Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout (Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease
Abstract
:1. Introduction
2. Results
2.1. Characterization of CSNPs
2.1.1. Particle Size and Size Distribution
2.1.2. Particle Shape
2.1.3. CSNPs Crystalline Structure
2.2. Oncorhynchus mykiss Health after Three Weeks Feeding Trial
2.2.1. Growth Performance and Fish Survival
2.2.2. Intestinal Histological Appraisals
2.3. Oncorhynchus mykiss Resistance against ERM Infection
2.3.1. Skin Mucus and Serum Antibacterial Defense
2.3.2. Intestinal Immunity Investigations
- I.
- Histochemical Characterization and Semi-Quantification of Mucin-Producing Goblet Cells
- II.
- Relative Expression of Some Intestinal Immune-Relevant Genes
2.4. Clinical Signs Associated with ERM Disease Progression
2.4.1. Symptoms and Mortality
2.4.2. Histopathological Appraisals
3. Discussion
4. Materials and Methods
4.1. Preparation of CSNPs
4.2. Characterization of CSNPs
4.2.1. Particles Size and Size Distribution
4.2.2. Electron Microscopy
4.2.3. X-ray Diffraction
4.3. Diet Formulation
4.4. Fish Rearing and Experimental Conditions
4.5. Fish Disease Status
4.6. Experimental Design
4.7. Bacterial Challenge
4.8. Fish Sampling and Tissue Collection
4.9. Analysis and Measurement
4.9.1. Oncorhynchus mykiss Health after Three Weeks Feeding Trial
- I.
- Growth Performance and Fish Survival
- II.
- Intestinal Histological Appraisals
4.9.2. Oncorhynchus mykiss Resistance against ERM Infection
- I.
- Fish Antibacterial Defense
- II.
- Skin Mucus Antibacterial Activity
- III.
- Serum Bactericidal Activity
4.9.3. Oncorhynchus mykiss Intestinal Immunity Investigations
- I.
- Histochemical Examination
- II.
- Gene-Transcription Analysis
4.9.4. Disease Progression
- I.
- Fish Mortality
- II.
- Histopathological Examination
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tobback, E.; Decostere, A.; Hermans, K.; Haesebrouck, F.; Chiers, K. Review of Yersinia ruckeri infections in salmonid fish. J. Fish Dis. 2007, 30, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Menanteau-Ledouble, S.; Saleh, M.; El-Matbouli, M. Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Vet. Res. 2015, 46, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigos, G.; Stevenson, R. The effect of antibiotic treatment on the establishment of persistent infection with Yersinia ruckeri Serovar II in rainbow trout Oncorhynchus mykiss (Walbaum). Aquac. Int. 2001, 9, 247–253. [Google Scholar] [CrossRef]
- Furones, M.D.; Rodgers, C.J.; Munn, C.B. Yersinia ruckeri, the causal agent of enteric redmouth disease (ERM) in fish. Annu. Rev. Fish Dis. 1993, 3, 105–125. [Google Scholar] [CrossRef]
- Avci, H.; Birincioǧlu, S.S. Pathological findings in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) experimentally infected with Yersinia ruckeri. Turkish J. Vet. Anim. Sci. 2005, 29, 1321–1328. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2010. [Google Scholar]
- Woynarovich, A.; Hoitsy, G.; Moth-Poulsen, T. Small-Scale Rainbow Trout Farming. 2011. Available online: http://search.proquest.com/docview/1268652225?accountid=14643%5Cnhttp://mlbsfx.sibi.usp.br:3410/sfxlcl41?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&genre=book&sid=ProQ:Aquatic+Science+&+Fisheries+Abstracts+(ASFA)+Aquaculture+Abstracts&atitl (accessed on 5 January 2021).
- Moyle, P.B.; Lusardi, R.A.; Samuel, P.J.; Jacob, M.A.; Katz, V.E. State of the Salmonids: Status of California’s Emblematic Fishes. 2017. Available online: https://caltrout.org/wp-content/uploads/2017/08/SOS-II_Final.pdf (accessed on 5 January 2021).
