The Bioactive Potential of Trawl Discard: Case Study from a Crinoid Bed Off Blanes (North-Western Mediterranean)
Abstract
:1. Introduction
2. Results
2.1. Data on Discards and Bioactives from Higher Taxa
2.2. Bioactive Compounds and Vulnerability of Discarded Species
3. Discussion
3.1. Species Producing Compounds with Bioactive Potential and High Vulnerability to Trawling
3.2. Species Producing Compounds with Bioactive Potential and Medium Vulnerability to Trawling
3.3. Species Producing Compounds with Bioactive Potential and Low Vulnerability to Trawling
3.4. Limits to the Applicability of the Results
4. Materials and Methods
4.1. Study Area and Analysis of the Discards
4.2. Bioactive Potential of Compounds Produced by the Species
4.3. Vulnerability of the Species to Trawling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Abundance (Ind/2 h) | Biomass (g) | Abundance (%) | Biomass (%) |
---|---|---|---|---|
Alcyonium palmatum | 372.712 | 1956.323 | 5.830 | 4.510 |
Anseropoda placenta | 0.166 | 1.174 | 0.003 | 0.003 |
Argentina sphyraena | 7.428 | 50.041 | 0.116 | 0.123 |
Arnoglossus laterna | 12.270 | 105.770 | 0.192 | 0.260 |
Arnoglossus ruepelli | 1.326 | 10.436 | 0.021 | 0.026 |
Ascidia mentula | 5.754 | 24.403 | 0.090 | 0.060 |
Ascidia sp. 1 | 2.283 | 12.254 | 0.036 | 0.030 |
Astropartus mediterraneus | 0.166 | 2.218 | 0.003 | 0.005 |
Astropecten irregularis | 36.440 | 48.806 | 0.570 | 0.120 |
Boops boops | 36.440 | 2525.731 | 0.570 | 6.210 |
Calliactis parasitica | 5.273 | 6.210 | 0.082 | 0.015 |
Callionymus maculatus | 4.444 | 11.576 | 0.070 | 0.028 |
Capros aper | 71.962 | 384.181 | 1.126 | 0.945 |
Cidaris cidaris | 1.326 | 10.436 | 0.021 | 0.026 |
Dardanus arrosor | 15.653 | 167.735 | 0.245 | 0.412 |
Diazona violacea | 31.326 | 3245.626 | 0.490 | 7.980 |
Echinaster sepositus | 0.663 | 5.218 | 0.010 | 0.013 |
Echinus melo | 2.520 | 122.468 | 0.039 | 0.301 |
Eledone cirrhosa | 2.557 | 28.470 | 0.040 | 0.070 |
Eutrigla gurnardus | 5.903 | 92.882 | 0.092 | 0.228 |
Funiculina quadrangularis | 209.817 | 104.101 | 3.282 | 0.256 |
Gracilechinus acutus | 2.487 | 110.884 | 0.039 | 0.273 |
Helicolenus dactylopterus | 32.035 | 548.680 | 0.501 | 1.349 |
Illex coindetii | 2.951 | 66.875 | 0.046 | 0.164 |
Inachus dorsettensis | 3.946 | 13.350 | 0.062 | 0.033 |
Lepidorhombus boscii | 85.724 | 1164.882 | 1.341 | 2.864 |
Lepidotrigla cavillone | 8.854 | 30.500 | 0.138 | 0.075 |
Leptometra phalangium | 4561.930 | 6500.935 | 71.322 | 15.948 |
Liocarcinus depurator | 5.372 | 60.138 | 0.084 | 0.148 |
Lophius budegassa | 28.129 | 296.906 | 0.440 | 0.730 |
Lophius piscatorius | 14.065 | 280.637 | 0.220 | 0.690 |
Macropipus tuberculatus | 3.814 | 28.178 | 0.060 | 0.069 |
Macropodia longipes | 9.650 | 19.740 | 0.151 | 0.049 |
Macroramphosus scolopax | 130.228 | 1385.659 | 2.037 | 3.407 |
Merluccius merluccius | 8.311 | 48.806 | 0.130 | 0.120 |
Microcosmus sulcatus | 2.557 | 146.419 | 0.040 | 0.360 |
Mullus barbatus | 2.951 | 139.323 | 0.046 | 0.343 |
Munida intermedia | 7.893 | 29.495 | 0.123 | 0.073 |
Nemertesia ramosa | 71.995 | 446.667 | 1.126 | 1.098 |
Ophidiaster ophidiamus | 0.166 | 0.522 | 0.003 | 0.001 |
Ophiura texturata | 31.338 | 186.259 | 0.490 | 0.458 |
Pagellus bogaraveo | 27.923 | 1180.589 | 0.437 | 2.903 |
Pagellus erythrinus | 3.979 | 129.408 | 0.062 | 0.318 |
