Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (Atrina pectinata) Viscera Using Subcritical Water Hydrolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition
2.2. Hydrolysis Efficiency
2.3. Color and pH of the Hydrolysates
2.4. Total Proteins, Total Sugars, and Maillard Reaction Products (MRPs) of Hydrolysates
2.5. Molecular Size of the Protein
2.6. Amino Acid Composition
2.7. Antioxidant Activities
2.8. Antihypertensive Activity
2.9. Blood Clotting Activity
3. Materials and Methods
3.1. Sample Preparation and Chemicals
3.2. Proximate Composition Analysis
3.3. Subcritical Water Hydrolysis
3.4. Color and pH Measurements
3.5. Maillard Reaction Product (MRP) Measurements
3.6. Total Sugar Measurements
3.7. Determination of Total Protein
3.8. In Vitro Antioxidant Activities
3.8.1. ABTS+ Radical Scavenging Activity
3.8.2. DPPH Radical Scavenging Activity
3.8.3. Ferric Reducing Antioxidant Power Assay (FRAP)
3.9. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
3.10. Amino Acid Analysis
3.11. Antihypertensive Analysis
3.12. In Vitro Anticoagulant Activity
3.13. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soto, L.S.; Guardado, B.R.; Longoria, C.R.; Villalba, C.J.; Cháirez, H.F. Cultivation of Pen Shells: An Example with Atrina maura in Northwestern Mexico. J. World Aquac. Soc. 2011, 42, 789–800. [Google Scholar] [CrossRef]
- Tabata, T.; Hiramatsu, K.; Harada, M.; Hirose, M. Numerical analysis of convective dispersion of pen shell Atrina pectinata larvae to support seabed restoration and resource recovery in the Ariake Sea, Japan. Ecol. Eng. 2013, 57, 154–161. [Google Scholar] [CrossRef]
- Yang, H.S.; Kang, H.S.; Park, H.S.; Noh, C.H.; Jeong, E.Y.; Choi, K.-S. First report on the occurrence of the comb pen shell, Atrina pectinata (Linnaeus, 1767) (Bivalvia: Pinnidae) in Ulleungdo Island in the East Sea: Ecology and molecular identification of the species using COI gene sequence. Ocean Sci. J. 2015, 50, 649–655. [Google Scholar] [CrossRef]
- Ministry of Oceans and Fisheries Marine Fisheries Statistics. Available online: https://www.mof.go.kr/statPortal/main/portalMain.do (accessed on 4 January 2021).
- Lee, Y.J.; Choi, K.S.; Lee, D.S.; Lee, W.C.; Park, H.J.; Choy, E.J.; Kim, H.C.; Kang, C.K. The role of the adductor muscle as an energy storage organ in the pen shellAtrina japonica (Reeve, 1858). J. Molluscan Stud. 2015, 81, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wu, Y. Proximate composition and nutritional evaluation of the adductor muscle of pen shell. 3 Biotech 2017, 7, 160. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Cao, W.; Li, T.; Chen, J.; Zhang, J.; Weng, W.; Osako, K.; Ren, H. Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. J. Supercrit. Fluids 2019, 147, 17–23. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Zhu, B.-W.; Qiao, L.; Wu, H.T.; Li, D.M.; Yang, J.F.; Murata, Y. In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food Bioprod. Process. 2012, 90, 148–154. [Google Scholar] [CrossRef]
- Roy, V.C.; Getachew, A.T.; Cho, Y.J.; Park, J.S.; Chun, B.S. Recovery and bio-potentialities of astaxanthin-rich oil from shrimp (Peneanus monodon) waste and mackerel (Scomberomous niphonius) skin using concurrent supercritical CO2 extraction. J. Supercrit. Fluids 2020, 159, 104773. [Google Scholar] [CrossRef]
- Roy, V.C.; Ho, T.C.; Lee, H.J.; Park, J.S.; Nam, S.Y.; Lee, H.; Getachew, A.T.; Chun, B.S. Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. J. Clean. Prod. 2021, 284, 125417. [Google Scholar] [CrossRef]