- Welch, T.J.; LaPatra, S. Yersinia ruckeri lipopolysaccharide is necessary and sufficient for eliciting a protective immune response in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish Shellfish Immunol. 2016, 49, 420–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skov, J.; Chettri, J.K.; Jaafar, R.M.; Kania, P.W.; Dalsgaard, I.; Buchmann, K. Effects of soluble immunostimulants on mucosal immune responses in rainbow trout immersion-vaccinated against Yersinia ruckeri. Aquaculture 2018, 492, 237–246. [Google Scholar] [CrossRef]
- Shaalan, M.; Saleh, M.; El-Mahdy, M.; El-Matbouli, M. Recent progress in applications of nanoparticles in fish medicine: A review. Nanomed. Nanotech. Biol. Med. 2016, 12, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Kumar, G.; Abdel-Baki, A.A.; Al-Quraishy, S.; El-Matbouli, M. In vitro antimicrosporidial activity of gold nanoparticles against Heterosporis saurida. BMC Vet. Res. 2016, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shaalan, M.I.; El-Mahdy, M.M.; Theiner, S.; El-Matbouli, M.; Saleh, M. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet. Scand. 2017, 59, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shaalan, M.; El-Mahdy, M.; Theiner, S.; Dinhopl, N.; El-Matbouli, M.; Saleh, M. Silver nanoparticles: Their role as antibacterial agent against Aeromonas salmonicida subsp. salmonicida in rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci. 2018, 119, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, M.; Sellyei, B.; El-Matbouli, M.; Székely, C. Efficacy of silver nanoparticles to control flavobacteriosis caused by Flavobacterium johnsoniae in common carp Cyprinus carpio. Dis. Aquat. Organ. 2020, 137, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Asl Saeidi, M.R.; Adel, M.; Caipang, C.M.A.; Dawood, M.A.O. Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica). Fish Shellfish Immunol. 2017, 71, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Khor, E.; Lim, L.Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharm. Res. 2004, 21, 344–353. [Google Scholar] [CrossRef] [PubMed]
- De Lima, R.; Feitosa, L.; do Pereira, A.E.S.; de Moura, M.R.; Aouada, F.A.; Mattoso, L.H.C.; Fraceto, L.F. Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films. J. Food Sci. 2010, 75, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Soliman, F.M.; Adly, M.A.; Soliman, H.A.M.; El-Matbouli, M.; Saleh, M. Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res. Vet. Sci. 2019, 126, 68–82. [Google Scholar] [CrossRef]
- Wu, Y.; Rashidpour, A.; Almajano, M.P.; Meton, I. Chitosan-based drug delivery system: Applications in fish biotechnology. Polymers 2020, 12, 1177. [Google Scholar] [CrossRef]
- Abdel-Razek, N. Antimicrobial activities of chitosan nanoparticles against pathogenic microorganisms in Nile tilapia, Oreochromis Niloticus. Aquac. Int. 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J. Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology 2011, 5, 425–431. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Razek, N.A.; Abdel-Rahman, A.M. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol. 2019, 88, 254–258. [Google Scholar] [CrossRef]
- Alishahi, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Shojaosadati, S.A.; Dorkoosh, F.A.; Elsabee, M.Z. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem. 2011, 126, 935–940. [Google Scholar] [CrossRef]
- Wisdom, K.S.; Bhat, I.A.; Kumar, P.; Pathan, M.K.; Chanu, T.I.; Walke, P.; Sharma, R. Fabrication of chitosan nanoparticles loaded with aromatase inhibitors for the advancement of gonadal development in Clarias magur (Hamilton, 1822). Aquaculture 2018, 497, 125–133. [Google Scholar] [CrossRef]
- Meshkini, S.; Tafy, A.A.; Tukmechi, A.; Farhang-Pajuh, F. Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Vet. Res. Forum. Int. Q. J. 2012, 3, 49–54. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25653746%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4312819 (accessed on 5 January 2021).