Pagurus excavatus | 5.754 | 52.874 | 0.090 | 0.130 |
Parthenope macrochelos | 0.332 | 6.001 | 0.005 | 0.015 |
Pennatula rubra | 2.557 | 12.202 | 0.040 | 0.030 |
Phycis blennoides | 5.903 | 162.543 | 0.092 | 0.400 |
Pisa armata | 0.332 | 2.152 | 0.005 | 0.005 |
Pteria hirundo | 14.065 | 28.470 | 0.220 | 0.070 |
Raja clavata | 2.557 | 1285.235 | 0.040 | 3.160 |
Rossia macrosoma | 20.693 | 615.837 | 0.324 | 1.514 |
Scorpaena loppei | 5.754 | 44.739 | 0.090 | 0.110 |
Scorpaena notata | 2.557 | 20.336 | 0.040 | 0.050 |
Scyliorhinus canicula | 172.611 | 12,152.794 | 2.700 | 29.880 |
Scyliorhinus canicula (eggs) | 34.356 | 55.964 | 0.537 | 0.138 |
Sepia orbignyana | 2.723 | 4.067 | 0.043 | 0.010 |
Sepietta oweniana | 1.326 | 8.349 | 0.021 | 0.021 |
Serranus hepatus | 2.951 | 2.229 | 0.046 | 0.005 |
Spatangus purpureus | 33.262 | 2321.766 | 0.520 | 5.709 |
Spicara maena | 1.326 | 41.745 | 0.021 | 0.103 |
Squilla desmaresti | 1.161 | 2.904 | 0.018 | 0.007 |
Todaropsis eblanae | 1.161 | 10.958 | 0.018 | 0.027 |
Torpedo marmorata | 4.278 | 995.869 | 0.067 | 2.449 |
Trachurus trachurus | 194.987 | 1012.733 | 3.050 | 2.490 |
Trisopterus capellanus | 11.911 | 116.107 | 0.186 | 0.285 |
Total | 6395.283 | 40,686.784 | 100.000 | 100.000 |
Organic matter and detritus (OMD) | 12,320.00 | |||
Total + OMD | 53,006.784 |
References
- Cudennec, B.; Balti, R.; Ravallec, R.; Caron, J.; Bougatef, A.; Dhulster, P.; Nedjar, N. In vitro evidence for gut hormone stimulation release and dipeptidyl-peptidase IV inhibitory activity of protein hydrolysate obtained from cuttlefish (Sepia officinalis) viscera. Food Res. Int. 2015, 78, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Lateff, A.; Alarif, W.M.; Alburae, N.A.; Algandaby, M.M. Alcyonium octocorals: Potential source of diverse bioactive terpenoids. Molecules 2019, 24, 1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uriz, M.J.; Martin, D.; Turon, X.; Ballasteros, E.; Hughes, R.; Acebal, C. An approach to the ecological significance of chemically mediated bioactivity in Mediterranean benthic communities. Mar. Ecol. Prog. Ser. 1991, 70, 175–188. [Google Scholar] [CrossRef]
- Ioannou, E.; Abdel-Razik, A.F.; Zervou, M.; Christofidis, D.; Alexi, X.; Vagias, C.; Alexis, M.N.; Roussis, V. 5alpha,8alpha-Epidioxysterols from the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum: Isolation and evaluation of their antiproliferative activity. Steroids 2009, 74, 73–80. [Google Scholar] [CrossRef]
- Carreño, A.; Lloret, J. The vulnerability of fish and macroinvertebrate species with bioactive potential in a Mediterranean marine protected area. Aquat. Conserve. Mar. Freshw. Ecosyst. 2021, 1–12. [Google Scholar] [CrossRef]
- Bindiya, E.S.; Karthikeyan, P.; Cikesh, P.C.; Subin, S.R.; Tina, K.J.; Chandrasekaran, M. Bioactive Potential of Proteins from Deep Sea Organisms Bioactive Potential of Proteins from Deep Sea Organisms. Fish. Technol. 2014, 51, 194–198. [Google Scholar]
- Wang, Y.T.; Xue, Y.R.; Liu, C.H. A brief review of bioactive metabolites derived from deep-sea fungi. Mar. Drugs 2015, 13, 4594–4616. [Google Scholar] [CrossRef] [Green Version]
- Vanney, J.R.; Stanley, D.J. Shelf-break physiography: An overview. In The Shelf-Break: Critical Interface on Continental Margin; Stanley, J., Moore, G.T., Eds.; Society of Economic Paleontologist and Mineralogist: Tulsa, OK, USA, 1983; Volume 33, pp. 1–24. [Google Scholar]
