Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Results
2.1. Characterization of TCKP1
2.2. Effects of Treatment with TCKP1 on HepG2.2.15 Cells
2.3. Effects of TCKP1 on the Level of IFN-α in HepG2.2.15 Cells
2.4. Effects of Treatment with TCKP1 on HBV Transgenic Mice
2.4.1. Level of HBV DNA, HBsAg, and HBeAg in Serum
2.4.2. Levels of AST and ALT in Serum
2.4.3. The Effects of TCKP1 on Liver Morphologies, Weight, and Histopathological Examination
2.4.4. Levels of HBV DNA, HBsAg, HBeAg, and HBV RNA in the Livers of the Experimental Mice
2.4.5. Levels of IFN-γ, IL-4, and IL-12 in the Serum of Experimental Mice
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Materials and Preparation of TCKP1
4.3. Characteration of TCKP1
4.4. In Vitro Experiments
4.5. Animal Experiment Design
4.6. Serum HBV DNA Extraction and Analysis
4.7. Serum HBsAg, HBeAg and Aminotransferase
4.8. Extraction and Analysis of Liver HBV DNA, HBsAg, and HBeAg
4.9. Extraction and Analysis of Liver HBV RNA
4.10. Histopathological Examination of the Livers
4.11. Determination of IFN-γ, IL-12, and IL-4 in Serum of Mice
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Revill, P.A.; Chisari, F.V.; Block, J.M.; Dandri, M.; Gehring, A.J.; Guo, H.; Hu, J.; Kramvis, A.; Lampertico, P.; Janssen, H.L.A.; et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 2019, 4, 545–558. [Google Scholar] [CrossRef]
- WHO Global Hepatitis Report. 2017. Available online: https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/ (accessed on 4 April 2019).
- Tao, Y.; Wu, D.; Zhou, L.; Chen, E.; Liu, C.; Tang, X.; Jiang, W.; Han, N.; Li, H.; Tang, H. Present and future therapies for chronic hepatitis B. Adv. Exp. Med. Biol. 2020, 1179, 137–186. [Google Scholar] [PubMed]
- Tarocchi, M.; Polvani, S.; Marroncini, G.; Galli, A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol. 2014, 20, 11630–11640. [Google Scholar] [CrossRef] [PubMed]
- Isorce, N.; Lucifora, J.; Zoulim, F.; Durantel, D. Immune-modulators to combat hepatitis B virus infection: From IFN-α to novel investigational immunotherapeutic strategies. Antivir. Res. 2015, 122, 69–81. [Google Scholar] [CrossRef]
- Perrillo, R.P. Current treatment of chronic hepatitis B: Benefits and limitations. Semin. Liver Dis. 2005, 25, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.M.; Du, Y.M.; Chen, J.; Zhou, H. Antioxidant and antimicrobial properties of polysaccharide from Houttuynia cordata leaf. Nat. Pord. Res. Dev. 2017, 29, 1745–1751. [Google Scholar]
- Song, Y.; Hui, J.; Kou, W.; Xin, R.; Jia, F.; Wang, N. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Curr. Microbiol. 2008, 57, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhu, X.; Ma, J.; Zhang, M.; Wu, H. Structural elucidation of a novel pectin-polysaccharide from the petal of Saussurea laniceps and the mechanism of its anti-HBV activity. Carbohydr. Polym. 2019, 223, 115077. [Google Scholar] [CrossRef]
- Liu, P.; Xue, J.; Tong, S.; Dong, W.; Wu, P. Structure characterization and hypoglycaemic activities of two polysaccharides from Inonotus obliquus. Molecules 2018, 23, 1948. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.H.; Chan, J.Y.W.; Chan, B.C.L.; Lin, H.Q.; Han, X.Q.; Zhou, X.; Wan, D.C.C.; Wang, Y.F.; Leung, P.C.; Fung, K.P.; et al. Structural characterization and immunomodulatory effect of a polysaccharide HCP-2 from Houttuynia cordata. Carbohydr. Polym. 2014, 103, 244–249. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, H.; Lin, J.S.; Liu, J.; Wu, C.J.; Xu, R. Antioxidant, hypolipidemic and hepatic protective activities of polysaccharides from Phascolosoma esculenta. Mar. Drugs 2020, 18, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Liao, W.; Ren, J. Physicochemical Characterization of a polysaccharide fraction from Platycladus orientalis (L.) Franco and its macrophage immunomodulatory and anti-Hepatitis B virus activities. J. Agric. Food Chem. 2016, 64, 5813–5823. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, Z.; He, L.; Ma, H.; Qu, W.; Yin, J.; Jia, M.; Zhao, X.; Shan, J.; Gao, Y. Hepatoprotective and inhibiting HBV effects of polysaccharides from roots of Sophora flavescens. Int. J. Biol. Macromol. 2018, 108, 744–752. [Google Scholar] [CrossRef]