- Alishahi, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Koshio, S.; Dorkoosh, F.A.; Elsabee, M.Z. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr. Polym. 2011, 86, 142–146. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Ismael, N.E.M.; Abd El-hameed, S.A.A.; Amer, M.S. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 2020, 523, 735219. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Kouchaki, M.; Mehregan, M.; Tayefi-Nasrabadi, H.; Divband, B.; Khataminan, M.; Khani Oushani, A.; Shabanzadeh, S. Influence of nanochitosan/zeolite composite on growth performance, digestive enzymes and serum biochemical parameters in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2017, 48, 5955–5964. [Google Scholar] [CrossRef]
- Oushani, A.K.; Soltani, M.; Sheikhzadeh, N.; Mehrgan, M.S.; Islami, H.R. Effects of dietary chitosan and nano-chitosan loaded clinoptilolite on growth and immune responses of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2020, 98, 210–217. [Google Scholar] [CrossRef]
- Ahmed, F.; Soliman, F.M.; Adly, M.A.; Soliman, H.A.M.; El-Matbouli, M.; Saleh, M. In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. J. Fish Dis. 2020, 43, 1049–1063. [Google Scholar] [CrossRef]
- Samuels, R.J. Solid state characterization of the structure of chitosan films. J. Polym. Sci. Part A-2 Polym. Phys. 1981, 19, 1081–1105. [Google Scholar] [CrossRef]
- Bhumkar, R.D.; Pokharkar, V.B. Studies on effect of pH on cross-linking of Chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech. 2006, 7, 2–7. [Google Scholar] [CrossRef]
- Hamidian, G.; Zirak, K.; Sheikhzadeh, N.; Oushani, A.K.; Shabanzadeh, S.; Divband, B. Intestinal histology and stereology in rainbow trout (Oncorhynchus mykiss) administrated with nanochitosan/zeolite and chitosan/zeolite composites. Aquac. Res. 2018, 49, 1803–1815. [Google Scholar] [CrossRef]
- Abd El-Naby, F.S.; Naiel, M.A.E.; Al-Sagheer, A.A.; Negm, S.S. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 2019, 501, 82–89. [Google Scholar] [CrossRef]
- Abd El-Naby, A.S.; Al-Sagheer, A.A.; Negm, S.S.; Naiel, M.A.E. Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture 2020, 515, 734577. [Google Scholar] [CrossRef]
- Najafabad, M.K.; Imanpoor, M.R.; Taghizadeh, V.; Alishahi, A. Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol. Biochem. 2016, 42, 1063–1071. [Google Scholar] [CrossRef]
- Palaksha, K.J.; Shin, G.W.; Kim, Y.R.; Jung, T.S. Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2008, 24, 479–488. [Google Scholar] [CrossRef]
- Biller-Takahashi, J.D.; Takahashi, L.S.; Pilarski, F.; Sebastião, F.A.; Urbinati, E.C. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887). Arq. Bras. Med. Vet. Zootec. 2013, 65, 1745–1751. [Google Scholar] [CrossRef] [Green Version]
- Guardiola, F.A.; Cuesta, A.; Arizcun, M.; Meseguer, J.; Esteban, M.A. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2014, 36, 545–551. [Google Scholar] [CrossRef]
- Cerezuela, R.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á. Enrichment of gilthead seabream (Sparus aurata L.) diet with palm fruit extracts and probiotics: Effects on skin mucosal immunity. Fish Shellfish Immunol. 2016, 49, 100–109. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Bahi, A.; Bakhrouf, A.; Esteban, M.A. Effects of dietary supplementation with fenugreek seeds, alone or in combination with probiotics, on gilthead seabream (Sparus aurata L.) skin mucosal immunity. Fish Shellfish Immunol. 2017, 65, 169–178. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Pashaki, A.K.; Nofouzi, K.; Heidarieh, M.; Tayefi-Nasrabadi, H. Effects of dietary Ergosan on cutaneous mucosal immune response in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2012, 32, 407–410. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Nofouzi, K.; Delazar, A.; Oushani, A.K. Immunomodulatory effects of decaffeinated green tea (Camellia sinensis) on the immune system of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2011, 31, 1268–1269. