Next Article in Journal
Complete Lipooligosaccharide Structure from Pseudoalteromonas nigrifaciens Sq02-Rifr and Study of Its Immunomodulatory Activity
Previous Article in Journal
Deep-Water Fish Are Potential Vectors of Ciguatera Poisoning in the Gambier Islands, French Polynesia
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities

by
Gamal A. Mohamed
1,* and
Sabrin R. M. Ibrahim
2,3
1
Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2
Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
3
Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
*
Author to whom correspondence should be addressed.
Mar. Drugs 2021, 19(11), 645; https://doi.org/10.3390/md19110645
Submission received: 21 October 2021 / Revised: 11 November 2021 / Accepted: 16 November 2021 / Published: 18 November 2021

Abstract

:
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.

1. Introduction

The marine environment covers approximately 70% of the Earth’s surface and represents an enormous pool of biodiversity resources [1,2,3]. Marine microorganisms possess the potential for several biotechnological and industrial applications and play an important ecological role [4,5]. The last decades have witnessed numerous studies in the natural metabolites derived from marine creatures or their associated microorganisms [6,7,8]. Marine-derived fungi consist of a wide range of parasites, saprotrophs, symbionts, epiphytes, and endophytes [9,10]. They can be obtained from various marine samples such as algae, seagrasses, corals, sponges, ascidians, crustaceans, bivalves, fishes, and inorganic matter [11,12]. Jones et al. reported 530 marine taxa in 321 genera, which included 12 Basidiomycota (nine genera), 94 asexual morphs (61 genera), and 424 Ascomycota (251 genera) [13]. In 2011, the number of marine fungi was estimated to be 10,000 to 12,500 species based on substrates and geographical locations [14]. Currently, 1901 species have been listed on the marine fungi website, in 769 genera, 88 orders, 226 families, 22 classes, and seven phyla [15]. They are acknowledged as a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications that attracted the attention of many biologists and chemists [16]. Cladosporium (Cladosporiaceae) is one of the largest genera of dematiaceous hyphomycetes [17]. Cladosporium species are frequent airborne molds, which can be isolated from almost every environment and geographic location, because their small conidia are easily dispersed [18,19,20,21]. C. herbarum, C. cladosporioides, and C. sphaerospermum are its three major species [22]. It comprises many important plant pathogens causing stem rots and leaf spots such as C. fulvum is the causal agent of tomato leaf mold [23,24]. Some species are also known as common contaminants in clinical laboratories and cause allergic lung diseases [25,26,27,28]. Some species have been reported as endophytes and possessed a positive influence, for example, C. sphaerospermum isolated from Glycine max roots which can promote its growth [29]. Several species were linked to allergic rhinitis and respiratory arrest in asthmatic patients, and some are described as a cause of opportunistic phaeohyphomycosis, including subcutaneous and deep infections in humans and animals [30,31]. Some species are fungicolous that possess a potential for biological control in agriculture and forestry [32,33]. Moreover, many Cladosporium species have the potential to be used in various industrial processes [34,35]. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including macrolides, pyrones, phenolics, alkaloids, diketopiperazines, terpenes, sterols, quinones, lactones, and tetramic acid derivatives. These metabolites possess versatile bioactivities such as anticancer, antimicrobial, antiviral, insecticidal, antifouling, anti-malarial, anti-hyperlipidemic, and α-glucosidase and protein tyrosine phosphatase inhibiton [36,37,38,39,40,41,42]. It has been shown that these species have significant impacts on biotechnology, ecosystems, and food production. They are a wealthy source of enzymes such as pectinases, agarases, carrageenases, xylanases, laccases, peroxidases, tannases, invertases, cellulases, and reductases that have wide biotechnological influences in developing eco-friendly technologies in the pulp and paper industry, food and feed industries, biomasses and contaminants bioremediation and biodegradation, and generation chemicals and liquid fuels [11,12,43,44,45,46,47,48,49,50]. The main goal of this review is the focus on the reported research in Cladosporium species derived from a marine habitat, including the structures and bioactivities of the reported metabolites, as well as the industrial and biotechnological potential of these species (Table 1 and Table 2). This work covers the studies that have appeared in literature from 1998 until July 2021. The structures and bioactivities of reported metabolites from Cladosporium species have been highlighted. Furthermore, the biotechnological and industrial potential of Cladosporium species has been summarized. We hope that this work can provide knowledge that can help for the dereplication and bioactivities evaluation of these marine-associated Cladosporium species. The present data were collected through the search on the various databases, including Web of Knowledge, ScienceDirect, SCOPUS, Taylor & Francis, Wiley Online Library, PubMed, JACS, Springer, and Google Scholar.

2. Importance of Marine Associated Cladosporium Species

Recently, cold-active microbial enzymes have attracted a great attention, and they are preferred to the thermophilic and mesophilic enzymes due to the reduction in the energy expenditure and costs of processing accompanied by industrial heating steps [51]. Many marine-associated Cladosporium species display noticeable enzyme production capacity. Many of these enzymes are exclusively produced at low temperature and high salt concentrations. Therefore, they play a substantial ecological role in lignin-cellulosic materials decomposition in the marine environment. Besides, these enzymes can be utilized in various biotechnological applications and allow the performance of industrial processes even in harsh conditions. In this review, the biotechnological and industrial relevance of Cladosporium species has been highlighted.
The polycyclic aromatic hydrocarbons (PAHs) are volatile pollutants that can cause various environmental pollutions such as oceanic and freshwater contamination, which can take place during storage, use, or transportation of crude oil and its products. PAHs inhalation or ingestion through contaminated food and airborne contaminants leads to serious health disorders such as endocrine disruption, cancer, and reproductive and birth problems [52]. Therefore, introducing marine-adapted microorganisms to increase the PAH-biodegradation rate is an important approach to reduce PAHs concentration in the contaminated regions. Investigation of the PAH biodegradation potential of various marine-derived fungi revealed that Cladosporium sp. CBMAI 1237 had a great potential for bioremediation and biodegradation of PAHs (e.g., anthracene, anthrone, anthraquinone, acenaphthene, phenanthrene, fluorene, pyrene fluoranthene, and nitropyrene) even in a non-marine environment [44].
Table 1. Secondary metabolites reported from marine associated Cladosporium species.
Table 1. Secondary metabolites reported from marine associated Cladosporium species.
Compound NameMol. Wt.Mol. FormulaFungal SourceHost (Sample, Family)PlaceRef.
1. Tetramic acid derivatives
Cladosin A (1)282C14H22N2O4C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[42]
Cladosin B (2)268C13H20N2O4C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[42]
C. sphaerospermum SW67Hydractinia echinata (Marine hydroid, Hydractiniidae)South Korea[53]
Cladosin C (3)250C13H18N2O3C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[42]
C. sphaerospermum SW67Hydractinia echinata
(Marine hydroid, Hydractiniidae)
South Korea[53]
Cladosin D (4)250C13H18N2O3C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[42]
Cladosin F (5)268C13H20N2O4C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[54]
C. sphaerospermum SW67Hydractinia echinata
(Marine hydroid, Hydractiniidae)
South Korea[53]
Cladosin G (6)282C14H22N2O4C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[54]
Cladosin H (7)358C20H26N2O4C. sphaerospermum L3P3Marine sedimentMariana Trench, South Pacific Ocean, China[55]
Cladosin I (8)358C20H26N2O4C. sphaerospermum L3P3Marine sedimentMariana Trench, South Pacific Ocean, China[55]
Cladosin J (9)419C25H29N3O3C. sphaerospermum L3P3Marine sedimentMariana Trench, South Pacific Ocean, China[55]
Cladosin K (10)419C25H29N3O3C. sphaerospermum L3P3Marine sedimentMariana Trench, South Pacific Ocean, China[55]
Cladosin L (11)270C13H22N2O4C. sphaerospermum SW67Hydractinia echinata
(Marine hydroid, Hydractiniidae)
South Korea[53]
Cladosporicin A (12)401C21H27N3O5C. sphaerospermum SW67Hydractinia echinata
(Marine hydroid, Hydractiniidae)
South Korea[38]
Cladodionen (13)233C13H15NO3Cladosporium sp. OUCMDZ-1635Unidentified spongeXisha Islands, China[56]
C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean, China[57]
C. sphaerospermum L3P3Marine sedimentMariana Trench, South Pacific Ocean, China[55]
Cladosporiumin A (14)349C19H27NO5Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin B (15)349C19H27NO5Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin C (16)349C19H27NO5Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin D (17)253C13H19NO4Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin E (18)251C13H17NO4Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin F (19)269C13H19NO5Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin G (20)253C13H19NO4Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin H (21)285C14H23NO5Cladosporium sp. SCSIO z0025Deep sea sedimentOkinawa, Japan[58]
Cladosporiumin I (22)235C13H17NO3C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean, China[57]
Cladosporiumin J (23)251C13H17NO4C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean, China[57]