- Mann, K.H.; Lazier, J.R.N. Fronts in coastal waters. In Dynamics of Marine Ecosystems: Biological Physical Interactions in the Oceans, 3rd ed.; Blackwell: Oxford, UK, 1996; pp. 179–210. [Google Scholar]
- Colloca, F.; Carpentieri, P.; Balestri, E.; Ardizzone, G.D. A critical habitat for Mediterranean fish resources: Shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Mar. Biol. 2004, 145, 1129–1142. [Google Scholar] [CrossRef]
- Porporato, E.; De Domenico, F.; Profeta, A.; Busalacchi, B. Leptometra Phalangium (J. Mueller, 1841) Fields from the Southern Tyrrhenian Sea: Preliminary Data on the Associated Fauna. Biol. Mar. Mediterr. 2010, 17, 304–305. [Google Scholar]
- Leonard, C.; Evans, J.; Knittweis, L.; Aguilar, R.; Alvarez, H.; Borg, J.A.; Garcia, S.; Schembri, P.J. Diversity, distribution, and habitat associations of deep-water echinoderms in the Central Mediterranean. Mar. Biodivers. 2020, 50, 69. [Google Scholar] [CrossRef]
- European Commision. Council Regularion (EC) No 1967/2006 of 21 December 2006 Concerning Management Measures for the Sustainable Explotation of Fishery Resources in the Mediterranean Sea, Amending Refulation (EEC) No 2847/93 and Repealing Regulation (EC) No 1626/94. Off. J. Eur. Union (L167/19) 2006. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1967 (accessed on 15 December 2020).
- Massi, D.; Titone, A.; Garofalo, G.; Gristina, G.; Mancuso, M.; Sinacori, G.; Vinci, A.; Fiorentino, F. Are Leptometra phalangium (Echinodermata, Antedonidae) beds nursery hábitat for hake in the strait of sicily? Biol. Mar. Mediterr. 2016, 23, 266–268. [Google Scholar]
- Ballesteros, E. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanogr. Mar. Biol. 2010, 44, 123–195. [Google Scholar]
- Basso, D.; Babbini, L.; Ramos-Esplá, A.A.; Salomidi, M. Mediterranean rhodolith beds. In Rhodolith/Maërl Beds: A Global Perspective; Springer: Cham, Switzerland, 2017; Volume 15, ISBN 9783319293134. [Google Scholar]
- Boero, F.; Foglini, F.; Fraschetti, S.; Goriup, P.; Macpherson, E.; Planes, S.; Soukissian, T. CoCoNET: Towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Sci. Res. 2016, 6, 1–95. [Google Scholar] [CrossRef]
- Kenchington, E.; Murillo, F.J.; Cogswell, A.; Lirette, C. Development of encounter protocols and assessment of significant adverse impact by bottom trawling for sponge grounds and sea pen fields in the NAFO regulatory area. NAFO Sci. Counc. Rep. 2011, 11, 53. [Google Scholar]
- Hinz, H. Impact of bottom fishing on animal forests: Science, conservation, and fisheries management. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Rossi, S., Ed.; Springer: Cham, Switzerland, 2017; pp. 1041–1059. [Google Scholar]
- Bozzano, A.; Sardaà, F. Fishery discard consumption rate and scavenging activity in the northwestern Mediterranean Sea. ICES J. Mar. Sci. 2002, 59, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Bellido, J.M.; Santos, M.B.; Pennino, M.G.; Valeiras, X.; Pierce, G.J. Fishery discards and bycatch: Solutions for an ecosystem approach to fisheries management? Hydrobiologia 2011, 670, 317–333. [Google Scholar] [CrossRef]