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Tyor, A.K.; Bhatnagar, A. Evaluation of the antibacterial activity of skin mucus of three carp species. Int. Aquat. Res. 2019, 11, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Cordero, H.; Cuesta, A.; Meseguer, J.; Esteban, M.Á. Changes in the levels of humoral immune activities after storage of gilthead seabream (Sparus aurata) skin mucus. Fish Shellfish Immunol. 2016, 585, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Mulder, I.E.; Wadsworth, S.; Secombes, C.J. Cytokine expression in the intestine of rainbow trout (Oncorhynchus mykiss) during infection with Aeromonas salmonicida. Fish Shellfish Immunol. 2007, 237, 47–759. [Google Scholar] [CrossRef] [PubMed]
- Casadei, E.; Bird, S.; Vecino, J.L.G.; Wadsworth, S.; Secombes, C.J. The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2013, 34, 529–537. [Google Scholar] [CrossRef]
- Salinas, I.; Parra, D. Fish Mucosal Immunity: Intestine; Elsevier Inc.: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Padra, J.T.; Murugan, A.V.M.; Sundell, K.; Sundh, H.; Benktander, J.; Lindén, S.K. Fish pathogen binding to mucins from Atlantic salmon and Arctic char differs in avidity and specificity and is modulated by fluid velocity. PLoS ONE 2019, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, M.B.; Khojasteh, S.M.B.; Sheikhzadeh, F.; Mohammadnejad, D.; Azami, A. Histological, histochemical and ultrastructural study of the intestine of rainbow trout (Oncorhynchus mykiss). World Appl. Sci. J. 2009, 61, 1525–1531. [Google Scholar]
- Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Biasibetti, E.; Righetti, M.; Pastorino, P.; Prearo, M.; et al. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 496, 50–57. [Google Scholar] [CrossRef]
- Bosi, G.; Dezfuli, B.S. Responses of Squalius cephalus intestinal mucous cells to Pomphorhynchus laevis. Parasitol. Int. 2015, 64, 167–172. [Google Scholar] [CrossRef]
- Bosi, G.; Giari, L.; DePasquale, J.A.; Carosi, A.; Lorenzoni, M.; Dezfuli, B.S. Protective responses of intestinal mucous cells in a range of fish–helminth systems. J. Fish Dis. 2016, 40, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- Jung-Schroers, V.; Adamek, M.; Harris, S.; Syakuri, H.; Jung, A.; Irnazarow, I.; Steinhagen, D. Response of the intestinal mucosal barrier of carp (Cyprinus carpio) to a bacterial challenge by Aeromonas hydrophila intubation after feeding with β-1,3/1,6-glucan. J. Fish Dis. 2018, 41, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.; Mitchell, W.J.; Austin, B. Effect of dietary supplements on cytokine gene expression in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2011, 34, 629–634. [Google Scholar] [CrossRef]
- Secombes, C.J.; Wang, T.; Bird, S. The interleukins of fish. Dev. Comp. Immunol. 2011, 35, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Peddie, S.; Zou, J.; Secombes, C.J. A biologically active IL-1β derived peptide stimulates phagocytosis and bactericidal activity in rainbow trout, Oncorhynchus mykiss (Walbaum), head kidney leucocytes in vitro. J. Fish Dis. 2002, 25, 351–360. [Google Scholar] [CrossRef]
- Wang, T.; Secombes, C.J. The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol. 2013, 35, 1703–1718. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Yarahmadi, P.; Soltani, M.; Paknejad, H.; Hoseini, S.M. Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 92, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Rauta, P.R.; Nayak, B.; Das, S. Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett. 2012, 148, 23–33. [Google Scholar] [CrossRef]
- Panigrahi, A.; Kiron, V.; Satoh, S.; Hirono, I.; Kobayashi, T.; Sugita, H. Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev. Comp. Immunol. 2007, 31, 372–382. [Google Scholar] [CrossRef]
- Panigrahi, A.; Viswanath, K.; Satoh, S. Real-time quantification of the immune gene expression in rainbow trout fed different forms of probiotic bacteria Lactobacillus rhamnosus. Aquac. Res. 2011, 42, 906–917. [Google Scholar] [CrossRef]
