Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]
Abstract
:1. Introduction
2. Results
2.1. Stability Study of GeXIVA[1,2] under Different Conditions
2.2. Preparation of GeXIVA[1,2] Lyophilized Powder for Injection
2.3. Characterization of GeXIVA[1,2] Lyophilized Powder for Injection
2.3.1. Proprieties of the Lyophilized Products
2.3.2. Differential Scanning Calorimetry (DSC)
2.3.3. Powder X-ray Diffractometry (PXRD)
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Molecular Simulation
2.5. Evaluation of the Analgesic Effect of GeXIVA[1,2] Lyophilized Powder for Injection
2.5.1. Development of Neuropathic Pain in Rats
2.5.2. Pain Reliever Effect of GeXIVA[1,2] Lyophilized Powder by Single Administration
2.5.3. Acute Analgesic Effect of GeXIVA[1,2] Lyophilized Powder after Repeated Injections
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Compounds
4.3. High-Performance Liquid Chromatography (HPLC) Analysis
4.4. Stability Study of GeXIVA[1,2] under Forced Degradation
4.5. Preparation of Lyophilized Formulations
4.6. Characterization of GeXIVA[1,2] Lyophilized Powder for Injection
4.6.1. Moisture Content Determination
4.6.2. Reconstitution of GeXIVA[1,2] Lyophilized Powder
4.6.3. Differential Scanning Calorimetry (DSC)
4.6.4. Powder X-ray Diffractometry (PXRD)
4.6.5. Fourier Transform Infrared Spectroscopy (FTIR)
4.7. Molecular Computations
4.8. Induction of Chemotherapy-Induced Neuropathic Pain (CINP) and Drugs Administration Procedure
4.9. Behavioral Assessments of Mechanical Allodynia and Heat Hyperalgesia
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, S.P.; Mao, J. Neuropathic pain: Mechanisms and their clinical implications. BMJ 2014, 348, f7656. [Google Scholar] [CrossRef] [Green Version]
- Furlan, A.D.; Sandoval, J.A.; Mailis-Gagnon, A.; Tunks, E. Opioids for chronic noncancer pain: A meta-analysis of effectiveness and side effects. CMAJ 2001, 1288, 1589–1594. [Google Scholar] [CrossRef] [Green Version]
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC Guideline for Prescribing Opioids for Chronic Pain-United States, 2016. JAMA 2016, 315, 1624–1645. [Google Scholar] [CrossRef] [Green Version]
- Angst, M.S.; Clark, J.D. Opioid-induced hyperalgesia: A qualitative systematic review. Anesthesiology 2006, 104, 570–587. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Turner, J.; Devine, E.; Hansen, R.; Sullivan, S.; Blazina, I.; Dana, T.; Bougatsos, C.; Deyo, R. The effectiveness and risks of long-term opioid therapy for chronic pain: A systematic review for a National Institutes of Health Pathways to Prevention Workshop. Ann. Intern. Med. 2015, 162, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Devereaux, A.; Mercer, S.; Cunningham, C. DARK Classics in Chemical Neuroscience: Morphine. ACS Chem. Neurosci. 2018, 9, 2395–2407. [Google Scholar] [CrossRef] [PubMed]
- Emery, E.C.; Young, G.T.; Berrocoso, E.M.; Chen, L.; Mcnaughton, P.A. HCN2 Ion Channels Play a Central Role in Inflammatory and Neuropathic Pain. Science 2011, 333, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, H.S. Gene array analysis to determine the components of neuropathic pain signaling. Curr. Opin. Mol. Ther. 2005, 7, 532. [Google Scholar]