Cladosporiumin K (24)251C13H17NO4C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean. China[57]
Cladosporiumin L (25)887C41H65N3O15Mg2C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean, China[57]
Cladosporiumin M (26)233C13H15NO3C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean, China[57]
Cladosporiumin N (27)253C13H19NO4C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean. China[57]
Cladosporiumin O (28)251C13H17NO4C. sphaerospermum EIODSF 008.Deep sea sedimentEast Indian Ocean, China[57]
Cladosporiumin I (29)349C19H27NO5C. sphaerospermum SW67Hydractinia echinata
(Marine hydroid, Hydractiniidae)
South Korea[38]
Cladosporiumin J (30)349C19H27NO5C. sphaerospermum SW67Hydractinia echinata
(Marine hydroid, Hydractiniidae)
South Korea[38]
2. Diketopiperazines
Cyclo-(Pro, Trp) (31)283C16H17N3O2Cladosporium sp. EF424419Porphyra yezoensis (Red alga, Bangiaceae)Lianyungang, Jiangsu, China[59]
Cyclo-(Val-Pro) (32)196C10H16N2O2Cladosporium sp. EF424419Porphyra yezoensis (Red alga, Bangiaceae)Lianyungang, Jiangsu, China[59]
Cyclo-(Phe-Pro) (33)244C14H16N2O2Cladosporium sp. F14Seawater from mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
Cyclo-(Phe-Val) (34)246C14H18N2O2Cladosporium sp. F14Seawater from mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
Cyclo-(Gly-Leu) (35)170C8H14N2O2Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
Cladosporin A (36)460C22H24N2O5S2Cladosporium sp.Marine sedimentYangshashan Bay, Ningbo, Zhejiang, China[62]
Cladosporin B (37)442C22H22N2O4S2Cladosporium sp.Marine sedimentYangshashan Bay, Ningbo, Zhejiang, China[62]
Haematocin (38)502C24H26N2O6S2Cladosporium sp.Marine sedimentYangshashan Bay, Ningbo, Zhejiang, China[62]
3. Alkaloids
3.1. Indole alkaloids
3.1.1 Simple indole alkaloids
N-Acetyltryptamine (39)202C12H14N2OCladosporium sp. EF424419Porphyra yezoensis (Red alga, Bangiaceae)Lianyungang, Jiangsu, China[59]
N-methyl-1H-indole-2-carboxamide (40)174C10H10N2OC. cladosporioidesCliona sp. (Sponge, Clionaidae)Los Molles, Chile[63]
Indole-3-carboxylic acid (41)161C9H7NO2Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
3.1.2 Glyantrypine derivatives
Glyantrypine (42)344C20H16N4O2Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
3-Hydroxyglyantrypine (43)360C20H16N4O3Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
14R-Oxoglyantrypine (44)358C20H14N4O3Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
14S-Oxoglyantrypine (45)358C20H14N4O3Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Prelapatin B (46)344C20H16N4O2Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Cladoquinazoline (47)418C23H22N4O4Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Epi-Cladoquinazoline (48)418C23H22N4O4Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
3.2. Quinazoline alkaloids
Norquinadoline A (49)471C26H25N5O4Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Quinadoline A (50)485C27H27N5O5Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Deoxynortryptoquivaline (51)516C28H28N4O6Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Deoxytryptoquivaline (52)530C29H30N4O6Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Tryptoquivaline (53)546C29H30N4O7Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
CS-C (54)546C29H30N4O7Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Quinadoline B (55)439C25H21N5O3Cladosporium sp. PJX-41Soil around a mangroveGuangzhou, China[64]
Circumdatin A (56)391C22H21N3O4Cladosporium sp. MFC353-bChondria crassicualis
(Red alga, Rhodomelaceae)
Yokji Island, Kyeongnam, Korea[65]
3.3. Quinolone alkaloids
Quinolactacin A1 (57)270C16H18N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin A2 (58)270C16H18N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin B1 (59)256C15H16N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin B2 (60)256C15H16N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin C1 (61)286C16H18N2O3C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin C2 (62)286C16H18N2O3C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin D1 (63)286C16H18N2O3C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacin D2 (64)286C16H18N2O3C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinocitrinine A (65)272C16H19N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinocitrinine B (66)272C16H19N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Quinolactacide (67)236C14H8N2O2C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
3.4. Citrinadin derivatives
Citrinadin A (68)624C35H52N4O6C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Citrinadin B (69)481C28H39N3O4C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
Butrecitrinadin (70)682C38H57N4O7C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
PF1270 A (71)566C32H43N3O6C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
PF1270 B (72)552C31H41N3O6C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
PF1270 C (73)538C30H39N3O6C. oxysporum BRS2A-AR2FConocarpus erectus (Mangrove plant, Combretaceae) Laguncularia racemosa (Mangrove plant, Combretaceae) Rhizophora racemosa (Mangrove plant, Rhizophoraceae)Banks of the River Butre, Western Region of Ghana[66]
3.5. Pyrrolidine derivatives
Cladosporitin A (74)505C32H43NO4Cladosporium sp. HNWSW-1Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dong Zhai Gang, Hainan, China[67]
Cladosporitin B (75)505C32H43NO4Cladosporium sp. HNWSW-1Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dong Zhai Gang, Hainan, China[67]
Talaroconvolutin A (76)487C32H41NO3Cladosporium sp. HNWSW-1Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dong Zhai Gang, Hainan, China[67]
Cladosporamide A (77)273C14H11NO5Cladosporium sp. TPU1507Unidentified marine spongeManado, Indonesia[68]
3.6. Other class of alkaloids
Cladosporilactam A (78)181C10H15NO2Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[69]
Cladospamide A (79)268C13H20N2O4Cladosporium sp. SCNU-F0001Mangrove plantZhuhai Mangrove Nature, Guangdong, China[70]
Cladosporin A (80)233C13H15NO3C. cladosporioides SCSIO z015Deep sea sedimentOkinawa, Japan[36]
Cladosporin B (81)233C13H15NO3C. cladosporioides SCSIO z015Deep sea sedimentOkinawa, Japan[36]
2′-Deoxythymidine (82)241C11H15NO5Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
Nicotinic acid (83)123C6H5NO2Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
2-Methylacetate-3,5,6-trimethylpyrazine (84)194C10H14N2O2Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
Cytochalasin D (85)507C30H37NO6Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
Cladosin E (86)251C13H17NO4C. sphaerospermum 2005-01-E3Deep-sea sludge, Pacific OceanQingdao, China[42]
N-Acetyltyramine (87)179C10H13NO2Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
4. Macrolides
Cladospolide A (88)228C12H20O4Cladosporium sp. FT-0012SpongePohnpei island, Federated State of Micronesia[72]
Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Cladospolide B (89)228C12H20O4Cladosporium sp. FT-0012SpongePohnpei island, Federated State of Micronesia[72]
C. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia,[74]
Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[69]
Cladosporium sp. SCNU-F0001Mangrove plantZhuhai Mangrove Nature, Guangdong, China[70]
Cladospolide C (90)228C12H20O4C. cladosporioides MCCC 3A00182Marine sedimentSouthwest Pacific Ocean[75]
Cladospolide D (91)226C12H18O4Cladosporium sp. FT-0012SpongePohnpei island, Federated State of Micronesia[72]
Cladospolide E (92)188C8H12O5Cladosporium sp. F14.Seawater nearby mangrove standKei Ling Ha Lo Wai, Sai Kung, Hong Kong, China[76]
Pandangolide 1 (93)244C12H20O5Cladosporium sp.Niphates rowi (Sponge, Niphatidae)Gulf of Aqaba, Israel[77]
Cladosporium sp. F14Seawater from mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
Cladosporium sp. IFB3lp-2Rhizophora stylosa (Mangrove plant, Rhizophoraceae)Mangrove forest, Hainan, China[73]
C. cladosporioides MA-299Bruguiera gymnorrhiza (Mangrove plant, Rhizophoraceae)Hainan Island, China[40]
Pandangolide 1a (94)244C12H20O5Cladosporium sp.Niphates rowi (Sponge, Niphatidae)Gulf of Aqaba, Israel[77]
Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Pandangolide 2 (95)318C14H22O6SC. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[74]
Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Pandangolide 3 (96)362C16H26O7SC. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia,[74]
Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[39]
C. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Pandangolide 4 (97)486C24H38O8SC. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[74]
5R-Hydroxyrecifeiolide (98)212C12H20O3C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[40]
5S-Hydroxyrecifeiolide (99)212C12H20O3C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[40]
Methyl 2-(((4R,6R,12R)-6-hydroxy-12-methyl-2,5-dioxooxacyclodo decan-4-yl)thio)acetate (100)332C15H24O6SCladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Thiocladospolide A (101)346C16H26O6SC. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[39]
C. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Thiocladospolide B (102)360C16H24O7SC. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[39]
Thiocladospolide C (103)330C15H22O6SC. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[39]
Thiocladospolide D (104)364C16H28O7SC. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[39]
Thiocladospolide E (105)306C14H26O5SCladosporium sp. SCNU-F0001Mangrove plantZhuhai Mangrove Nature, Guangdong, China[70]
Thiocladospolide F (106)332C16H28O5SC. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[79]
Thiocladospolide F (107)386C24H38O8SC. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Thiocladospolide G (108)348C16H28O6SC. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[79]
Thiocladospolide G (109)348C15H24O7SC. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Thiocladospolide H (110)332C15H24O6SC. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Thiocladospolide I (111)560C27H44O10SC. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Thiocladospolide J (112)558C27H42O10SC. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Sporiolide A (113)348C19H24O6Cladosporium sp. L037Actinotrichia fragilis