- Gioacchini, G.; Smith, P.; Carnevali, O. Effects of Ergosan on the expression of cytokine genes in the liver of juvenile rainbow trout (Oncorhynchus mykiss) exposed to enteric red mouth vaccine. Vet. Immunol. Immunopathol. 2008, 123, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Tsutsui, S.; Hino, K.; Araki, K.; Yoshiura, Y.; Yamamoto, A.; Nakamura, O.; Watanabe, T. Expression profiles of cytokines released in intestinal epithelial cells of the rainbow trout, Oncorhynchus mykiss, in response to bacterial infection. Dev. Comp. Immunol. 2009, 33, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Yar Ahmadi, P.; Farahmand, H.; Miandare, H.K.; Mirvaghefi, A.; Hoseinifar, S.H. The effects of dietary Immunogen® on innate immune response, immune related genes expression and disease resistance of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2014, 37, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Secombes, C.J. Identification and expression analysis of two fish-specific IL-6 cytokine family members, the ciliary neurotrophic factor (CNTF)-like and M17 genes, in rainbow trout Oncorhynchus mykiss. Mol. Immunol. 2009, 46, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Austin, B. Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Vet. Immunol. Immunopathol. 2006, 114, 297–304. [Google Scholar] [CrossRef]
- Karatas, S.; Candan, A.; Demircan, D. Enteric red mouth disease in cultured rainbow trout (Oncorhynchus mykiss) on the Black Sea coast of Turkey. Isr. J. Aquac. Bamidgeh. 2004, 56, 226–231. [Google Scholar]
- Mahjoor, A.A.; Akhlaghi, M. A pathological study of rainbow trout organs naturally infected with enteric redmouth disease. Asian J. Anim. Sci. 2012, 6, 147–153. [Google Scholar] [CrossRef]
- Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 2004, 339, 2693–2700. [Google Scholar] [CrossRef]
- Dubey, S.; Avadhani, K.; Mutalik, S.; Sivadasan, S.M.; Maiti, B.; Girisha, S.K.; Venugopal, M.N.; Mutoloki, S.; Evensen, Ø.; Karunasagar, I.; et al. Edwardsiella tarda OmpA encapsulated in chitosan nanoparticles shows superior protection over inactivated whole cell vaccine in orally vaccinated fringed-lipped peninsula carp (Labeo fimbriatus). Vaccines 2016, 4, 40. [Google Scholar] [CrossRef]
- Ingerslev, H.C.; Strube, M.L.; Jørgensen, L.G.; Dalsgaard, I.; Boye, M.; Madsen, L. Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2014, 40, 624–633. [Google Scholar] [CrossRef]
- Thorarensen, H.; Kubiriza, G.K.; Imsland, A.K. Experimental design and statistical analyses of fish growth studies. Aquaculture 2015, 448, 483–490. [Google Scholar] [CrossRef]
- Føre, M.; Alver, M.O.; Alfredsen, J.A.; Senneset, G.; Espmark, Å.; Terjesen, B.F. Modelling how the physical scale of experimental tanks affects salmon growth performance. Aquaculture 2018, 495, 731–737. [Google Scholar] [CrossRef]
- Menanteau-Ledouble, S.; van Sorgen, F.; Gonçalves, R.A.; El-Matbouli, M. Effect of immunostimulatory feed supplements on the development of acquired immunity in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 86, 1–3. [Google Scholar] [CrossRef] [PubMed]
- El Basuini, M.F.; Dawood, A.M.E.M.A.O.; Koshio, S.Z.E.M.M.E.K.S.; Dossou, M.I.S. Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus Major. Aquac. Nutr. 2017, 1329–1340. [Google Scholar] [CrossRef]
- Suvarna, J.D.; Layton, J.K.; Bancroft, C. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Churchill Livingstone: London, UK, 2013. [Google Scholar]
- Taei, H.M.; Hajimoradloo, A.; Hoseinifar, S.H.; Ahmadvand, H. Dietary Myrtle (Myrtus communis L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings. Fish Shellfish Immunol. 2017, 64, 320–324. [Google Scholar] [CrossRef]
- Padra, J.T.; Sundh, H.; Jin, C.; Karlsson, N.G.; Sundell, K.; Lindén, S.K. Aeromonas salmonicida binds differentially to mucins isolated from skin and intestinal regions of Atlantic salmon in an N-acetylneuraminic acid-dependent manner. Infect. Immun. 2014, 82, 5235–5245. [Google Scholar] [CrossRef] [Green Version]