- Freitas, K.; Ghosh, S.; Ivy Carroll, F.; Lichtman, A.H.; Imad Damaj, M. Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology 2013, 65, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Brunori, G.; Schoch, J.; Mercatelli, D.; Ozawa, A.; Toll, L.; Cippitelli, A. The influence of neuropathic pain on nAChR plasticity and behavioral responses to nicotine in rats. Pain 2018, 159, 2179–2191. [Google Scholar]
- Takahashi, T. Roles of nAChR and Wnt signaling in intestinal stem cell function and inflammation—ScienceDirect. Int. Immunopharmacol. 2020, 81, 106260. [Google Scholar] [CrossRef]
- Cheng, W.L.; Chen, K.Y.; Lee, K.Y.; Feng, P.H.; Wu, S.M. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J. Cancer 2020, 11, 1125–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takarada, T.; Nakamichi, N.; Kitajima, S.; Fukumori, R.; Nakazato, R.; Le, N.Q.; Kim, Y.H.; Fujikawa, K.; Kou, M.; Yoneda, Y. Promoted Neuronal Differentiation after Activation of Alpha4/Beta2 Nicotinic Acetylcholine Receptors in Undifferentiated Neural Progenitors. PLoS ONE 2012, 7, e46177. [Google Scholar]
- Liu, Y.; Qian, J.; Sun, Z.; Zhangsun, D.; Luo, S. Cervical Cancer Correlates with the Differential Expression of Nicotinic Acetylcholine Receptors and Reveals Therapeutic Targets. Mar. Drugs 2019, 17, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, V.; Kutlu, M.G.; Gould, T.J. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr. Res. 2016, 171, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laikowski, M.M.; Reisdorfer, F.; Moura, S. NAChR α4β2 subtype and their relation with nicotine addiction, cognition, depression and hyperactivity disorder. Curr. Med. Chem. 2018, 25, 3792–3811. [Google Scholar] [CrossRef]
- McIntosh, J.M.; Absalom, N.; Elgoyhen, C.; Chebib, M.; Elgoyhen, A.B.; Vincler, M. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem. Pharmacol. 2009, 78, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Hone, A.J.; Mcintosh, J.M. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett. 2018, 592, 1045–1062. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Fini, M.; Salinaro, G.; Cesario, A.; Bufalo, A.D. Alpha9Alpha10 Nicotinic Acetylcholine Receptors as Target for the Treatment of Chronic Pain. Curr. Pharm. Des. 2014, 20, 6042–6047. [Google Scholar]
- Sun, Z.; Zhangsun, M.; Dong, S.; Liu, Y.; Luo, S. Differential Expression of Nicotine Acetylcholine Receptors Associates with Human Breast Cancer and Mediates Antitumor Activity of αO-Conotoxin GeXIVA. Mar. Drugs 2020, 18, 61. [Google Scholar] [CrossRef] [Green Version]
- Favia, A.; Desideri, M.; Gambara, G.; D’Alessio, A.; Ruas, M.; Esposito, B.; Del Bufalo, D.; Parrington, J.; Ziparo, E.; Palombi, F. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 4706–4715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, P.M.; Burgstahler, R.; Haberberger, R.V.; Sippel, W.; Grafe, P. A conus peptide blocks nicotinic receptors of unmyelinated axons in human nerves. Neuroreport 2005, 16, 479–483. [Google Scholar] [CrossRef]