- Wang, L.C.; Di, L.Q.; Li, J.S.; Hu, L.H.; Cheng, J.M.; Wu, H. Elaboration in type, primary structure, and bioactivity of polysaccharides derived from mollusks. Crit. Rev. Food Sci. Nutr. 2017, 59, 1091–1114. [Google Scholar] [CrossRef]
- Wu, L.; Wang, W.; Zhang, X.; Zhao, X.; Yu, G. Anti-HBV activity and mechanism of marine-derived polyguluronate sulfate (PGS) in vitro. Carbohydr. Polym. 2016, 143, 139–148. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Xu, L.F.; Li, C.P.; Wang, K.X. Anti-hepatitis B virus activities of oyster polysaccharides in vitro. Chin. J. Zoonoses 2011, 27, 307–310. [Google Scholar]
- Fan, Q.Y.; Li, C.P.; Xu, L.F.; Wang, K.X. Antiviral effect of scallop polysaccharide on duck hepatitis B virus. Chin. J. Zoonoses 2012, 28, 248–251. [Google Scholar]
- Yang, D.; Sun, S. Marine Invertebrate Zoology. B; China Ocean University Press: Qingdao, China, 2006; pp. 337–342. [Google Scholar]
- Horiguchi, T.; Shiraishi, H.; Shimizu, M.; Morita, M. Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environ. Pollut. 1997, 95, 85–91. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, X.; Duan, J.; Liu, R.; Guo, J.; Ding, S.; Lin, X.; Lin, R. Application of Thais clavigera in Preparation of Anti-Inflammatory Drug. Chinese Patent CN 102895261A, 30 January 2013. [Google Scholar]
- Gong, P.Y.; Yuan, Z.X.; Gu, J.; Tan, R.; Li, J.C.; Ren, Y.; Hu, S. Anti-HBV activities of three compounds extracted and purified from Herpetospermum seeds. Molecules 2017, 22, 14. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Sun, X.; Tse, L.Y.; Li, H.; Chan, P.C.; Xu, S.; Xiao, W.; Kung, H.F.; Krissansen, G.W.; Fan, S.T. Long-term expression of angiostatin suppresses metastatic liver cancer in mice. Hepatology 2003, 37, 1451–1460. [Google Scholar] [CrossRef]
- Xu, R.; Harrison, P.M.; Chen, M.; Li, L.; Tsui, T.; Fung, P.C.W.; Cheung, P.T.; Wang, G.; Li, H.; Diao, Y.; et al. Cytoglobin overexpression protects against damage-induced fibrosis. Mol. Ther. 2006, 13, 1093–1100. [Google Scholar] [CrossRef]
- Jiao, F.; Li, D.; Yang, S.; Zhang, J.; Zhang, C.; Jia, L. Inhibition effects of polysaccharides on HBV replication and cell proliferation from Lentinus edodes waste material. Microb. Pathog. 2018, 123, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, X.; Zhuo, Y.; Si, C.; Yang, L.; Meng, L.; Zhu, B. Antiviral activity of a polysaccharide from Radix Isatidis (Isatis indigotica Fortune) against hepatitis B virus (HBV) in vitro via activation of JAK/STAT signal pathway. J. Ethnopharmacol. 2020, 257, 112782. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.J.; Hu, R.K.; Wu, L.X.; Lv, X.C.; Li, X.; Zhao, L.N.; Liu, B. Ganoderma polysaccharide and chitosan synergistically ameliorate lipid metabolic disorders and modulate gut microbiota composition in high fat diet-fed golden hamsters. J. Food Biochem. 2019, 44, e13109. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Li, N.; Zheng, F.; Dai, Y.; Ge, Y.; Yue, H.; Yu, S. Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model. J. Pharm. Biomed. Anal. 2018, 158, 451–460. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. The antiviral activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. [Google Scholar] [CrossRef]
- Synytsya, A.; Bleha, R.; Synytsya, A.; Pohl, R.; Hayashi, K.; Yoshinaga, K.; Nakano, T.; Hayashi, T. Mekabu fucoidan: Structural complexity and defensive effects against avian influenza A viruses. Carbohydr. Polym. 2014, 111, 633–644. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Han, Q.; Li, N.; Zhu, Q.; Li, F.; Lv, Y.; Chen, J.; Lou, S.; Liu, Z. Altered TNF-α and IFN-γ level associated with PD1 but not TNFA polymorphisms in patients with chronic HBV infection. Infect. Genet. Evol. 2011, 11, 1624–1630. [Google Scholar] [CrossRef]
- Li, C.D.; Chen, X.L.; Tian, P.F. Correlation analysis of percentages of T lymphocyte subsets and CD4+ CD25+ regulatory T cells and HBV DNA level in peripheral blood of chronic hepatitis B patients. J. Clin. Hepatol. 2015, 31, 541–545. [Google Scholar]