(Red alga, Galaxauraceae)
Seragaki Beach, Okinawa Island, Japan[80]
Sporiolide B (114)258C13H22O5Cladosporium sp. L037Actinotrichia fragilis
(Red alga, Galaxauraceae)
Seragaki Beach, Okinawa Island, Japan[80]
(6R,12S)-6-Hydroxy-12-methyl-1-oxacyclododecane-2,5-dione (115)228C12H20O4Cladosporium sp. F14Seawater from the mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
(3R,6S)-6-Hydroxy-12-methyl-2,5-dioxooxacyclododecan-3-yl (E)-4,11-dihydroxydodec-2-enoate (116)456C24H40O8Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Dendrodolide A (117) 256C13H20O5Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[69]
Dendrodolide C (118)242C12H18O5Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[69]
Dendrodolide L (119)228C12H20O4Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[69]
Dendrodolide M (120)256C13H20O5Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[69]
Cladocladosin A (121)224C12H16O4C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[79]
5. Butenolides and butanolides
Cladospolide F (122)230C12H22O4Cladosporium sp. TZP29Unidentified soft coralGuangzhou, China[41]
Ent-cladospolide F (123)230C14H24O5C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[40]
Cladospolide G (124)272C14H24O5C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[40]
11-Hydroxy-γ-dodecalactone (125)214C12H22O3Cladosporium sp. TZP29Unidentified soft coralGuangzhou, China[41]
Iso-Cladospolide B (126)228C12H20O4C. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia,[74]
Cladosporium sp.Niphates rowi (Sponge, Niphatidae)Gulf of Aqaba, Israel[77]
Cladosporium sp. F14Seawater from the mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Cladosporium sp. RA07-1Anthogorgia ochracea
(Gorgonian, Acanthogorgiidae)
Weizhou coral reef, South China Sea[70]
Cladosporium sp. TZP29Unidentified soft coralGuangzhou, China[41]
C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[40]
C. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Cladospolide H (127)210C12H18O3C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[40]
6. Seco-acids
Cladospolide A II (128) Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
Cladospolide E (129)228C12H20O4Cladosporium sp. TZP29Unidentified soft coralGuangzhou, China[41]
Seco-Patulolide A (130)228C12H20O4Cladosporium sp. TZP29Unidentified soft coralGuangzhou, China[41]
Seco-Patulolide C (131)230C12H22O4Cladosporium sp. F14Seawater from the Mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
Cladosporium sp. TZP29Unidentified soft coralGuangzhou, China[41]
C. cladosporioides MA-299Bruguiera gymnorrhiza
(Mangrove plant, Rhizophoraceae)
Hainan Island, China[39]
Seco-Secopatulolide C (132)230C12H22O4C. oxysporum HDN13-314Avicennia marina
(Mangrove plant, Acanthaceae)
Hainan, China[78]
Cladosporester A (133)244C13H24O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporester B (134)244C13H24O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporacid A (135)230C12H22O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporacid B (136)230C12H22O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporacid D (137)228C12H20O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporester C (138)288C14H24O6C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporacid C (139)230C12H22O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
Cladosporacid E (140)200C10H16O4C. cladosporioides OUCMDZ-187Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Shankou, Guangxi, China[81]
11-Hydroxy-4,5-dioxododecanoic acid (141)244C10H16O4Cladosporium sp. IFB3lp-2Rhizophora stylosa
(Mangrove plant, Rhizophoraceae)
Mangrove forest, Hainan, China[73]
7. Tetralones (napthalenones)
Cladosporol/Cladosporol A (142)352C20H16O6Cladosporium sp. KcFL6′Kandelia candel
(Mangrove plant, Rhizophoraceae)
Daya Bay, Shenzhen city, Guangdong, China[82]
Cladosporol C (143)338C20H18O5Cladosporium sp. KcFL6′Kandelia candel
(Mangrove plant, Rhizophoraceae)
Daya Bay, Shenzhen city, Guangdong, China[82]
C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
C. cladosporioides EN-399Laurencia okamurai
(Red alga, Rhodomelaceae)
Qingdao, China[84]
Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
C. cladosporioides MCCC 3A00182Marine sedimentSouthwest Pacific Ocean[75]
Cladosporol D (144)354C20H18O6Cladosporium sp. KcFL6′Kandelia candel
(Mangrove plant, Rhizophoraceae)
Daya Bay, Shenzhen city, Guangdong, China[82]
Cladosporol E (145)370C20H18O7C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
Cladosporol F (146)352C21H20O5C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
C. cladosporioides EN-399Laurencia okamurai
(Red alga, Rhodomelaceae)
Qingdao, China[84]
Cladosporol G (147)388C20H17ClO6C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
Cladosporol G (148)352C21H20O5C. cladosporioides EN-399Laurencia okamurai
(Red alga, Rhodomelaceae)
Qingdao, China[84]
Cladosporol H (149)336C20H16O5C. cladosporioides EN-399Laurencia okamurai
(Red alga, Rhodomelaceae)
Qingdao, China[84]
Cladosporol I = Cladosperanol A (150)338C20H18O5C. cladosporioides EN-399Laurencia okamurai
(Rhodomelaceae)
Qingdao, China[84]
Cladosporium sp. KFD33Blood cockle
(Bivalve mollusk, Cardiidae)
Haikou Bay, China[85]
338C20H18O5C. perangustum FS62-China[86]
Cladosporol J (151)338C20H18O5C. cladosporioides EN-399Laurencia okamurai
(Red alga, Rhodomelaceae)
Qingdao, China[84]
Cladosporone A (152)352C20H16O6Cladosporium sp. KcFL6′Kandelia candel
(Mangrove plant, Rhizophoraceae)
Daya Bay, Shenzhen city, Guangdong, China[82]
Altertoxin XII (153)322C20H18O4Cladosporium sp. KFD33Blood cockle
(Bivalve mollusk, Cardiidae)
Haikou Bay, China[85]
Clindanone A (154)394C22H18O7C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
Clindanone B (155)394C22H18O7C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
Isosclerone = (-)-(4R)-Regiolone (156)178C10H10O3C. perangustm FS62Marine sedimentSouth China Sea, china[87]
178C10H10O3C. cladosporioides HDN14-342Marine sedimentIndian Ocean, Qingdao, China[83]
178C10H10O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
(-)-trans-(3R,4R)-3,4,8-Trihydroxy-6,7-dimethyl-3,4- dihydronaphthalen-1(2H)-one (157)222C12H14O4Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
(3S)-3,8-Dihydroxy-6,7-dimethyl-α-tetralone (158)206C12H14O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
(3R,4R)-3,4-Dihydro-3,4,8-trihydroxy-1(2H)-napthalenone (159)194C10H10O4Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
Cladosporium sp. HDN17-58Deep-sea sedimentWestern Pacific Ocean, China[89]
Aladothalen (160)194C10H10O4Cladosporium sp. HDN17-58Deep-sea sedimentWestern Pacific Ocean, China[89]
8. Perylenequinones
Altertoxin VIII (161)304C20H16O3Cladosporium sp. KFD33Blood cockle
(Bivalve mollusk, Cardiidae)
Haikou Bay, Hainan, China[85]
Altertoxin IX (162)290C20H18O2Cladosporium sp. KFD33Blood cockle
(Bivalve mollusk, Cardiidae)
Haikou Bay, China[85]
Altertoxin X (163)290C20H18O2Cladosporium sp. KFD33Blood cockle
(Bivalve mollusk, Cardiidae)
Haikou Bay, China[85]
Altertoxin XI (164)304C21H20O2Cladosporium sp. KFD33Blood cockle
(Bivalve mollusk, Cardiidae)
Haikou Bay, China[85]
9. Naphthalene derivatives
8-Methoxynaphthalen-1-ol (165)174C11H10O2Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[90]
1,8-Dimethoxynaphthalene (166)188C12H12O2Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[90]
Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
4-Methoxynaphthalene-1,5-diol (167)190C11H10O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
8-Methoxynaphthalene-1,7-diol (168)190C11H10O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
Cladonaphchrom A (169)350C22H22O4Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[90]
Cladonaphchrom B (170)350C22H22O4Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[90]
10. Xanthones
8-Hydroxy-6-methylxanthone-1-carboxylic acid (171)270C15H10O5C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Methyl 8-hydroxy-6-methyl-9- oxo-9H-xanthene-1-carboxylate (172)284C16H12O5C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Methyl 8-hydroxy-6- (hydroxymethyl)-9-oxo-9H-xanthene-1-carboxylate (173)300C16H12O6C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Vertixanthone (174)270C15H10O5C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
8-(Methoxycarbonyl)-1-hydroxy-9-oxo-9H-xanthene-3-carboxylic acid (175)314C16H10O7C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
3,8-Dihydroxy-6-methyl-9-oxo-9H-xanthene-1-Carboxylate (176)300C16H12O6C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Conioxanthone A (177)316C16H12O7C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
11. Tropolones
Malettinin A (178)288C16H16O5Cladosporium sp. KF501Water sample German Wadden Sea[93]
Malettinin B (179)292C16H20O5Cladosporium sp. KF501Water sampleGerman Wadden Sea[93]
Malettinin C (180)292C16H20O5Cladosporium sp. KF501Water sampleGerman Wadden Sea[93]
Malettinin E (181)292C16H20O5Cladosporium sp. KF501Water samplesGerman Wadden Sea[93]
12. Binaphthopyrones
Cladosporinone (182)650C33H30O14C. cladosporioidesSediment of a hypersaline lake El HamraWadi el Natrun, Egypt[94]
Viriditoxin (183)662C34H30O14C. cladosporioidesSediment of a hypersaline lake El HamraWadi el Natrun, Egypt[94]
Viriditoxin derivative 1 (184)646C34H30O13C. cladosporioidesSediment of a hypersaline lake El HamraWadi el Natrun, Egypt[94]
Viriditoxin derivative 2 (185)646C34H30O13C. cladosporioidesSediment of a hypersaline lake El HamraWadi el Natrun, Egypt[94]
13. Benzopyranes, benzopyrones, and pyrones
(2S)-5-Hydroxy-2-methyl-chroman-4-one (186)178C10H10O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
(R)-5-Hydroxy-2-methylchroman-4-one (187)178C10H10O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[90]
Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(2R)-7-O-α-D-Ribofuranosyl-5-hydroxy-2-methyl chroman-4-one (188)326C15H18O8Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
(2S)-7-O-α-D-Ribofuranosyl-5-hydroxy-2-methylchroman-4-one (189)326C15H108O8Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(±)-5,7-Dihydroxy-2-methyl chroman-4-one (190)194C10H10O4Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