- Olivera, B.M.; Quik, M.; Vincler, M.; Mcintosh, J.M. Subtype-selective conopeptides targeted to nicotinic receptors: Concerted discovery and biomedical applications. Channels 2008, 2, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Zhangsun, D.; Harvey, P.J.; Kaas, Q.; Mcintosh, J.M. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proc. Natl. Acad. Sci. USA 2015, 112, E4026–E4035. [Google Scholar] [CrossRef] [Green Version]
- Rilei, Y.; Shiva, N.; Kompella, A.; David, J. Determination of the α-Conotoxin Vc1.1 Binding Site on the α9α10 Nicotinic Acetylcholine Receptor. J. Med. Chem. 2013, 56, 3557–3567. [Google Scholar]
- Ellison, M.; Haberlandt, C.; Gomez-Casati, M.E.; Watkins, M.; Olivera, B.M. α-RgIA: A Novel Conotoxin That Specifically and Potently Blocks the α9α10 nAChR. Biochemistry 2006, 45, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Zhangsun, D.; Yu, G.; Su, R.; Luo, S. The α9α10 Nicotinic Acetylcholine Receptor Antagonist αO-Conotoxin GeXIVA[1,2] Alleviates and Reverses Chemotherapy-Induced Neuropathic Pain. Mar. Drugs 2019, 17, 265. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wu, Y.; Xu, P.; Wang, S.; Zhangsun, D.; Luo, S. Effects of serum, enzyme, thiol, and forced degradation on the stabilities of αO-Conotoxin GeXIVA[1,2] and GeXIVA [1,4]. Chem. Biol. Drug Des. 2018, 91, 1030–1041. [Google Scholar] [CrossRef]
- Carpenter, J.F.; Chang, B.S.; Garzon-Rodriguez, W.; Randolph, T.W. Rational Design of Stable Lyophilized Protein Formulations: Theory and Practice. Pharm. Biotechnol. 2002, 13, 109–133. [Google Scholar]
- Lim, S.B.; Rubinstein, I.; Nyüksel, H. Freeze Drying of Peptide Drugs Self-Associated with Long-Circulating, Biocompatible and Biodegradable Sterically Stabilized Phospholipid Nanomicelles. Int. J. Pharm. 2008, 356, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Izutsu, K.I. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations. Adv. Exp. Med. Biol. 2018, 1081, 371–383. [Google Scholar] [PubMed]
- Zapadka, K.L.; Becher, F.J.; Gomes, D.S.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, J.F.; Manning, M.C. Rational Design of Stable Protein Formulations. Pharm. Res. 2002, 14, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Doessegger, L.; Mahler, H.; Szczesny, P.; Rockstroh, H.; Kallmeyer, G.; Langenkamp, A.; Herrmann, J.; Famulare, J. The potential clinical relevance of visible particles in parenteral drugs. J. Pharm. Sci. 2012, 101, 2635–2644. [Google Scholar] [CrossRef]
- Wang, W.; Ignatius, A.A.; Thakkar, S.V. Impact of Residual Impurities and Contaminants on Protein Stability. J. Pharm. Sci. 2014, 103, 1315–1330. [Google Scholar] [CrossRef]
- Bjeloevi, M.; Pobirk, A.Z.; Planinek, O.; Grabnar, P.A. Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation. Int. J. Pharm. 2020, 576, 119029. [Google Scholar] [CrossRef]
- Authelin, J.R.; Rodrigues, M.A.; Tchessalov, S.; Singh, S.K.; Shalaev, E. Freezing of Biologicals Revisited: Scale, Stability, Excipients, and Degradation Stresses. J. Pharm. Sci. 2019, 109, 44–61. [Google Scholar] [CrossRef]
- Fang, W.J.; Qi, W.; Kinzell, J.; Prestrelski, S.; Carpenter, J.F. Effects of Excipients on the Chemical and Physical Stability of Glucagon during Freeze-Drying and Storage in Dried Formulations. Pharm. Res. 2012, 29, 3278–3291. [Google Scholar] [CrossRef]