- Santos, V.P.; Marques, N.S.S.; Maia, P.C.S.V.; De Lima, M.A.B.; Franco, L.D.O.; De Campos-Takaki, G.M. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21, 4290. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Ahmed, R.; Chun, B.S. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit. Fluids 2018, 141, 88–96. [Google Scholar] [CrossRef]
- Ucak, I.; Afreen, M.; Montesano, D.; Carrillo, C.; Tomasevic, I.; Gandara, S.J.; Barba, F. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar. Drugs 2021, 19, 71. [Google Scholar] [CrossRef]
- Marcet, I.; Álvarez, C.; Paredes, B.; Díaz, M. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manag. 2016, 49, 364–371. [Google Scholar] [CrossRef]
- Asaduzzaman, A.; Getachew, A.T.; Cho, Y.J.; Park, J.S.; Haq, M.; Chun, B.S. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis. Int. J. Biol. Macromol. 2020, 148, 1290–1297. [Google Scholar] [CrossRef]
- Savage, P.E. Organic Chemical Reactions in Supercritical Water. Chem. Rev. 1999, 99, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Saravana, P.S.; Cho, Y.N.; Haq, M.; Chun, B.S. Extraction of bioactive compounds from oyster (Crassostrea gigas) by pressurized hot water extraction. J. Supercrit. Fluids 2018, 141, 120–127. [Google Scholar] [CrossRef]
- Jeong, Y.R.; Park, J.S.; Nkurunziza, D.; Cho, Y.J.; Chun, B.S. Valorization of blue mussel for the recovery of free amino acids rich products by subcritical water hydrolysis. J. Supercrit. Fluids 2021, 169, 105135. [Google Scholar] [CrossRef]
- Cho, Y.J.; Haq, M.; Park, J.S.; Lee, H.J.; Chun, B.S. Physicochemical and biofunctional properties of shrimp (Penaeus japonicus) hydrolysates obtained from hot-compressed water treatment. J. Supercrit. Fluids 2019, 147, 322–328. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Kim, S.S.; Ahn, C.B.; Moon, S.W.; Je, J.Y. Purification and antioxidant activities of peptides from sea squirt (Halocynthia roretzi) protein hydrolysates using pepsin hydrolysis. Food Biosci. 2018, 25, 128–133. [Google Scholar] [CrossRef]
- Nasri, R.; Ben Amor, I.; Bougatef, A.; Arroume, N.N.; Dhulster, P.; Gargouri, J.; Châabouni, M.K.; Nasri, M. Anticoagulant activities of goby muscle protein hydrolysates. Food Chem. 2012, 133, 835–841. [Google Scholar] [CrossRef]
- Ho, T.; Park, J.S.; Kim, S.Y.; Lee, H.; Lim, J.S.; Kim, S.J.; Choi, M.H.; Nam, S.; Chun, B.S. Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds. Mar. Drugs 2021, 19, 85. [Google Scholar] [CrossRef]
- Ho, T.C.; Chun, B. Extraction of Bioactive Compounds from Pseuderanthemum palatiferum (Nees) Radlk. Using Subcritical Water and Conventional Solvents: A Comparison Study. J. Food Sci. 2019, 84, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Pomory, C.M. Color development time of the Lowry protein assay. Anal. Biochem. 2008, 378, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.; Ahmed, R.; Cho, Y.J.; Chun, B.S. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass Valorization 2016, 8, 1953–1967. [Google Scholar] [CrossRef]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids; Alginet. 2000. Available online: https://www.agilent.com/cs/library/chromatograms/59801193.pdf (accessed on 20 December 2020).
- Pawlaczyk, I.; Capek, P.; Czerchawski, L.; Bijak, J.; Tsirigotis, L.M.; Król, P.A.; Gancarz, R. An anticoagulant effect and chemical characterization of Lythrum salicaria L. glycoconjugates. Carbohydr. Polym. 2011, 86, 277–284. [Google Scholar] [CrossRef]