5-Hydroxy-2-methyl-4H-chromen-4-one (191)176C10H8O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[90]
Clapone (192)216C13H12O3Cladosporium sp. HNWSW-1Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dong Zhai Gang Mangrove, Hainan, China[67]
7-O-α-D-Ribosyl-5-hydroxy-2-propylchromone (193)352C17H20O8Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
Coniochaetone A (194)230C13H10O4C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Coniochaetone B (195)232C13H12O4C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Coniochaetone K (196)262C13H10O6C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
α-Diversonolic ester (197)320C16H16O7C. halotolerans GXIMD 02502Porites lutea
(Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
β-Diversonolic ester (198)320C16H16O7C. halotolerans GXIMD 02502Porites lutea
(Stony coral, Poritidae)
Weizhou Islands coral reef, Guangxi Zhuang autonomous region, China[92]
Secalonic acid D (199)638C32H30O14Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
(2S,3S,4R)-2-Methylchroman-3,4,5-triol (200)196C10H12O4Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(2S,4S)-4-Methoxy-2-methylchroman-5-ol (201)194C11H14O3Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(2R,4R)-3,4-Dihydro-4-methoxy-2-methyl-2H-1-benzopyran-5-ol (202)194C11H14O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
(2S,4S)-2-methylchroman-4,5-diol (203)180C10H12O3Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(2R,4S)-2,3-Dihydro-2-methyl-benzopyran-4,5-diol (204)180C10H12O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
(2R*,4R*)-3,4-Dihydro-5-methoxy-2-methyl-1(2H)-benzopyran-4-ol (205)164C10H12O2Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
Citrinin H1 (206)428C24H28O7Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
Cladosporin C (207)248C14H16O4C. cladosporioides SCSIO z015Deep sea sedimentOkinawa, Japan[36]
(S)-5-Hydroxy-4-methylchroman-2-one (208)178C10H10O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
(3R)-3-(2-Hydroxypropyl)-6,8-dihydroxy-3,4-dihydroiso-coumarin (209)238C12H14O5Cladosporium sp. CSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
Phomasatin (210)208C10H8O5C. cladosporioides MCCC 3A00182Marine sediment Southwest Pacific Ocean[75]
14. Pyrone derivatives
Herbarin A (211)236C12H12O5C. herbarum (Pers.)Aplysina aerophoba
(Sponge, Aplysinidae)
Bali Bata National Park, Indonesia[96]
Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[96]
Herbarin B (212)210C10H10O5C. herbarum (Pers.)Aplysina aerophoba
(Sponge, Aplysinidae)
Bali Bata National Park, Indonesia[96]
Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[96]
Citreoviridin A (213)402C23H30O6C. herbarum (Pers.)Aplysina aerophoba
(Sponge, Aplysinidae)
Bali Bata National Park, Indonesia[96]
Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[96]
Vermistatin (214)328C18H16O6Cladosporium sp. JS1-2Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
15. Lactones, cyclohexene, and azaphilone derivatives
(R)-Mevalonolactone (215)130C8H10O3Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
Cladosporactone A (216)196C10H12O4C. cladosporioides MCCC 3A00182Marine SedimentSouthwest Pacific Ocean[75]
Helicascolide A (217)212C12H20O3Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, China[91]
Cladoscyclitol A (218)244C12H20O5Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang of Hainan Province, China[97]
Cladoscyclitol B (219)290C13H22O7Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang of Hainan Province, China[97]
Cladoscyclitol C (220)230C12H22O4Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang of Hainan Province, China[97]
Cladoscyclitol D (221)246C12H22O5Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang of Hainan Province, China[97]
2-Butyryl-3,5-dihydroxycyclohex-2-enone (222)198C10H14O4Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
Perangustol A (223)210C11H14O4C. perangustm FS62Marine sedimentSouth China Sea, China[87]
Perangustol B (224)210C11H14O4C. perangustm FS62Marine sedimentSouth China Sea, China[87]
Bicyclic diol (225)210C11H14O4C. perangustm FS62Marine sedimentSouth China Sea, China[87]
16. Phenolics and other aromatic compounds
3-Phenyl-propionic acid (226)210C11H14O4Cladosporium sp. JJM22Ceriops tagal (Rhizophoraceae)South China Sea, China[91]
P-Toluic acid (227)136C8H8O2C. cladosporioidesMarine spongeArgentina[98]
L-β-Phenyllactic acid (228)166C9H10O3Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
α-Resorcylic acid (229)154C7H6O4Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
Phenylacetic acid (230)136C8H8O2Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
P-Hydroxyphenylacetic acid (231)152C8H8O3Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
Cinnamic acid (3-Phenyl-2-propenoic acid) (232)148C9H8O2Cladosporium sp. F14Seawater from the mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
3-(2,3-Dihydroxy phenoxy) butanoic acid (233)212C10H12O5Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
P-Hydroxy benzoic acid methyl ester (234)152C8H8O3Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu, China[59]
Methyl (3S)-3-(2,3-dihydroxy phenyloxy)butanoate (235)226C11H14O5Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
P-Hydroxyphenylethyl alcohol (236)138C8H10O2Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu Province, China[59]
P-Hydroxybenzyl alcohol (237)142C7H8O2Cladosporium sp. EF424419Porphyra yezoensis
(Red alga, Bangiaceae)
Lianyungang, Jiangsu Province, China[59]
2-Phenylethanol (238)122C8H10OCladosporium sp. F14Seawater from the mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
4-O-α-D-Ribofuranose-3-hydroxymethyl-2-pentyl- phenol (239)342C17H26O7Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
South China Sea, Dongzhaigang, Hainan, China[88]
4-O-α-D-Ribofuranose-2-pentyl-3-phemethylol (240)326C17H26O6Cladosporium sp. JJM22Ceriops tagal
(Mangrove plant, Rhizophoraceae)
Dongzhaigang of Hainan Province, China[97]
Clavatol (241)180C10H12O3Cladosporium sp.MFC353-bChondria crassicualis
(Red alga, Rhodomelaceae)
Yokji Island, Kyeongnam, Korea[65]
1-(3,5-Dihydroxy-4-methylphenyl)propan-2-one (242)180C10H12O3C. perangustm FS62Marine sedimentSouth China Sea, china[87]
α-Acetylorcinol (243)166C9H10O3C. perangustm FS62Marine sedimentSouth China Sea, china[87]
1-(2,6-Dihydroxyphenyl) ethanone (244)152C8H8O3Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
1-(2,6-Hihydroxyphenyl)-1-butanone (245)180C10H12O3Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(R)-3-Methoxyl-1-(2,6-dihydroxyphenyl)-butan-1-one (246)210C11H14O4Cladosporium sp. JJM22Ceriops tagal (Rhizophoraceae)South China Sea, China[91]
Cladosporin D (247)224C12H16O4C. cladosporioides SCSIO z015Deep sea sedimentOkinawa, Japan[36]
(2S)-7,4′-dihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone (248)354C21H22O5Cladosporium sp. TPU1507Unidentified marine spongeManado, Indonesia[68]
Bis(2-Ethylhexyl)phthalate (249)390C24H38O4Cladosporium sp. F14Seawater from the mangrove standKei Ling Ha Lo Wai, Sai Kung, China[60]
Herbaric acid (250)196C9H8O5C. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[96]
Cladosacid (251)250C15H22O3Cladosporium sp. OUCMDZ-1635Unidentified spongeXisha Islands, China[56]
1,1′-Dioxine-2,2′-dipropionic acid (252)228C10H12O6Cladosporium sp. JS1-2Ceriops tagal
(Mangrove, plant, Rhizophoraceae)
Dongzhaigang, Hainan, China[71]
Sumiki’s acid (253) 142C6H6O4C. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[73]
Acetyl Sumiki’s acid (254)184C8H8O5C. herbarum (Pers.)Callyspongia aerizusa
(Sponge, Callyspongiidae)
Bali Bata National Park, Indonesia[74]
17. Sterols and terpenes
5α,8α-Epidioxy-24(R)-methyl-cholesta-6,22-diene-3-β-ol (255)428C28H44O3C. sphaerospermum PenzCeramium condi
(Red alga, Ceramiaceae)
Ussuriysk Bay, Japan[99]
C.cladosporioides MCCC 3A00182Marine sediment Southwest Pacific Ocean[75]
5α,8α-Epidioxy-ergosta-6,22E-dien-3β-ol (256)428C28H44O3Cladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
C. cladosporioides MCCC 3A00182Marine SedimentSouthwest Pacific Ocean[75]
5α,8α-Epidioxy-24(R)-methyl-cholesta-6,9(11),22-triene-3-β-ol (257)426C28H42O3C. sphaerospermum PenzCeramium condi
(Red alga, Ceramiaceae)
Ussuriysk Bay, Japan[99]
5α,8α-Epidioxy-ergosta-6,9,22E-triene-3β-ol (258)426C28H42O3Cladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
3β,5α,6β-
Trihydroxyergosta-7,22-diene = Cerevisterol (259)
430C28H46O3Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
Ergosta-7,22E-diene-3β,5α,6β-triol (260)430C28H46O3Cladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
3β,5α,6α-Trihydroxy-(22E,24R) -ergosta-7,22-diene (261)430C28H46O3C. cladosporioides MCCC 3A00182Marine SedimentSouthwest Pacific Ocean[75]
3β,5α-Dihydroxy-6β-methoxyergosta-7,22-diene (262)444C29H48O3Cladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
Ergosterol (263)396C28H44OCladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
Cladosporisteroid A (264)460C28H44O5Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
3β,5α,9α-Trihydroxy-(22E,24R)-ergosta-7,22-diene-6-one (265)444C28H44O4Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
C. cladosporioides MCCC 3A00182Marine SedimentSouthwest Pacific Ocean[75]
3β,5α-Dihydroxy-(22E,24R)-ergosta-7,22-diene-6-one (266)428C28H44O3C. cladosporioides MCCC 3A00182Marine SedimentSouthwest Pacific Ocean[75]
Stigma-5-en-3-O-β-glucopyranoside (267)576C35H60O6Cladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
3α-Hydroxy-pregna-7-ene-6,20-dione = Cladosporisteroid B (268)330C21H30O3Cladosporium sp. WZ-2008-0042Dichotella gemmacea
(Gorgonian, Ellisellidae)
Weizhou Island coral reef, South China Sea[100]
Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
C. cladosporioides MCCC 3A00182Marine Sediment Southwest Pacific Ocean[75]
C. sphaerospermum SW67Hydractinia echinata
(Hydroid, Hydractiniidae)
South Korea[101]
Cladosporisteroid C (269)374C23H34O4Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
Pregn-7-dien-3,6,20-trione (270)328C21H28O3Cladosporium sp. SCSIO41007Callyspongia sp.
