomacromolecules 2008, 9, 1837–1842. [Google Scholar] [CrossRef]
- Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Del. Rev. 2010, 62, 12–27. [Google Scholar] [CrossRef]
- Lin, Y.H.; Mi, F.L.; Chen, C.T.; Chang, W.C.; Peng, S.F.; Liang, H.F.; Sung, H.W. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 2007, 8, 146–152. [Google Scholar] [CrossRef]
- Lubben, V.D.; Lubben, I.M.; Kersten, G.; Fretz, M.M.; Beuvery, C.; Verhoef, J.C.; Junginger, E.H. Chitosan microparticles for mucosal vaccination against diphtheria: Oral and nasal efficacy studies in mice. Vaccine 2003, 28, 1400–1408. [Google Scholar] [CrossRef]
- Tiyaboonchai, W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ. J. 2003, 11, 51–66. [Google Scholar]
- Mishra, N.; Goyal, A.K.; Tiwari, S.; Paliwal, R.; Paliwal, S.R.; Vaidya, B.; Mangal, S.; Gupta, M.; Dube, D.; Mehta, A.; et al. Recent advances in mucosal delivery of vaccines: Role of mucoadhesive/biodegradable polymeric carriers. Expert Opin. Ther. Pat. 2010, 20, 661–679. [Google Scholar] [CrossRef]
- Rhee, J.H. Current and New Approaches for Mucosal Vaccine Delivery. In Mucosal Vaccines, 2nd ed.; Kiyono, H., Pascual, D.W., Eds.; Elsevier Inc.: Cambridge, MA, USA, 2020; pp. 325–356. [Google Scholar] [CrossRef]
- Amorij, J.P.; Huckriede, A.; Wilschut, J.; Frijlink, H.W.; Hinrichs, W.L.J. Development of stable influenza vaccine powder formulations: Challenges and possibilities. Pharm. Res. 2008, 25, 1256–1273. [Google Scholar] [CrossRef]
- Liebowitz, D.; Lindbloom, J.D.; Brandl, J.R.; Garg, S.J.; Tucker, S.N. High titer neutralizing antibodies to influenza after oral tablet immunization: A phase 1, randomized, placebo-controlled trial. Lancet Infect. Dis. 2015, 15, 1041–1048. [Google Scholar] [CrossRef]
- Ashok, A.; Brison, M.; Tallec, Y.L. Improving cold chain systems: Challenges and solutions. Vaccine 2017, 35, 2217–2223. [Google Scholar] [CrossRef]
- Huntington, J.A.; Stein, P.E. Structure and properties of ovalbumin. J. Chromatogr. B 2001, 756, 189–198. [Google Scholar] [CrossRef]
- Catron, N.D.; Lee, H.; Messersmith, P.B. Enhancement of poly(ethylene glycol) mucoadsorption by biomimetic end group functionalization. Biointerphases 2006, 1, 134–141. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Zhang, Z.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Jiang, H.; He, R.; Ma, H. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrason. Sonochem. 2020, 69, 1–10. [Google Scholar] [CrossRef]
- Patel, R.P.; Shah, P.; Barve, K.; Patel, N.; Gandhi, J. Peyer’s Patch: Targeted Drug Delivery for Therapeutics Benefits. In Novel Drug Delivery Technologies, 1st ed.; Misra, A., Shahiwala, A., Eds.; Springer: Singapore, 2019; pp. 121–149. [Google Scholar] [CrossRef]
- Lai, S.K.; Wang, Y.-Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Del. Rev. 2010, 61, 158–171. [Google Scholar] [CrossRef]
- Shukla, A.; Mishra, V.; Bhoop, B.S.; Katare, O.P. Alginate coated microparticles mediated oral delivery of diphtheria toxoid. Part, A. Systematic optimization, development and characterization. Int. J. Pharm. 2015, 495, 220–233. [Google Scholar] [CrossRef]
- Lianzhou, J.; Zhongjiang, W.; Yang, L.; Xianghe, M.; Xiaonan, S.; Baokun, Q.; Linyi, Z. Relationship between surface hydrophobicity and structure of soy protein isolate subjected to different ionic strength. Int. J. Food Prop. 2015, 18, 1059–1074. [Google Scholar] [CrossRef]
- Zhu, S.; Qian, F.; Zhang, Y.; Tang, C.; Yin, C. Synthesis and characterization of PEG modified N trimethylaminoethylmethacrylate chitosan nanoparticles. Eur. Polym. J. 2007, 43, 2244–2253. [Google Scholar] [CrossRef]
- Li, X.Y.; Kong, X.Y.; Shi, S.; Zheng, X.L.; Guo, G.; Wei, Y.Q.; Qian, Z.Y. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotech. 2008, 8, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.G.; Teng, D.Y.; Wu, Z.M.; Wang, X.; Wang, Z.; Yu, D.M.; Li, C.X. PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release. J. Mater. Sci. Mater. Med. 2008, 19, 3525–3533. [Google Scholar] [CrossRef]