- Tsagarakis, K.; Carbonell, A.; Brčić, J.; Bellido, J.M.; Carbonara, P.; Casciaro, L.; Edridge, A.; García, T.; González, M.; Šifner, S.K.; et al. Old info for a new Fisheries Policy: Discard ratios and lengths at discarding in EU Mediterranean bottom trawl fisheries. Front. Mar. Sci. 2017, 4, 99. [Google Scholar] [CrossRef] [Green Version]
- Damalas, D. Mission impossible: Discard management plans for the EU Mediterranean fisheries under the reformed Common Fisheries Policy. Fish. Res. 2015, 165, 96–99. [Google Scholar] [CrossRef]
- Garcia-De-Vinuesa, A.; Sola, I.; Quattrocchi, F.; Maynou, F.; Demestre, M. Linking trawl fleet dynamics and the spatial distribution of exploited species can help to avoid unwanted catches: The case of the NW mediterranean fishing grounds. Sci. Mar. 2018, 82, 165–174. [Google Scholar] [CrossRef]
- Demestre, M.; Sartor, P.; Garcia-De-vinuesa, A.; Sbrana, M.; Maynou, F.; Massaro, A. Ecological importance of survival of unwanted invertebrates discarded in different NW mediterranean trawl fisheries. Sci. Mar. 2018, 82, 189–198. [Google Scholar] [CrossRef]
- Garcia-de-Vinuesa, A. Evaluación de la Vulnerabilidad y del Estado de Conservación de Ecosistemas Marinos Bentónicos Especialmente Productivos del Mediterráneo Frente al Impacto de la Pesca de Arrastre, Para Impulsar su Correcta Gestión. Ph.D. Thesis, Universidad de Barcelona, Barcelona, Spain, 2020. [Google Scholar]
- European Commision. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11th of December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No. 1954/2003 and (EC) and (EC) No 1224/2009 and repealing Council Regulations (EC) No. 2371/2002, (EC) No 639/2004 and Council Decision (EC) No. 2004/585/EC. Off. J. Eur. Union 2013, 254, 22–61. [Google Scholar]
- Beauchard, O.; Veríssimo, H.; Queirós, A.M.; Herman, P.M.J. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecol. Indic. 2017, 76, 81–96. [Google Scholar] [CrossRef]
- de Juan, S.; Hinz, H.; Sartor, P.; Vitale, S.; Bentes, L.; Bellido, J.M.; Musumeci, C.; Massi, D.; Gancitano, V.; Demestre, M. Vulnerability of Demersal Fish Assemblages to Trawling Activities: A Traits-Based Index. Front. Mar. Sci. 2020, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef]
- FAO. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas; FAO: Rome, Italy, 2009; 73p. [Google Scholar]
- de Juan, S.; Thrush, S.F.; Demestre, M. Functional changes as indicators of trawling disturbance on a benthic community located in a fishing ground (NW Mediterranean Sea). Mar. Ecol. Prog. Ser. 2007, 334, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Garcia-de-Vinuesa, A. Estudio de las Comunidades Bentónicas Afectadas por la Pesca de Arrastre de la Plataforma Continental de Palamós. Master’s Thesis, Universidad de Barcelona, Barcelona, Spain, 2012. [Google Scholar]
- Thrush, S.F.; Hewitt, J.E.; Cummings, V.J.; Dayton, P.K.; Cryer, M.; Turner, S.J.; Funnell, G.A.; Budd, R.G.; Milburn, C.J.; Wilkinson, M.R. Disturbance of the Marine Benthic Habitat by Commercial Fishing: Impacts at the Scale of the Fishery. Ecol. Appl. 1998, 8, 866. [Google Scholar] [CrossRef]
- Lohrer, A.M.; Thrush, S.F.; Gibbs, M.M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 2004, 431, 1092–1095. [Google Scholar] [CrossRef]
- de Juan, S.; Demestre, M.; Thrush, S. Defining ecological indicators of trawling disturbance when everywhere that can be fished is fished: A Mediterranean case study. Mar. Policy 2009, 33, 472–478. [Google Scholar] [CrossRef]