(Sponge, Callyspongiidae)
Xuwen, Guangdong, China[61]
18. Alcohols and aldehydes 70.43 μg/mL (EC50)
Compound (271) 434C30H58OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (272)458C32H58OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (273)458C32H58OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (274)458C32H58OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (275)460C32H60OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (276)460C32H60OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (277)462C32H62OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (278)462C32H62OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (279)482C34H58OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (280)484C34H60OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (281)484C34H60OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (282)484C34H60OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (283)484C34H60OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
Compound (284)486C34H62OCladosporium sp.Marine sedimentSan Antonio Oeste, Río Negro, Argentina[102]
(2S,3S,4E)-Hepta-4,6-diene-2,3-diol (285)128C7H12O2Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
(3E,8E,6S)-Undeca-3,8,10-trien-1,6-diol (286)182C11H18O2Cladosporium sp. OUCMDZ-302Excoecaria agallocha
(Mangrove plant, Euphorbiaceae)
Wenchang, Hainan, China[95]
Table 2. Biological activity of secondary metabolites isolated from Cladosporium species.
Table 2. Biological activity of secondary metabolites isolated from Cladosporium species.
Compound NameBiological ActivityAssay, Organism, or Cell LineBiological ResultsPositive ControlRef.
Cladosin C (3)AntiviralNeuraminidase inhibition assay/Influenza A H1N1 virus276.0 µM (IC50)Ribavirin 131.0 µM (IC50)[42]
Cladosin I (8)CytotoxicityMTT/K5624.1 µM (IC50)Doxorubicin 0.3 µM (IC50)[55]
CytotoxicityMTT/HL-602.8 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicitySEB/HCT-11611.0 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicitySRB/PC-313.0 µM (IC50)Doxorubicin 1.0 µM (IC50)[55]
CytotoxicitySRB/SH-SY5Y12.0 µM (IC50)Doxorubicin 0.1 µM (IC50)[55]
CytotoxicitySRB/MGC-80319.0 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
Cladosin K (10)CytotoxicityMTT/K5625.9 µM (IC50)Doxorubicin 0.3 µM (IC50)[55]
CytotoxicityMTT/HL-607.5 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicitySEB/HCT-11614.0 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicitySRB/PC-318.0 µM (IC50)Doxorubicin 1.0 µM (IC50)[55]
Cladosporicin A (12)CytotoxicitySRB/Bt54970.88 µM (IC50)Etoposide 1.82 µM (IC50)[38]
CytotoxicitySRB/HCC7074.48 µM (IC50)Etoposide 1.76 µM (IC50)[38]
CytotoxicitySRB/MDA-MB-23175.54 µM (IC50)Etoposide 2.27 µM (IC50)[38]
CytotoxicitySRB/MDA-MB-46879.36 µM (IC50)Etoposide 2.08 µM (IC50)[38]
Cladodionen (13)CytotoxicityMTT/K5624.5 µM (IC50)Doxorubicin 0.3 µM (IC50)[55]
CytotoxicityMTT/HL-606.6 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicitySRB/HCT-11612.0 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicitySRB/PC-311.0 µM (IC50)Doxorubicin 1.0 µM (IC50)[55]
CytotoxicitySRB/SH-SY5Y15.0 µM (IC50)Doxorubicin 0.1 µM (IC50)[55]
CytotoxicitySRB/MGC-80322.0 µM (IC50)Doxorubicin 0.2 µM (IC50)[55]
CytotoxicityMTT/MCF-718.7 µM (IC50)Adriamycin 0.67 µM (IC50)[56]
CytotoxicityMTT/HeLa19.1 µM (IC50)Adriamycin 0.32 µM (IC50)[56]
CytotoxicityCCK-8/HCT-11617.9 µM (IC50)Adriamycin 0.21 µM (IC50)[56]
CytotoxicityMTT/HL-609.0 µM (IC50)Adriamycin 0.02 µM (IC50)[56]
Cladosporiumin I (29)CytotoxicitySRB/Bt54976.18 µM (IC50)Etoposide 1.82 µM (IC50)[38]
CytotoxicitySRB/HCC7085.29 µM (IC50)Etoposide 1.76 µM (IC50)[38]
CytotoxicitySRB/MDA-MB-23182.37 µM (IC50)Etoposide 2.27 µM (IC50)[38]
CytotoxicitySRB/MDA-MB-46881.44 µM (IC50)Etoposide 2.08 µM (IC50)[38]
Cladosporiumin J (30)CytotoxicitySRB/Bt54978.96 µM (IC50)Etoposide 1.82 µM (IC50)[38]
CytotoxicitySRB/HCC7076.41 µM (IC50)Etoposide 1.76 µM (IC50)[38]
CytotoxicitySRB/MDA-MB-23179.27 µM (IC50)Etoposide 2.27 µM (IC50)[38]
CytotoxicitySRB/MDA-MB-46874.64 µM (IC50)Etoposide 2.08 µM (IC50)[38]
Cyclo-(Val-Pro) (32)Insecticidal Inhibitinon 50%/B. amphitrite37.82 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. amphitrite>200 μg/mL (LC50)FSW with DMSO[60]
Inhibitinon 50%/B. neritina>200 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. neritina>200 μg/mL (LC50)FSW with DMSO[60]
Cyclo-(Val-Pro) (32)AntimicrobialSerial dilution/L. hongkongensis80 μg/mL (MIC)Streptomycin 250 μg/mL (MIC)
Penicillin 0.25 μg/mL (MIC)
[60]
Cyclo-(Phe-Pro) (33)InsecticidalInhibitinon 50%/B. amphitrite68.57 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. amphitrite115.04 μg/mL (LC50)FSW with DMSO[60]
Inhibitinon 50%/B. neritina70.43 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. neritina>200 μg/mL (LC50)FSW with DMSO[60]
Cyclo-(Phe-Pro) (33)AntimicrobialSerial dilution/L. hongkongensis200 μg/mL (MIC)Streptomycin 1.0 250 μg/mL (MIC)[60]
Serial dilution/M. luteus200 μg/mL (MIC)Streptomycin 250 μg/mL (MIC)
Penicillin 0.5 μg/mL (MIC)
[60]
Serial dilution/Ruegeria sp.100 μg/mL (MIC)Streptomycin 500 μg/mL (MIC)
Penicillin 0.25 μg/mL (MIC)
[60]
Glyantrypine (42)AntiviralCPE inhibition assay/Influenza A H1N1 virus150 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
3-Hydroxyglyantrypine (43)AntiviralCPE inhibition assay/Influenza A H1N1 virus110 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
14R-Oxoglyantrypine (44)AntiviralCPE inhibition assay/Influenza A H1N1 virus130 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
14S-Oxoglyantrypine (45)AntiviralCPE inhibition assay/Influenza A H1N1 virus85 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Cladoquinazoline (47)AntiviralCPE inhibition assay/Influenza A H1N1 virus150 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Epi-Cladoquinazoline (48)AntiviralCPE inhibition assay/Influenza A H1N1 virus140 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Norquinadoline A (49)AntiviralCPE inhibition assay/Influenza A H1N1 virus82 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Quinadoline A (50)AntiviralCPE inhibition assay/Influenza A H1N1 virus130 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Deoxynortryptoquivaline (51)AntiviralCPE inhibition assay/Influenza A H1N1 virus87 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Deoxytryptoquivaline (52)AntiviralCPE inhibition assay/Influenza A H1N1 virus85 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Tryptoquivaline (53)AntiviralCPE inhibition assay/Influenza A H1N1 virus89 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