- Yang, C.; Gao, O.S.; Hansen, D.F.; Jakobsen, M.; Kjems, J. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Appl. Mater. Interf. 2017, 14, 12203–12216. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 2016, 28, 483–507. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Coll. Surf. B Biointerf. 2007, 59, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Asane, G.S.; Nirmal, S.A.; Rasal, K.B.; Naik, A.A.; Mahadik, M.S.; Rao, Y.M. Polymers for mucoadhesive drug delivery system: A current status. Drug Dev. Ind. Pharm. 2008, 34, 1246–1266. [Google Scholar] [CrossRef]
- Elgadira, M.A.; Uddin, M.S.; Ferdosh, S.; Adama, A.; Chowdhury, A.J.K.; Sarkerb, M.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal. 2015, 4, 619–629. [Google Scholar] [CrossRef]
- Lubben, I.M.V.D.; Verhoef, J.C.; Borchard, G.; Junginger, H.E. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci. 2001, 14, 201–207. [Google Scholar] [CrossRef]
- Amin, M.K.; Boateng, J.S. Comparison and process optimization of PLGA, chitosan and silica nanoparticles for potential oral vaccine delivery. Ther. Deliv. 2019, 10, 493–514. [Google Scholar] [CrossRef]
- Liu, B.; Pang, Y.; Bouhenni, R.; Duah, E.; Paruchuria, S.; McDonald, L. A step toward simplified detection of serum albumin on SDS-PAGE using an environment-sensitive flavone sensor. Chem. Commun. 2015, 51, 11060–11063. [Google Scholar] [CrossRef]
- Li, C.Y.; Huang, Z.G.; Liu, Z.S.; Ci, L.Q.; Liu, Z.P.; Liu, Y.; Yan, X.Y.; Lu, W.Y. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: Improved stability, mucin-dependent release and effective intravaginal placement. Int. J. Nanomed. 2016, 11, 5917–5930. [Google Scholar] [CrossRef]
- Consuelo, D.I.D.; Pizzolato, G.P.; Falson, F.; Guy, R.H.; Jacques, Y. Evaluation of pig esophageal mucosa as a permeability barrier model for buccal tissue. J. Pharm. Sci. 2005, 94, 2777–2788. [Google Scholar] [CrossRef]
- Štembírek, J.; Kyllar, M.; Putnová, I.; Stehlík, L.; Buchtová, M. The pig as an experimental model for clinical craniofacial research. Lab. Anim. 2012, 46, 269–279. [Google Scholar] [CrossRef]
Initial OVA Concentration (% w/v) | Particle Size (± SD) (nm) | Zeta Potential (± SD) (mV) | PDI (± SD) |
---|---|---|---|
0.05 | 211 ± 5 | 12 ± 1 | 0.26 ± 0.01 |
0.10 | 234 ± 2 | 15 ± 1 | 0.29 ± 0.00 |
0.20 | 254 ± 1 | –21 ± 0 | 0.25 ± 0.01 |
0.30 | 287 ± 6 | –17 ± 2 | 0.34 ± 0.00 |
0.40 | 319 ± 5 | –13 ± 1 | 0.38 ± 0.02 |
ALG Concentration (% w/v) | Particle Size ± SD (nm) | Zeta Potential Value ± SD (mV) | PDI (±SD) | |||
---|---|---|---|---|---|---|
OVA-Loaded | Blank | OVA-Loaded | Blank | OVA-Loaded | Blank | |
0.05 | 319 ± 3 | 275 ± 5 | 21 ± 5 | 9 ± 1 | 0.23 ± 0.06 | 0.19 ± 0.01 |
0.10 | 345 ± 8 | 288 ± 5 | 21 ± 7 | –13 ± 0 | 0.25 ± 0.03 | 0.21 ± 0.00 |
0.20 | 375 ± 5 | 316 ± 3 | –24 ± 3 | –14 ± 1 | 0.29 ± 0.01 | 0.25 ± 0.00 |
0.30 | 412 ± 6 | 356 ± 4 | –26 ± 1 | –16 ± 1 | 0.32 ± 0.07 | 0.27 ± 0.01 |
0.40 | 432 ± 10 | 377 ± 6 | –29 ± 0.4 | –19 ± 1 | 0.36 ± 0.05 | 0.29 ± 0.00 |
PEG Concentration (% w/v) | Particle Size ±SD (nm) | Zeta Potential ± SD (mV) | PDI (± SD) | |||
---|---|---|---|---|---|---|
OVA-Loaded | Blank | OVA-Loaded | Blank | OVA-Loaded | Blank | |
0.05 | 297 ± 6 | 262 ± 5 | –13 ± 1 | 9 ± 2 | 0.21 ± 0.04 | 0.20 ± 0.01 |
0.10 | 302 ± 9 | 276 ± 7 | –16 ± 1 | 9 ± 1 | 0.22 ± 0.01 | 0.20 ± 0.0 |
0.20 | 305 ± 4 | 279 ± 4 | –18 ± 0.9 | 13 ± 2 | 0.25 ± 0.03 | 0.24 ± 0.01 |
0.30 | 305 ± 4 | 282 ± 5 | –20 ± 2 | 14 ± 1 | 0.31 ± 0.01 | 0.25 ± 0.01 |
0.40 | 311 ± 7 | 286 ± 9 | –20 ± 1 | 17 ± 3 | 0.3 ± 0.05 | 0.28 ± 0.01 |
Sample Name | α-Helix (%) | β-Sheet (%) | Random Coil (%) |
---|---|---|---|
Native OVA | 23.1 | 17.5 | 56.0 |
0.2% ALG-OVA | 21.1 | 19.5 | 53.0 |
0.2% PEG-OVA | 29.4 | 16.3 | 52.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.K.; Boateng, J.S. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery. Mar. Drugs 2022, 20, 156. https://doi.org/10.3390/md20030156
Amin MK, Boateng JS. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery. Marine Drugs. 2022; 20(3):156. https://doi.org/10.3390/md20030156
Chicago/Turabian StyleAmin, Muhammad Khairul, and Joshua Siaw Boateng. 2022. "Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery" Marine Drugs 20, no. 3: 156. https://doi.org/10.3390/md20030156
APA StyleAmin, M. K., & Boateng, J. S. (2022). Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery. Marine Drugs, 20(3), 156. https://doi.org/10.3390/md20030156