- Tunçbilek, S. Relationship between cytokine gene polymorphisms and chronic hepatitis B virus infection. World J. Gastroenterol. 2014, 20, 6226–6235. [Google Scholar] [CrossRef] [PubMed]
- Falasca, K.; Ucciferri, C.; Dalessandro, M.; Zingariello, P.; Mancino, P.; Petrarca, C.; Pizzigallo, E.; Conti, P.; Vecchiet, J. Cytokine patterns correlate with liver damage in patients with chronic hepatitis B and C. Ann. Clin. Lab. Sci. 2006, 36, 144–150. [Google Scholar]
- George, K.; Lau, K. Current treatments for patients with HBeAg positive chronic hepatitis B virus infection: A comparison focusing on HBeAg seroconversion. Liver Int. 2010, 30, 512–520. [Google Scholar]
- Chen, W.; Ma, J.; Gong, F.; Xi, H.; Zhan, Q.; Li, X.; Wei, F.; Wu, H.; Lai, F. Two novel polysaccharides from the torus of Saussurea laniceps protect against AAPH-induced oxidative damage in human erythrocytes. Carbohydr. Polym. 2018, 200, 446–455. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Guo, G.; Pu, Y.; Yan, B. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr. Polym. 2014, 113, 22–31. [Google Scholar] [CrossRef]
- Terho, T.T.; Hartiala, K. Method for determination of the sulfate content of glycosaminoglycans. Anal. Biochem. 1971, 41, 471–476. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Li, L.Q.; Li, J.; Huang, Y.; Wu, Q.; Deng, S.P.; Su, X.J.; Yang, R.Y.; Huang, J.G.; Chen, Z.Z.; Li, S. Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus. Fitoterapia 2012, 83, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, J.; Wu, Q.; Niu, X.T.; Tang, M.T.; Guan, X.L.; Li, J.; Yang, R.Y.; Deng, S.P.; Su, X.J. Anti-HBV activities of Streblus asper and constituents of its roots. Fitoterapia 2012, 83, 643–649. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Chen, H.Y.; Cao, J.L.; Xiong, H.L.; Mo, X.B.; Li, T.L.; Kang, X.Z.; Zhao, J.H.; Yin, B.; Zhao, X.; et al. Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Nat. Commun. 2019, 10, 3192. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, L.G.; Matzke, B.; Schaller, H.; Chisari, F.V. High-level hepatitis B virus replication in transgenic mice. J. Virol. 1995, 69, 6158–6169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhang, H.; Qi, Y.; Wang, J.; Li, J.; Niu, J. Antiviral effects of a niobium-substituted heteropolytungstate on hepatitis B virus-transgenic mice. Drug Dev. Res. 2019, 80, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhao, L.; You, Q.; Yang, Y.; Gu, H.; Song, G.; Lu, N.; Xin, J. Anti-hepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res. 2007, 74, 16–24. [Google Scholar] [CrossRef] [PubMed]
Monosaccharide | Regression Equation | Peak Area (mAu·s) | Contents (μg) | Molar Ratio |
---|---|---|---|---|
Man | y = 0.0001x + 0.0687 | 2848.4 | 0.3535 | 9 |
GlcN | y = 0.0002x − 0.1629 | 4709.2 | 0.7789 | 16 |
GlcA | y = 0.00001x + 0.1597 | 919.7 | 0.1689 | 4 |
Glc | y = 0.0002x + 0.0511 | 100,494.0 | 20.15 | 512 |
Gal | y = 0.0001x − 0.0117 | 3671.6 | 0.3555 | 9 |
Ara | y = 0.0001x − 0.0595 | 1914.0 | 0.1319 | 4 |
Time (Min) | A (%) | B (%) |
---|---|---|
0 | 85 | 15 |
30 | 85 | 15 |
35 | 60 | 40 |
40 | 60 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Huang, G.; Lin, L.; Yin, H.; Shao, L.; Xu, R.; Cui, X. Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study. Mar. Drugs 2021, 19, 195. https://doi.org/10.3390/md19040195
Tang F, Huang G, Lin L, Yin H, Shao L, Xu R, Cui X. Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study. Marine Drugs. 2021; 19(4):195. https://doi.org/10.3390/md19040195
Chicago/Turabian StyleTang, Fei, Guanghua Huang, Liping Lin, Hong Yin, Lili Shao, Ruian Xu, and Xiuling Cui. 2021. "Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study" Marine Drugs 19, no. 4: 195. https://doi.org/10.3390/md19040195
APA StyleTang, F., Huang, G., Lin, L., Yin, H., Shao, L., Xu, R., & Cui, X. (2021). Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study. Marine Drugs, 19(4), 195. https://doi.org/10.3390/md19040195