CS-C (54)AntiviralCPE inhibition assay/Influenza A H1N1 virus140 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Quinadoline B (55)AntiviralCPE inhibition assay/Influenza A H1N1 virus82 µM (IC50)Ribavirin 87.0 µM (IC50)[64]
Quinolactacin A2 (58)CytotoxicityMTT/HepG-296.54 µM (IC50)Curcumin 61.38 µM (IC50)[66]
MTT/HL-6054.47 µM (IC50)Curcumin 13.78 µM (IC50)[66]
MTT/MCF-794.49 µM (IC50)Curcumin 20.68 µM (IC50)[66]
MTT/LNCap45.71 µM (IC50)Curcumin 6.15 µM (IC50)[66]
Anti-malarialFlow cytometry/SYBR Green I fluorescence/P. falciparum chloroquine sensitive (3D7)24.8 µM (EC50)Artesunate 0.074 µM (EC50)[66]
Citrinadin A (68)CytotoxicityMTT/HepG-282.15 µM (IC50)Curcumin 61.38 µM (IC50)[66]
MTT/HL-6057.23 µM (IC50)Curcumin 13.78 µM (IC50)[66]
MTT/MCF-766.07 µM (IC50)Curcumin 20.68 µM (IC50)[66]
MTT/LNCap41.42 µM (IC50)Curcumin 6.15 µM (IC50)[66]
Anti-malarialFlow cytometry/SYBR Green I fluorescence/P. falciparum chloroquine sensitive (3D7)>25.0 µM (EC50)Artesunate 0.074 µM (EC50)[66]
Butrecitrinadin (70)CytotoxicityMTT/HepG-278.57 µM (IC50)Curcumin 61.38 µM (IC50)[66]
MTT/HL-6060.31 µM (IC50)Curcumin 13.78 µM (IC50)[66]
MTT/MCF-751.32 µM (IC50)Curcumin 20.68 µM (IC50)[66]
MTT/LNCap32.94 µM (IC50)Curcumin 6.15 µM (IC50)[66]
Anti-malarialFlow cytometry/SYBR Green I fluorescence/P. falciparum chloroquine sensitive (3D7)>25.0 µM (EC50)Artesunate 0.074 µM (EC50)[66]
Cladosporitin B (74)CytotoxicityMTT/BEL-704229.4 µM (IC50)Adriamycin 11.9 µM (IC50)[67]
CytotoxicityMTT/K56225.6 µM (IC50)Adriamycin 14.2 µM (IC50)[67]
CytotoxicityMTT/SGC-790141.7 µM (IC50)Adriamycin 6.66 µM (IC50)[67]
Talaroconvolutin A (76)CytotoxicityMTT/HeLa14.9 µM (IC50)Adriamycin 11.5 µM (IC50)[67]
CytotoxicityMTT/BEL-704226.7 µM (IC50)Adriamycin 11.9 µM (IC50)[67]
Talaroconvolutin A (76)α-Glucosidase inhibitoryGlucose oxidase method78.2 µM (IC50)Acarbose 275.7 µM (IC50)[67]
Cladosporamide A (77)Protein tyrosine phosphatase 1B inhibitoryPTP1B/Spectrophotometry48.0 µM (IC50)Oleanolic acid 0.9 µM (IC50)[68]
TCPTP/Spectrophotometry54.0 µM (IC50)Oleanolic acid 0.8 µM (IC50)[68]
Cladosporilactam A (78)CytotoxicityMTT/HeLa0.76 µM (IC50)Adriamycin[69]
MTT/HT-292.48 µM (IC50)Adriamycin[69]
SRB/P3881.35 µM (IC50)Adriamycin[69]
SRB/A5493.11 µM (IC50)Adriamycin[69]
2-Methylacetate-3,5,6-trimethylpyrazine (84)Insecticidal CM/Helicoverpa armigera Hubner larvae100.0 μg/mL (IC50)Azadirachtin 25.0 μg/mL (IC50)[71]
AntimicrobialMicroplate assay/S. aureus12.5 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Cytochalasin D (85)AntimicrobialMicroplate assay/S. aureus25.0 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Pandangolide 3 (96)AntimicrobialMicroplate assay/C. glecosporioides2.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Microplate assay/B. sorokiniana8.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Thiocladospolide A (101)AntimicrobialMicroplate assay/E. tarda1.0 µg/mL (MIC)Chloramphenicol 0.5 µg/mL (MIC)[39]
Microplate assay/E. ictarda8.0 µg/mL (MIC)Chloramphenicol 0.5 µg/mL (MIC)[39]
Microplate assay/C. glecosporioides2.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Thiocladospolide B (102)AntimicrobialMicroplate assay/C. glecosporioides2.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Microplate assay/P. piricola Nose32.0 µg/mL (MIC)Amphotericin B 2.0 µg/mL (MIC)[39]
Microplate assay/F. oxysporum f. sp. cucumerinum1.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Thiocladospolide C (103)AntimicrobialMicroplate assay/C. glecosporioides1.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Microplate assay/P. piricola Nose32.0 µg/mL (MIC)Amphotericin B 2.0 µg/mL (MIC)[39]
Microplate assay/F. oxysporum f. sp. cucumerinum32.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Thiocladospolide D (104)AntimicrobialMicroplate assay/E. ictarda1.0 µg/mL (MIC)Chloramphenicol 0.5 µg/mL (MIC)[39]
Microplate assay/C. glecosporioides1.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Microplate assay/P. piricola Nose32.0 µg/mL (MIC)Amphotericin B 2.0 µg/mL (MIC)[39]
Microplate assay/F. oxysporum f. sp. cucumerinum1.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[39]
Thiocladospolide F (106)AntimicrobialMicroplate assay/E. tarda 2.0 µg/mL (MIC)Chloramphenicol 0.5 µg/mL (MIC)[79]
AntimicrobialMicroplate assay/H. maydis4.0 µg/mL (MIC)Amphotericin B 0.5 µg/mL (MIC)[79]
Thiocladospolide G (108)AntimicrobialMicroplate assay/E. tarda 2.0 µg/mL (MIC)Chloramphenicol 0.5 µg/mL (MIC)[79]
Thiocladospolide G (109)AntimicrobialMicroplate assay/E. tarda4.0 μg/mL (MIC)Chloramphenicol 1.0 μg/mL (MIC)[78]
Thiocladospolide H (110)AntimicrobialMicroplate assay/E. ictarda8.0 μg/mL (MIC)Chloramphenicol 1.0 μg/mL (MIC)[78]
Sporiolide A (113)CytotoxicityMTT/L12100.13 µM (IC50)-[80]
Sporiolide B (114)CytotoxicityMTT/L12100.81 µM (IC50)-[80]
Dendrodolide A (117)AntimicrobialBroth dilution assay/B. cereus12.5 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/T. halophilus3.13 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/S. epidermidis6.25 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/S. aureus6.25 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/E. coli12.5 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/P. putida12.5 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/N. brasiliensis6.25 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/V. parahaemolyticus12.5 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Dendrodolide C (118)AntimicrobialBroth dilution assay/B. cereus25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/T. halophilus3.13 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/S. epidermidis25.0 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/S. aureus25.0 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/E. coli12.5 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/P. putida25.0 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/N. brasiliensis12.5 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/V. parahaemolyticus25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Dendrodolide M (120)AntimicrobialBroth dilution assay/B. cereus6.25 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/T. halophilus25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/S. epidermidis25.0 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/S. aureus12.5 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Dendrodolide C (118)AntimicrobialBroth dilution assay/B. cereus25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/E. coli25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/P. putida6.25 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/N. brasiliensis25.0 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/V. parahaemolyticus25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Cladocladosin A (121)AntimicrobialMicroplate assay/E. tarda 1.0 µg/mL (MIC)Chloramphenicol 0.5 µg/mL (MIC)[79]