- Lazzarotto, V.; Médale, F.; Larroquet, L.; Corraze, G. Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLoS ONE. 2018, 13, e0190730. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Abd-Elfattah, A.; El-Matbouli, M. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa). Parasitol. Res. 2015, 114, 929–939. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Hummel, K.; Razzazi-Fazeli, E.; El-Matbouli, M. Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Vet. Res. 2019, 50, 54. [Google Scholar] [CrossRef] [Green Version]
- Sudhagar, A.; El-Matbouli, M.; Kumar, G. Identification and expression profiling of toll-like receptors of brown trout (Salmo trutta) during proliferative kidney disease. Int. J. Mol. Sci. 2020, 21, 3755. [Google Scholar] [CrossRef]
- Yarahmadi, P.; Miandare, H.K.; Farahmand, H.; Mirvaghefi, A.; Hoseinifar, S.H. Dietary fermentable fiber upregulated immune related genes expression, increased innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila. Fish Shellfish Immunol. 2014, 41, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Dytham, C. Choosíng and Using Statístícs, 3rd ed.; Blackwell Science; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
Treatment Group | Parameters | ||||
---|---|---|---|---|---|
IBW (gm) | FBW (gm) | WG (%) | SGR (%) | Survival (%) | |
Non-supplemented | 15.36 ± 0.69 a | 26.36 ± 0.39 a | 71.86 ± 6.60 a | 2.58 ± 0.18 a | 100 a |
CSNPs-treated | 15.70 ± 0.62 a | 27.12 ± 0.59 b | 72.99 ± 7.11 a | 2.61 ± 0.19 a | 100 a |
Treatment Group | Parameters/Sampling Day | |||
---|---|---|---|---|
ZOI | MIC | |||
Day zero | 21st dpf | Day zero | 21st dpf | |
Non-supplemented | 2.34 ± 0.12 a | 2.54 ± 0.16 a | >200 | >200 |
CSNPs-treated | 2.86 ± 0.19 a | 4.28 ± 0.67 b | >200 | 150 |
Treatment | Subset Group | Parameters/Day Post Infection(dpi) | |||||
---|---|---|---|---|---|---|---|
ZOI | MIC | ||||||
5th dpi | 10th dpi | 28th dpi | 5th dpi | 10th dpi | 28th dpi | ||
Non-supplemented | Pathogen-free Control | 2.66 ± 0.24 a | 2.52 ± 0.19 a | 2.67 ± 0.21 a | >200 | >200 | >200 |
Challenged Control | 5.07 ± 0.38 b | 3.45 ± 0.25 b | 2.63 ± 0.16 a | 150 | 200 | >200 | |
CSNPs-treated | Prophylactic-regimen | 5.26 ± 0.88 b | 3.53 ± 0.22 b | 2.72 ± 0.17 a | 100 | 200 | 200 |
Therapeutic-regimen | 7.50 ± 0.26 c | 7.16 ± 0.21 c | 8.08 ± 0.34 b | 100 | 100 | 50 |
Primer (Gene) Name | Primer Sequence (5′-3′) | Gene Bank Accession No. | Amplicon Size (bp) | Reference |
---|---|---|---|---|
β-actin | F: ATGGAAGGTGAAATCGCC R: TGCCAGATCTTCTCCATG | AF157514 | 260 | [1] |
EF1-α | F: AGACAGCAAAAACGACCCCC R: AACGACGGTCGATCTTCTCC | HF563594 | 167 | [83] |
IL1-β | F: TATCCCATCACCCCATCACC R: GGGCGTGACGTACGAAGACAGG | AJ223954 | 357 | This study |
LYZ II | F: GCTGTTGTTCTCCTGCT R: GCAAACCCAGTTGGGCAG | NM_001124716.1 | 129 | [84] |
IgM H | F: ACTGCTCCGACTTTGTTCCC R: CCGCAGGGTACTGAACGAAA | XM_036941450.1 | 160 | [83] |
TGF-β | F: AGTTGCCTTGTGATTGTGGG R: GGGGTGGGCAGAGGCTCCGG | X99303 | 404 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, F.; Soliman, F.M.; Adly, M.A.; Soliman, H.A.M.; El-Matbouli, M.; Saleh, M. Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout (Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease. Mar. Drugs 2021, 19, 72. https://doi.org/10.3390/md19020072
Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout (Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease. Marine Drugs. 2021; 19(2):72. https://doi.org/10.3390/md19020072
Chicago/Turabian StyleAhmed, Fatma, Faiza M. Soliman, Mohamed A. Adly, Hamdy A. M. Soliman, Mansour El-Matbouli, and Mona Saleh. 2021. "Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout (Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease" Marine Drugs 19, no. 2: 72. https://doi.org/10.3390/md19020072
APA StyleAhmed, F., Soliman, F. M., Adly, M. A., Soliman, H. A. M., El-Matbouli, M., & Saleh, M. (2021). Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout (Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease. Marine Drugs, 19(2), 72. https://doi.org/10.3390/md19020072