- Ho, T.C.; Kiddane, A.T.; Sivagnanam, S.P.; Park, J.S.; Cho, Y.J.; Getachew, A.T.; Nguyen, T.T.T.; Kim, G.D.; Chun, B.S. Green extraction of polyphenolic-polysaccharide conjugates from Pseuderanthemum palatiferum (Nees) Radlk.: Chemical profile and anticoagulant activity. Int. J. Biol. Macromol. 2020, 157, 484–493. [Google Scholar] [CrossRef]
Conditions | L* | a* | b* | pH |
---|---|---|---|---|
140 °C | 22.93 ± 0.72 a | −1.39 ± 0.18 a | 5.16 ± 0.50 d | 5.68 |
170 °C | 20.20 ± 0.12 a,b | −1.19 ± 0.05 a | 9.11 ± 0.18 b | 5.83 |
200 °C | 10.44 ± 0.06 d | 3.47 ± 0.03 e | 8.02 ± 0.030 c | 6.24 |
230 °C | 19.7 ± 0.15 c | 1.47 ± 0.10 c | 11.16 ± 0.31 a | 8.36 |
260 °C | 21.01 ± 0.04 b | 2.2 ± 0.01 d | 11.63 ±0.10 a | 8.92 |
290 °C | 22.71 ± 0.14 a | 0.72 ± 0.01 b | 8.14 ± 0.09 c | 9.50 |
AMINO ACIDS | Raw Sample | Hydrolyzed Samples | ||||||
---|---|---|---|---|---|---|---|---|
140 °C | 170 °C | 200 °C | 230 °C | 260 °C | 290 °C | |||
Total Amino Acids (mg/g) | Free Amino Acids (mg/g) | Free Amino Acids (mg/g) | ||||||
Essential amino acids (EAA) | ||||||||
Histidine | 8.32 | 0.11 | 0.27 | 0.34 | 0.52 | 0.97 | 0.75 | 0.10 |
Isoleucine | 21.4 | 0.24 | 0.50 | 0.59 | 0.89 | 1.22 | 1.38 | ND |
Leucine | 32.31 | 0.36 | 0.87 | 0.94 | 1.72 | 2.70 | 2.89 | 0.44 |
Lysine | 30.67 | 0.37 | 0.98 | 0.97 | 1.44 | 1.74 | 1.83 | 0.62 |
Methionine | 12.58 | 0.10 | 0.42 | 0.62 | 1.00 | 1.35 | 0.61 | ND |
Phenylalanine | 19.25 | 0.25 | 0.58 | 0.59 | 1.00 | 1.49 | 1.38 | 0.34 |
Threonine | 24.27 | 0.36 | 0.49 | 0.47 | 0.54 | ND | ND | ND |
Valine | 23.17 | 0.27 | 0.55 | 0.47 | 1.04 | 2.18 | 3.21 | 0.29 |
Total | 172.00 | 2.06 | 4.66 | 4.99 | 8.15 | 11.70 | 12.10 | 1.79 |
Non-essential amino acids (NEAA) | ||||||||
Alanine | 26.43 | 5.12 | 8.4 | 7.09 | 7.64 | 11.10 | 9.90 | 1.23 |
Arginine | 35.88 | 2.08 | 3.35 | 2.65 | 2.46 | 1.40 | 0.09 | 0.10 |
Aspartic acid | 26.43 | 1.45 | 2.50 | 4.08 | 3.03 | 1.25 | 0.38 | 0.10 |
Glutamic acid | 75.53 | 3.84 | 4.78 | 0.27 | 0.17 | 0.19 | 0.20 | 0.09 |
Glycine | 34.33 | 1.30 | 2.20 | 2.49 | 4.24 | 7.43 | 8.22 | 0.84 |
Proline | 21.63 | 0.16 | 0.39 | 0.62 | 1.66 | 2.70 | 1.11 | ND |
Serine | 23.17 | 0.66 | 1.46 | 1.55 | 2.30 | 0.87 | 0.07 | 0.07 |
Taurine | 57.95 | 28.7 | 34.08 | 40.76 | 34.20 | 36.10 | 35.00 | 10.70 |
Tyrosine | 19.20 | 0.4 | 0.76 | 0.79 | 1.49 | 2.13 | 1.73 | 0.24 |
Total | 320.60 | 43.8 | 57.92 | 60.30 | 57.20 | 63.10 | 56.70 | 13.30 |
EAA + NEAA | 492.52 | 45.8 | 62.58 | 65.29 | 65.30 | 74.80 | 68.80 | 15.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-J.; Roy, V.C.; Ho, T.C.; Park, J.-S.; Jeong, Y.-R.; Lee, S.-C.; Kim, S.-Y.; Chun, B.-S. Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (Atrina pectinata) Viscera Using Subcritical Water Hydrolysis. Mar. Drugs 2021, 19, 137. https://doi.org/10.3390/md19030137
Lee H-J, Roy VC, Ho TC, Park J-S, Jeong Y-R, Lee S-C, Kim S-Y, Chun B-S. Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (Atrina pectinata) Viscera Using Subcritical Water Hydrolysis. Marine Drugs. 2021; 19(3):137. https://doi.org/10.3390/md19030137
Chicago/Turabian StyleLee, Hee-Jeong, Vikash Chandra Roy, Truc Cong Ho, Jin-Seok Park, Yu-Rin Jeong, Seung-Chan Lee, Sung-Yeol Kim, and Byung-Soo Chun. 2021. "Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (Atrina pectinata) Viscera Using Subcritical Water Hydrolysis" Marine Drugs 19, no. 3: 137. https://doi.org/10.3390/md19030137
APA StyleLee, H. -J., Roy, V. C., Ho, T. C., Park, J. -S., Jeong, Y. -R., Lee, S. -C., Kim, S. -Y., & Chun, B. -S. (2021). Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (Atrina pectinata) Viscera Using Subcritical Water Hydrolysis. Marine Drugs, 19(3), 137. https://doi.org/10.3390/md19030137