- Ordines, F.; Ramón, M.; Rivera, J.; Rodríguez-Prieto, C.; Farriols, M.T.; Guijarro, B.; Pasqual, C.; Massutí, E. Why long term trawled red algae beds off Balearic Islands (western Mediterranean) still persist? Reg. Stud. Mar. Sci. 2017, 15, 39–49. [Google Scholar] [CrossRef]
- Paganelli, D.; Marchini, A.; Occhipinti-Ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 2012, 96, 245–256. [Google Scholar] [CrossRef]
- Clare, D.S.; Robinson, L.A.; Frid, C.L.J. Community variability and ecological functioning: 40 years of change in the North Sea benthos. Mar. Environ. Res. 2015, 107, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karoud, W.; Ghlissi, Z.; Krichen, F.; Kallel, R.; Bougatef, H.; Zarai, Z.; Boudawara, T.; Sahnoun, Z.; Sila, A.; Bougatef, A. Oil from hake (Merluccius merluccius): Characterization, antioxidant activity, wound healing and anti-inflammatory effects. J. Tissue Viability 2020, 29, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Brčić, J.; Herrmann, B.; Sala, A. Predictive models for codend size selectivity for four commercially important species in the Mediterranean bottom trawl fishery in spring and summer: Effects of codend type and catch size. PLoS ONE 2018, 13, e0206044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sion, L.; Zupa, W.; Calculli, C.; Garofalo, G.; Hidalgo, M.; Jadaud, A.; Lefkaditou, E.; Ligas, A.; Peristeraki, P.; Bitetto, I.; et al. Spatial distribution pattern of european hake, Merluccius merluccius (Pisces: Merlucciidae), in the mediterranean sea. Sci. Mar. 2019, 83, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Generalitat de Catalunya, Departament d’Agricultura, Ramaderia, Pesca i Alimentació Direcció General de Pesca i Afers Marítims. 2015. Talles Mínimes Autoritzades de Peix i Marisc. Espècies Procedents del Calador Mediterrani Reglamentació Europea, Nacional i Autonòmica. Available online: http://agricultura.gencat.cat/ca/ambits/pesca/dar_especies_calador_mediterrani/dar_talles_minimes_autoritzades/ (accessed on 10 October 2020).
- Bellido, J.M.; García-Rodriguez, M.; García-Jiménez, T.; González-Aguilar, M.; Carbonell-Quetglas, A. Could the obligation to land undersized individuals increase the black market for juveniles: Evidence from the Mediterranean? Fish Fish. 2017, 18, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Lassoued, I.; Mora, L.; Nasri, R.; Aydi, M.; Toldrá, F.; Aristoy, M.C.; Barkia, A.; Nasri, M. Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. J. Proteom. 2015, 128, 458–468. [Google Scholar] [CrossRef]
- Biton-Porsmoguer, S.; Lloret, J. Potential impacts of bottom trawling on species of skates (Rajiformes: Rajidae): The case of the Gulf of Cádiz and the Western Mediterranean. CYBIUM 2020, 44, 255–263. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Batista, I.; Pires, C.; Bandarra, N.M.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res. Int. 2014, 65, 469–476. [Google Scholar] [CrossRef]