- Costantino, H.R.; Langer, R.; Klibanov, A.M. Moisture-Induced Aggregation of Lyophilized Insulin. Pharm. Res. 1994, 11, 21. [Google Scholar] [CrossRef]
- Sharma, V.K.; Klibanov, A.M. Moisture-induced aggregation of lyophilized DNA and its prevention. Pharm. Res. 2006, 24, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Tolerability of hypertonic injectables. Int. J. Pharm. 2015, 490, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Hancock, B.C.; Shamblin, S.L. Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim. Acta 2001, 380, 95–107. [Google Scholar] [CrossRef]
- Dranca, I.; Bhattacharya, S.; Vyazovkin, S.; Suryanarayanan, R. Implications of Global and Local Mobility in Amorphous Sucrose and Trehalose as Determined by Differential Scanning Calorimetry. Pharm. Res. 2009, 26, 1064. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F.K.; Dalmolin, G.D.; Trevisan, G.; Tonello, R.; Silva, M.A.; Rossato, M.F.; Klafke, J.Z.; Cordeiro, M.d.N.; Castro Junior, C.J.; Montijo, D. Effect of ω-conotoxin MVIIA and Phα1β on paclitaxel-induced acute and chronic pain. Pharmacol. Biochem. Behav. 2013, 114–115, 16–22. [Google Scholar]
- Bozorgi, H.; Jahanian-Najafabadi, A.; Rabbani, M. The effect of intrathecal administration of the neuronal N-type calcium channels antagonist, -conotoxin MVIIA, on attenuating the spontaneous and naloxone-precipitated morphine withdrawal in rats. Toxin Rev. 2016, 35, 33–37. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, X. Freeze-drying of proteins. Methods Mol. Biol. 2015, 1257, 459–476. [Google Scholar] [PubMed]
- Nail, S.L.; Jiang, S.S.; Knopp, S.A. Fundamentals of freeze-drying. Pharm. Biotechnol. 2002, 14, 281–360. [Google Scholar]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. European journal of pharmaceutics and biopharmaceutics: Official journal of Arbeitsgemeinschaft fuer Pharmazeutische Verfahrenstechnik e.V. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar]
- Arakawa, T.; Prestrelski, S.J.; Kenney, W.C.; Carpenter, J.F. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 2001, 46, 307–326. [Google Scholar] [CrossRef]
- Jaggi, A.S.; Singh, N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2012, 291, 1–9. [Google Scholar] [CrossRef]
- Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin. 2013, 63, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Laird, B.; Colvin, L.; Fallon, M. Management of Cancer Pain: Basic Principles and Neuropathic Cancer Pain. Eur. J. Cancer 2008, 44, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Council, N. Guide for the Care and Use of Laboratory Animals: Eighth Edition. Publication 2010, 327, 963–965. [Google Scholar]
- Singh, S.; Junwal, M.; Modhe, G.; Tiwari, H.; Kurmi, M.; Parashar, N.; Sidduri, P. Forced degradation studies to assess the stability of drugs and products. Trends Anal. Chem. 2013, 49, 71–88. [Google Scholar] [CrossRef]
- Mn, B.; Patel, R.D.; Prajapati, P.N.; Agrawal, Y.K. Development of forced degradation and stability indicating studies of drugs—A review. J. Pharm. Anal. 2014, 4, 159–165. [Google Scholar]
- Polomano, R.C.; Mannes, A.J.; Clark, U.S.; Bennett, G.J. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 2001, 94, 293–304. [Google Scholar] [CrossRef]