AntimicrobialMicroplate assay/P. aeruginosa4.0 µg/mL (MIC)Chloramphenicol 2.0 µg/mL (MIC)[79]
Ent-cladospolide F (123)AchE inhibitoryModified Ellman’s enzyme/Immunosorbent assay40.26 µM (IC50)Tacrine 0.5 µM (IC50)[40]
Iso-cladospolide B (126)AntimicrobialBroth dilution assay/B. cereus6.25 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/T. halophilus6.25 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/S. epidermidis25.0 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/S. aureus25.0 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/E. coli25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Broth dilution assay/P. putida6.25 μM (MIC)Ciprofloxacin 0.39 μM (MIC)[69]
Broth dilution assay/N. brasiliensis12.5 μM (MIC)Ciprofloxacin 0.78 μM (MIC)[69]
Broth dilution assay/V. parahaemolyticus25.0 μM (MIC)Ciprofloxacin 1.56 μM (MIC)[69]
Microplate assay/C. mandshurica Miura8.0 μg/mL (MIC)Nystatin 1.0 μg/mL (MIC)[78]
Cladosporol C (143)CytotoxicityTrypan blue-cell viability assay/K562˃30.0 µM (IC50)Trichostatin A 0.24 µM (IC50)[82]
Trypan blue-cell viability assay/A54933.9 µM (IC50)Trichostatin A 0.05 µM (IC50)[82]
Trypan blue-cell viability assay/Huh-7˃30.0 µM (IC50)Trichostatin A 0.08 µM (IC50)[82]
Trypan blue-cell viability assay/H197545.6 µM (IC50)Trichostatin A 0.09 µM (IC50)[82]
Trypan blue-cell viability assay/MCF-7˃30.0 µM (IC50)Trichostatin A 0.78 µM (IC50)[82]
Trypan blue-cell viability assay/U937˃30.0 µM (IC50)Trichostatin A 0.06 µM (IC50)[82]
Trypan blue-cell viability assay/BGC823˃30.0 µM (IC50)Trichostatin A 0.09 µM (IC50)[82]
Trypan blue-cell viability assay/HL-6072.5 µM (IC50)Trichostatin A 0.09 µM (IC50)[82]
Trypan blue-cell viability assay/A549˃30.0 µM (IC50)Trichostatin A 0.11 µM (IC50)[82]
Trypan blue-cell viability assay/MOLT-414.4 µM (IC50)Trichostatin A 0.03 µM (IC50)[82]
MTT/A54914.0 µM (IC50)Cisplatin 1.3 µM (IC50)[84]
MTT/HeLa4.0 µM (IC50)Paclitaxel 4.9 µM (IC50)[84]
AntimicrobialMicroplate assay/E. coli8.0 μg/mL (MIC)Chloramphenicol 0.025 μg/mL (MIC)[84]
Microplate assay/M. luteus32.0 μg/mL (MIC)Chloramphenicol 0.5 μg/mL (MIC)[84]
Microplate assay/V. harveyi16.0 μg/mL (MIC)Chloramphenicol 2.0 μg/mL (MIC)[84]
Microplate assay/S. aureus6.25 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Microplate assay/M. luteus12.5 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Cladosporol D (144)Anti-inflammatorySpectrophotometry/Anti-COX-2/PGF2α inhibition60.2 µM (IC50)Indomethacin 18.3 µM (IC50)
NS-398 1.0 µM (IC50)
[82]
Cladosporol E (145)InsecticidalMeasuring the corrected mortality (CM)150.0 μg/mL (IC50)Azadirachtin 25.0 μg/mL (IC50)[71]
AntimicrobialMicroplate assay/S. aureus1.56 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Microplate assay/M. luteus12.5 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Cladosporol F (146)CytotoxicityMTT/K56223.0 µM (IC50)Doxorubicin 0.6 µM (IC50)[83]
SRB/HeLa13.8 µM (IC50)Doxorubicin 0.5 µM (IC50)[83]
SRB/HCT-11623.0 µM (IC50)Doxorubicin 0.2 µM (IC50)[83]
MTT/A54915.0 µM (IC50)Cisplatin 1.3 µM (IC50)[84]
MTT/HeLa10.0 µM (IC50)Paclitaxel 4.9 µM (IC50)[84]
AntimicrobialMicroplate assay/E. coli32.0 μg/mL (MIC)Chloramphenicol 0.025 μg/mL (MIC)[84]
Microplate assay/M. luteus64.0 μg/mL (MIC)chloramphenicol 0.5 μg/mL (MIC)[84]
Microplate assay/V. harveyi32.0 μg/mL (MIC)Chloramphenicol 2.0 μg/mL (MIC)[84]
Cladosporol G (147)CytotoxicityMTT/K5628.8 µM (IC50)Doxorubicin 0.6 µM (IC50)[83]
SRB/HeLa3.9 µM (IC50)Doxorubicin 0.5 µM (IC50)[83]
SRB/HCT-11619.4 µM (IC50)Doxorubicin 0.2 µM (IC50)[83]
Cladosporol G (148) CytotoxicityMTT/A54913.0 µM (IC50)Cisplatin 1.3 µM (IC50)[84]
MTT/H44611.0 µM (IC50)Adriamycin 4.0 µM (IC50)[84]
MTT/Huh710.0 µM (IC50)Fluorouracil 6.2 µM (IC50)[84]
MTT/L0211.0 µM (IC50)Cisplatin 13.0 µM (IC50)[84]
MTT/LM314.0 µM (IC50)Cisplatin 9.1 µM (IC50)[84]
MTT/SW199015.0 µM (IC50)Gemcitabine 2.2 µM (IC50)[84]
AntimicrobialMicroplate assay/E. coli64.0 μg/mL (MIC)Chloramphenicol 0.025 μg/mL (MIC)[84]
Microplate assay/M. luteus128.0 μg/mL (MIC)Chloramphenicol 0.5 μg/mL (MIC)[84]
Microplate assay/V. harveyi64.0 μg/mL (MIC)Chloramphenicol 2.0 μg/mL (MIC)[84]
Cladosporol H (149) CytotoxicityMTT/A5495.0 µM (IC50)Cisplatin 1.3 µM (IC50)[84]
MTT/H44610.0 µM (IC50)Adriamycin 4.0 µM (IC50)[84]
MTT/Huh71.0 µM (IC50)Fluorouracil 6.2 µM (IC50)[84]
MTT/LM34.1 µM (IC50)Cisplatin 9.1 µM (IC50)[84]
MTT/MCF-710.0 µM (IC50)Paclitaxel 1.8 µM (IC50)[84]
MTT/SW199015.0 µM (IC50)Gemcitabine 2.2 µM (IC50)[84]
AntimicrobialMicroplate assay/E. coli32.0 μg/mL (MIC)Chloramphenicol 0.025 μg/mL (MIC)[84]
Microplate assay/M. luteus64.0 μg/mL (MIC)Chloramphenicol 0.5 μg/mL (MIC)[84]
Microplate assay/V. harveyi4.0 μg/mL (MIC)Chloramphenicol 2.0 μg/mL (MIC)[84]
Cladosporol I (150) CytotoxicityMTT/HeLa10.8 µM (IC50)Paclitaxel 4.9 µM (IC50)[84]
AntimicrobialMicroplate assay/E. coli64.0 μg/mL (MIC)Chloramphenicol 0.025 μg/mL (MIC)[84]
Microplate assay/M. luteus64.0 μg/mL (MIC)Chloramphenicol 0.5 μg/mL (MIC)[84]
Microplate assay/V. harveyi16.0 μg/mL (MIC)Chloramphenicol 2.0 μg/mL (MIC)[84]
Cladosporol J (151) MTT/A54915.0 µM (IC50)Cisplatin 1.3 µM (IC50)[84]
MTT/H44611.0 µM (IC50)Adriamycin 4.0 µM (IC50)[84]
MTT/HeLa15.0 µM (IC50)Paclitaxel 4.9 µM (IC50)[84]
MTT/Huh720.0 µM (IC50)Fluorouracil 6.2 µM (IC50)[84]
MTT/MCF-712.0 µM (IC50)Paclitaxel 1.8 µM (IC50)[84]
AntimicrobialMicroplate assay/E. coli16.0 μg/mL (MIC)Chloramphenicol 0.025 μg/mL (MIC)[84]
Microplate assay/M. luteus64.0 μg/mL (MIC)Chloramphenicol 0.5 μg/mL (MIC)[84]
Microplate assay/V. harveyi32.0 μg/mL (MIC)Chloramphenicol 2.0 μg/mL (MIC)[84]
Cladosporone A (152)CytotoxicityTrypan blue-cell viability assay/K56214.3 µM (IC50)Trichostatin A 0.24 µM (IC50)[82]
Trypan blue-cell viability assay/A54915.7 µM (IC50)Trichostatin A 0.05 µM (IC50)[82]
Trypan blue-cell viability assay/Huh-729.9 µM (IC50)Trichostatin A 0.08 µM (IC50)[82]
Trypan blue-cell viability assay/H197540.6 µM (IC50)Trichostatin A 0.09 µM (IC50)[82]
Trypan blue-cell viability assay/MCF-721.3 µM (IC50)Trichostatin A 0.78 µM (IC50)[82]
Trypan blue-cell viability assay/U93710.5 µM (IC50)Trichostatin A 0.06 µM (IC50)[82]
Trypan blue-cell viability assay/BGC82317.0 µM (IC50)Trichostatin A 0.09 µM (IC50)[82]
Trypan blue-cell viability assay/HL-6010.1 µM (IC50)Trichostatin A 0.09 µM (IC50)[82]
Trypan blue-cell viability assay/A54953.7 µM (IC50)Trichostatin A 0.11 µM (IC50)[82]
Trypan blue-cell viability assay/MOLT-414.6 µM (IC50)Trichostatin A 0.03 µM (IC50)[82]
Anti-inflammatorySpectrophotometry/Anti-COX-2/PGF2α inhibition49.1 µM (IC50)Indomethacin 18.3 µM (IC50)
NS-398 1.0 µM (IC50)