- Chimienti, G.; Di Nisio, A.; Lanzolla, A.M.L.; Andria, G.; Tursi, A.; Mastrototaro, F. Towards non-invasive methods to assess population structure and biomass in vulnerable sea pen fields. Sensors 2019, 19, 2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambroso, S.; Gori, A.; Dominguez-Carrió, C.; Gili, J.M.; Berganzo, E.; Teixidó, N.; Greenacre, M.; Rossi, S. Spatial distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum in coastal bottoms (Cap de Creus, northwestern Mediterranean Sea). Mar. Biol. 2013, 160, 3059–3070. [Google Scholar] [CrossRef]
- Bahl, A.; Jachak, S.M.; Palaniveloo, K.; Ramachandram, T.; Vairappan, C.S.; Chopra, H.K. 2-Acetoxyverecynarmin C, a New Briarane COX Inhibitory Diterpenoid from Pennatula aculeata. Nat. Prod. Commun. 2014, 9, 1139–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shester, G.; Ayers, J. A cost effective approach to protecting deep-sea coral and sponge ecosystems with an application to Alaska’s Aleutian Islands region. In Cold-Water Corals and Ecosystems; Freiwald, A., Roberts, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1151–1169. [Google Scholar]
- Otero, M.M.; Marin, P. Conservation of cold-water corals in the Mediterranean: Current status and future prospects for improvement. In Cold-Water Corals: Past, Present and Future; Chapter 46. Coral Reefs of the World 9; Orejas, C., Jiménez, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 535–545. [Google Scholar]
- Maloney, T.; Phelan, R.; Simmons, N. Saving the horseshoe crab: A synthetic alternative to horseshoe crab blood for endotoxin detection. PLoS Biol. 2018, 16, e2006607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Moreno, P.J.; Pérez-Gálvez, R.; Espejo-Carpio, F.J.; Muñío, M.M.; Guadix, A.; Guadix, E.M. Lipid characterization and properties of protein hydrolysates obtained from discarded Mediterranean fish species. J. Sci. Food Agric. 2013, 93, 3777–3784. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.K.; Morabito, R.; Remigante, A.; Spanò, N.; La Spada, G.; Giacobbe, S.; Marino, A. Biological activity of extract from Styela plicata and Ascidia mentula (Ascidiacea). J. Biol. Res. 2016, 89. [Google Scholar] [CrossRef] [Green Version]
- Aissaoui, N.; Abidi, F.; Hardouin, J.; Abdelkafi, Z.; Marrakchi, N.; Jouenne, T.; Marzouki, M.N. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate. Biotechnol. Appl. Biochem. 2017, 64, 201–210. [Google Scholar] [CrossRef]
- Murcia, C.; Coello, L.; Fernández, R.; Martín, M.J.; Reyes, F.; Francesch, A.; Munt, S.; Cuevas, C. Tanjungides a and B: New antitumoral bromoindole derived compounds from Diazona cf formosa. isolation and total synthesis. Mar. Drugs 2014, 12, 1116–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restrepo-Espinosa, D.C.; Román, Y.; Colorado-Ríos, J.; de Santana-Filho, A.P.; Sassaki, G.L.; Cipriani, T.R.; Martínez, A.; Iacomini, M.; Pavão, M.S.G. Structural analysis of a sulfated galactan from the tunic of the ascidian Microcosmus exasperatus and its inhibitory effect of the intrinsic coagulation pathway. Int. J. Biol. Macromol. 2017, 105, 1391–1400. [Google Scholar] [CrossRef]
- GFCM. Criteria for the identification of sensitive habitats of relevance for the management of priority species. In Proceedings of the Meeting of the Sub-Committee on Marine Environment and Ecosystems (SCMEE), Malaga, Spain, 30 November–3 December 2009. [Google Scholar]
- GFCM. Report of the first meeting of the Working Group on Vulnerable Marine Ecosystems (WGVME). In Proceedings of the First Meeting of the Working Group on Vulnerable Marine Ecosystems (WGVME), Malaga, Spain, 3–5 April 2017. [Google Scholar]