- Dixon, W.J. Efficient Analysis of Experimental Observations. Annu. Rev. Pharmacol. 1980, 20, 441–462. [Google Scholar] [CrossRef] [PubMed]
- Mcroberts, J.A.; Ennes, H.S.; Marvizón, J.C.G.; Fanselow, M.S.; Vissel, B. Selective knockdown of NMDA receptors in primary afferent neurons decreases pain during phase 2 of the formalin test. Neuroscience 2011, 172, 474–482. [Google Scholar] [CrossRef] [Green Version]
Stress Conditions | Concentration of Stressor | Duration | Assay (% w/w) |
---|---|---|---|
None | H2O | 5 days | 98.74 ± 0.12 |
Acid | 0.1 M HCl | 48 h | 97.59 ± 0.23 |
Alkali | 0.01 M NaOH | 2 min | 88.22 ± 0.95 |
Oxidation | 3% H2O2 | 12 h | 89.35 ± 0.48 |
Photolysis | 4500 ± 500 Lx | 5 days | 97.46 ± 0.21 |
10 days | 95.37 ± 0.32 | ||
Thermal | 40 °C dry heat | 5 days | 80.53 ± 0.98 |
60 °C dry heat | 5 days | 23.79 ± 1.42 | |
pH | pH 4.0 | 24 h | 98.02 ± 0.26 |
pH 5.0 | 98.28 ± 0.31 | ||
pH 6.8 | 99.27 ± 0.13 | ||
pH 7.4 | 97.56 ± 0.28 | ||
pH 8.0 | 85.36 ± 0.42 | ||
pH 9.0 | 60.42 ± 0.86 |
Lot | Cryoprotectors | Assay (% w/w) | |||
---|---|---|---|---|---|
0 Day | Accelerating Condition—5 Days | Accelerating Condition—10 Days | Accelerating Condition—30 Days | ||
1 | Trehalose | 97.03 ± 0.49 | 98.33 ± 0.02 | 97.31 ± 0.62 | 97.14 ± 0.77 |
2 | Glucose | 50.87 ± 1.96 | 16.70 ± 1.51 | 10.89 ± 0.20 | 10.88 ± 0.20 |
3 | Mannitol | 96.48 ± 1.81 | 10.10 ± 0.19 | 10.63 ± 5.66 | N.A |
4 | Sorbitol | 96.73 ± 0.67 | 90.12 ± 0.62 | 70.95 ± 4.66 | 54.70 ± 2.57 |
5 | Glycine | 94.20 ± 1.37 | 80.14 ± 0.49 | 78.33 ± 1.64 | 67.20 ± 1.29 |
6 | PEG 2000 | 88.42 ± 1.33 | 82.13 ± 0.51 | 71.43 ± 0.22 | 56.99 ± 0.04 |
7 | Trehalose + Glucose | 39.56 ± 7.89 | 14.46 ± 3.78 | 11.87 ± 0.50 | N.A |
8 | Trehalose + Mannitol | 98.49 ± 0.45 | 98.02 ± 0.08 | 98.42 ± 0.26 | 98.36 ± 0.24 |
9 | Trehalose + Sorbitol | 99.02 ± 0.58 | 94.72 ± 0.04 | 90.76 ± 0.37 | 79.65 ± 0.04 |
10 | Trehalose + Glycine | 98.38 ± 0.38 | 95.82 ± 0.18 | 96.49 ± 1.29 | 85.13 ± 1.39 |
11 | Trehalose + PEG 2000 | 97.69 ± 1.45 | 99.28 ± 0.36 | 91.53 ± 4.25 | 68.76 ± 4.29 |
12 | Mannitol + Sorbitol | 97.17 ± 1.31 | 67.37 ± 7.18 | 40.51 ± 0.11 | 26.49 ± 0.19 |
13 | Mannitol + Glycine | 97.30 ± 0.23 | 96.40 ± 1.13 | 93.43 ± 0.98 | 80.50 ± 0.17 |
14 | Mannitol + PEG 2000 | 93.47 ± 0.14 | 78.50 ± 0.03 | 66.74 ± 0.89 | 43.98 ± 0.78 |
15 | Glycine + PEG 2000 | 99.14 ± 4.38 | 84.49 ± 0.62 | 74.08 ± 1.32 | 51.37 ± 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Han, X.; Hong, X.; Li, X.; Gao, J.; Zhang, H.; Zheng, A. Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]. Mar. Drugs 2021, 19, 121. https://doi.org/10.3390/md19030121
Li Z, Han X, Hong X, Li X, Gao J, Zhang H, Zheng A. Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]. Marine Drugs. 2021; 19(3):121. https://doi.org/10.3390/md19030121
Chicago/Turabian StyleLi, Zhiguo, Xiaolu Han, Xiaoxuan Hong, Xianfu Li, Jing Gao, Hui Zhang, and Aiping Zheng. 2021. "Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]" Marine Drugs 19, no. 3: 121. https://doi.org/10.3390/md19030121
APA StyleLi, Z., Han, X., Hong, X., Li, X., Gao, J., Zhang, H., & Zheng, A. (2021). Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]. Marine Drugs, 19(3), 121. https://doi.org/10.3390/md19030121