- Vázquez, J.A.; Blanco, M.; Massa, A.E.; Amado, I.R.; Pérez-Martín, R.I. Production of fish protein hydrolysates from Scyliorhinus canicula discards with antihypertensive & antioxidant activities by enzymatic hydrolysis & mathematical optimization using response surface methodology. Mar. Drugs 2017, 15, 306. [Google Scholar] [CrossRef]
- Bosseboeuf, A.; Baron, A.; Duval, E.; Gautier, A.; Sourdaine, P.; Auvray, P. K092A and K092B, two peptides isolated from the dogfish (Scyliorhinus canicula L.), with potential antineoplastic activity against human prostate and breast cancer cells. Mar. Drugs 2019, 17, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, R.; Gibson, C. El Estado de Conservación de los Peces Cartilaginosos (Condictrios) del Mediterráneo; UICN: Gland, Switzerland; Málaga, Spain, 2007. [Google Scholar]
- Karthik, R.; Manigandan, V.; Ebenezar, K.; Vijayashree, R.; Saravanan, R. Data supporting the anticancer activity of posterior salivary gland (PSG) toxin from the cuttlefish Sepia pharaonis Ehrenberg (1831). Data Brief 2017, 13, 295–300. [Google Scholar] [CrossRef]
- Hajji, S.; Younes, I.; Rinaudo, M.; Jellouli, K.; Nasri, M. Characterization and In Vitro Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Activities of Chitosans Extracted from Three Different Marine Sources. Appl. Biochem. Biotechnol. 2015, 177, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Haug, T.; Kjuul, A.K.; Stensvåg, K.; Sandsdalen, E.; Styrvold, O.B. Antibacterial activity in four marine crustacean decapods. Fish Shellfish Immunol. 2002, 12, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Greer, S.P.; Iken, K.; McClintock, J.B.; Amsler, C.D. Bioassay-guided fractionation of antifouling compounds using computer-assisted motion analysis of brown algal spore swimming. Biofouling 2006, 22, 125–132. [Google Scholar] [CrossRef]
- Fonseca, P.; Abrantes, F.; Aguilar, R.; Campos, A.; Cunha, M.; Ferreira, D.; Fonseca, T.P.; García, S.; Henriques, V.; Machado, M.; et al. A deep-water crinoid Leptometra celtica bed off the Portuguese south coast. Mar. Biodivers. 2014, 44, 223–228. [Google Scholar] [CrossRef]
- Thrush, S.F.; Dayton, P.K. Disturbance to marine benthic habitats by trawling and dredging: Implications for marine biodiversity. Annu. Rev. Ecol. Syst. 2002, 33, 449–473. [Google Scholar] [CrossRef] [Green Version]
- Demestre, M.; de Juan, S.; Sartor, P.; Ligas, A. Seasonal closures as a measure of trawling effort control in two Mediterranean trawling grounds: Effects on epibenthic communities. Mar. Pollut. Bull. 2008, 56, 1765–1773. [Google Scholar] [CrossRef]
- Muntadas, A.; de Juan, S.; Demestre, M. Assessing functional redundancy in chronically trawled benthic communities. Ecol. Indic. 2016, 61, 882–892. [Google Scholar] [CrossRef]
- Bremner, J.; Rogers, S.I.; Frid, C.L.J. Assessing functional diversity in marine benthic ecosystems: A comparison of approaches. Mar. Ecol. Prog. Ser. 2003, 254, 11–25. [Google Scholar] [CrossRef]
- Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Bio. Ecol. 2008, 366, 37–47. [Google Scholar] [CrossRef]
Taxa | NS | G1 | G2 | G3 | % G1 | % G2 | % G3 |
---|---|---|---|---|---|---|---|
Vertebrata | 27 | 6 | 3 | 18 | 22.2 | 11.1 | 66.7 |
Tunichata | 4 | 1 | 2 | 1 | 25 | 50 | 25 |
Cnidaria | 5 | 1 | 1 | 3 | 20 | 20 | 60 |
Mollusca | 7 | 1 | 1 | 5 | 14.3 | 14.3 | 71.4 |
Crustacea | 10 | 0 | 2 | 8 | 0 | 20 | 80 |
Echinodermata | 11 | 0 | 1 | 10 | 0 | 9.1 | 90.9 |
TOTAL | 64 | 9 | 10 | 45 | 14.1 | 15.6 | 70.3 |
Species | G1 | G2 | Bio. Pot. | Vul. Rank | Ab. (%) | Bio. (%) |
---|---|---|---|---|---|---|
Sepia orbignyana | x | Ba, Ox, Tu, Fu | Low | 0.04 | 0.01 | |
Scyliorhinus canicula | x | Ox, Hy, Tu | Low | 2.70 | 29.88 | |
Raja clavata | x | Ox, Tu, Hy | High | 0.04 | 3.16 | |
Microcosmus sulcatus | x | Ba, Tu, Co | Medium | 0.04 | 0.36 | |
Trachurus trachurus | x | Hy, Ox | Medium | 3.05 | 2.49 | |
Merluccius merluccius | x | In, Ox | High | 0.13 | 0.12 | |
Diazona violacea | x | Ci, Tu | Medium | 0.49 | 7.98 | |
Scorpaena loppei | x | Ox, Hy | Medium | 0.09 | 0.11 | |
Scorpaena notata | x | Ox, Hy | Medium | 0.04 | 0.05 | |
Ascidia mentula | x | Ba, Ci | Medium | 0.09 | 0.06 | |
Eledone cirrhosa | x | Ci, Fe | Low | 0.04 | 0.07 | |
Alcyonium palmatum | x | Fe | High | 5.83 | 4.51 | |
Boops boops | x | Ox | High | 0.57 | 6.21 | |
Lophius budegassa | x | Ox | High | 0.44 | 0.73 | |
Lophius piscatorius | x | Ox | High | 0.22 | 0.69 | |
Pennatula rubra | x | Ox | High | 0.04 | 0.03 | |
Pteria hirundo | x | Ba | Low | 0.22 | 0.07 | |
Astropecten irregularis | x | Fo | Low | 0.57 | 0.12 | |
Pagurus excavatus | x | Ba | Low | 0.09 | 0.13 |
Biological Trait | Category | Score | Class | Weight |
---|---|---|---|---|
Regeneration | Yes | 1 | Survival | 0.5 |
No | 2 | |||
Fragility | Low | 1 | Survival | |
Medium | 2 | |||
High | 3 | |||
Protective structure | Yes | 1 | Survival | |
No | 2 | |||
Resistance to air exposure | Low | 3 | Survival | |
Medium | 2 | |||
High | 1 | |||
Mobility | Sessile or sedentary | 3 | Catchability | 1 |
Crawler | 2 | |||
Swimmer | 1 | |||
Size | Small | 1 | Catchability | |
Medium | 2 | |||
Large | 3 | |||
Sociability | Schools | 3 | Catchability | |
Small groups | 2 | |||
Solitary | 1 | |||
Environmental position | Benthic | 3 | Catchability | |
Demersal | 1 | |||
Age at maturity | >1 year | 2 | Resilience | 1.5 |
<1 year | 1 | |||
Reproductive frequency | Annual | 2 | Resilience | |
More than annual | 1 | |||
Egg development | Pelagic | 1 | Resilience | |
Benthic | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-de-Vinuesa, A.; Demestre, M.; Carreño, A.; Lloret, J. The Bioactive Potential of Trawl Discard: Case Study from a Crinoid Bed Off Blanes (North-Western Mediterranean). Mar. Drugs 2021, 19, 83. https://doi.org/10.3390/md19020083
García-de-Vinuesa A, Demestre M, Carreño A, Lloret J. The Bioactive Potential of Trawl Discard: Case Study from a Crinoid Bed Off Blanes (North-Western Mediterranean). Marine Drugs. 2021; 19(2):83. https://doi.org/10.3390/md19020083
Chicago/Turabian StyleGarcía-de-Vinuesa, Alfredo, Montserrat Demestre, Arnau Carreño, and Josep Lloret. 2021. "The Bioactive Potential of Trawl Discard: Case Study from a Crinoid Bed Off Blanes (North-Western Mediterranean)" Marine Drugs 19, no. 2: 83. https://doi.org/10.3390/md19020083
APA StyleGarcía-de-Vinuesa, A., Demestre, M., Carreño, A., & Lloret, J. (2021). The Bioactive Potential of Trawl Discard: Case Study from a Crinoid Bed Off Blanes (North-Western Mediterranean). Marine Drugs, 19(2), 83. https://doi.org/10.3390/md19020083