[82]
Aladothalen (160)AntimicrobialAgar dilution method/B. cereus50.0 µM (MIC)Ciprofloxacin ˂ 0.4 µM (MIC)[89]
Agar dilution method/M. phlei25.0 µM (MIC)Ciprofloxacin ˂ 0.4 µM (MIC)[89]
Agar dilution method/MRCNS25.0 µM (MIC)Ciprofloxacin 25.0 µM (MIC)[89]
Cladonaphchrom A (169)AntimicrobialMicroplate assay/S. albus1.25 µg/mL (MIC)Ciprofloxacin 0.6 µg/mL (MIC)[90]
Microplate assay/E. coli2.5 µg/mL (MIC)Ciprofloxacin 0.3 µg/mL (MIC)[90]
Microplate assay/B. subtilis10.0 µg/mL (MIC)Ciprofloxacin 0.6 µg/mL (MIC)[90]
Microplate assay/M. tetragenus5.0 µg/mL (MIC)Ciprofloxacin 0.3µg/mL (MIC)[90]
Microplate assay/M. luteus10.0 µg/mL (MIC)Ciprofloxacin 0.3 µg/mL (MIC)[90]
Microplate assay/A. brassicicola50.0 µg/mL (MIC)Prochloraz 12.5 µg/mL (MIC)[90]
Microplate assay/P. parasitica var. nicotianae50.0 µg/mL (MIC)Prochloraz 50.0 µg/mL (MIC)[90]
Microplate assay/C. capsici25.0 µg/mL (MIC)Prochloraz 12.5 µg/mL (MIC)[90]
Microplate assay/B. oryzae100.0 µg/mL (MIC)Prochloraz 50.0 µg/mL (MIC)[90]
Microplate assay/D. medusaea50.0 µg/mL (MIC)Prochloraz 50.0 µg/mL (MIC)[90]
Microplate assay/C. paradoxa50.0 µg/mL (MIC)Prochloraz 25.0 µg/mL (MIC)[90]
Cladonaphchrom B (170)AntimicrobialMicroplate assay/S. albus2.5 µg/mL (MIC)Ciprofloxacin 0.6 µg/mL (MIC)[90]
Microplate assay/E. coli2.5 µg/mL (MIC)Ciprofloxacin 0.3 µg/mL (MIC)[90]
Microplate assay/B. subtilis5.0 µg/mL (MIC)Ciprofloxacin 0.6 µg/mL (MIC)[90]
Microplate assay/M. tetragenus5.0 µg/mL (MIC)Ciprofloxacin 0.3µg/mL (MIC)[90]
Microplate assay/M. luteus10.0 µg/mL (MIC)Ciprofloxacin 0.3 µg/mL (MIC)[90]
Microplate assay/A. brassicicola25.0 µg/mL (MIC)Prochloraz 12.5 µg/mL (MIC)[90]
Microplate assay/P. parasitica var. nicotianae50.0 µg/mL (MIC)Prochloraz 50.0 µg/mL (MIC)[90]
Microplate assay/C. capsici25.0 µg/mL (MIC)Prochloraz 12.5 µg/mL (MIC)[90]
Microplate assay/D. medusaea100.0 µg/mL (MIC)Prochloraz 50.0 µg/mL (MIC)[90]
Microplate assay/C. paradoxa50.0 µg/mL (MIC)Prochloraz 25.0 µg/mL (MIC)[90]
Malettinin A (178)AntimicrobialMicroplate assay/T. rubrum33.1 µM (IC50)Clotrimazole 0.2 µM (IC50)[93]
Malettinin B (179) Microplate assay/X. campestris28.3 µM ((IC50)Chloramphenicol 2.1 µM (IC50)[93]
Microplate assay/T. rubrum60.6 µM (IC50)Clotrimazole 0.2 µM (IC50)[93]
Malettinin C (180)AntimicrobialMicroplate assay/T. rubrum37.9 µM (IC50)Clotrimazole 0.2 µM (IC50)[93]
Microplate assay/X. campestris83.2 µM (IC50)Chloramphenicol 2.1 µM (IC50)[93]
Malettinin E (181)AntimicrobialMicroplate assay/T. rubrum28.7 µM (IC50)Clotrimazole 0.2 µM (IC50)[93]
Microplate assay/X. campestris30.7 µM (IC50)Chloramphenicol 2.1 µM ((IC50)[93]
Cladosporinone (182) Broth dilution assay/S. aureus64.0 μg/mL(MIC)-[94]
Viriditoxin (183) Broth dilution assay/S. aureus0.015 μg/mL (MIC)
0.023 μM (MIC)
-[94]
Viriditoxin derivative 1 (184) Broth dilution assay/S. aureus2.0 μg/mL (MIC)-[94]
Viriditoxin derivative 2 (185) Broth dilution assay/S. aureus16.0 μg/mL (MIC)-[94]
(2S,4S)-4-Methoxy-2-methylchroman-5-ol (201)Antioxidant DPPH assay5.66 µM (IC50)Ascorbic acid 3.29 µM (IC50)[95]
(2S,4S)-2-Methylchroman-4,5-diol (203)Antioxidant DPPH assay6.67 µM (IC50)Ascorbic acid 3.29 µM (IC50)[95]
Citrinin H1 (206)Insecticidal Measuring the corrected mortality (CM)100.0 μg/mL (IC50)Azadirachtin 25.0 μg/mL (IC50)[71]
AntimicrobialMicroplate assay/S. aureus6.25 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Microplate assay/E. coli12.5 μg/mL (MIC)Ciprofloxacin 0.19 μg/mL (MIC)[71]
Microplate assay/B. cereus12.5 μg/mL (MIC)Ciprofloxacin 0.19 μg/mL (MIC)[71]
Vermistatin (214)Insecticidal CM/Helicoverpa armigera Hubner larvae150.0 μg/mL (IC50)Azadirachtin 25.0 μg/mL (IC50)[71]
AntimicrobialMicroplate assay/S. aureus25.0 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Microplate assay/B. cereus25.0 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Cladoscyclitol B (219)α-Glucosidase inhibitoryColorimetric assay2.95 µM (IC50)Acarbose 2.35 µM (IC50)[97]
3-Phenyl-2-propenoic acid (232)Insecticidal Inhibitinon 50%/B. amphitrite84.28 μg/mL (EC50)FSW with DMSO[60]
Cladosporinone (182) Broth dilution assay/S. aureus64.0 μg/mL(MIC)-[94]
Lethality 50%/B. amphitrite>200 μg/mL (LC50)FSW with DMSO[60]
Inhibitinon 50%/B. neritina11.15 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. neritina>200 μg/mL (LC50)FSW with DMSO[60]
AntimicrobialSerial dilution/L. hongkongensis80 μg/mL (MIC)Streptomycin 250 μg/mL (MIC)
Penicillin 0.25 μg/mL (MIC)
[60]
3-(2,3-Dihydroxy phenoxy) butanoic acid (233)AntioxidantDPPH assay0.24 µM (IC50)Ascorbic acid 3.29 µM (IC50)[95]
Methyl (3S)-3-(2,3-dihydroxy phenyloxy)butanoate (235)AntioxidantDPPH assay2.65 µM (IC50)Ascorbic acid 3.29 µM (IC50)[95]
2-Phenylethanol (238)InsecticidalInhibitinon 50%/B. amphitrite53.65 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. amphitrite>200 μg/mL (LC50)FSW with DMSO[60]
Inhibitinon 50%/B. neritina102.23 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. neritina>200 μg/mL (LC50)FSW with DMSO[60]
4-O-α-D-Ribofuranose-2-pentyl-3-phemethylol (240)α-Glucosidase inhibitoryColorimetric assay2.05 µM (IC50)Acarbose 2.35 µM (IC50)[97]
Cladosporin D (247)AntioxidantDPPH assay16.4 µM (IC50)Ascorbic acid 4.9 µM (IC50)[36]
(2S)-7,4′-dihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone (248)Protein tyrosine phosphatase 1B inhibitoryPTP1B/Spectrophotometry11.0 µM (IC50)Oleanolic acid 0.9 µM (IC50)[68]
TCPTP/Spectrophotometry27.0 µM (IC50)Oleanolic acid 0.8 µM (IC50)[68]
Bis(2-ethylhexyl)phthalate (249) InsecticidalInhibitinon 50%/B. amphitrite9.18 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. amphitrite>200 μg/mL (LC50)FSW with DMSO[60]
Inhibitinon 50%/B. neritina77.85 μg/mL (EC50)FSW with DMSO[60]
Lethality 50%/B. neritina>200 μg/mL (LC50)FSW with DMSO[60]
1,1′-Dioxine-2,2′-dipropionic acid (252)InsecticidalMeasuring the corrected mortality (CM)/Helicoverpa armigera Hubner larvae150.0 μg/mL (IC50)Azadirachtin 25.0 μg/mL (IC50)[70,71]
AntimicrobialMicroplate assay/S. aureus25.0 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
Microplate assay/E. coli25.0 μg/mL (MIC)Ciprofloxacin 0.19 μg/mL (MIC)[71]
Microplate assay/B. cereus12.5 μg/mL (MIC)Ciprofloxacin 0.39 μg/mL (MIC)[71]
5α,8α-Epidioxy-ergosta-6,22E-dien-3β-ol (256)AntiviralNeuraminidase inhibition assay/RSV0.11 µM (IC50)Ribavirin 0.08 µM (IC50)[100]
3β,5α-Dihydroxy-6β-methoxyergosta-7,22-diene (262)AntiviralNeuraminidase inhibition assay/RSV0.11 µM (IC50)Ribavirin 0.08 µM (IC50)[100]
5α,8α-Epidioxy-ergosta-6,9,22E-triene-3β-ol (258)AntiviralNeuraminidase inhibition assay/RSV0.17 µM (IC50)Ribavirin 0.08 µM (IC50)[100]
3α-Hydroxy-pregna-7-ene-6,20-dione = Cladosporisteroid B (268)AntiviralNeuraminidase inhibition assay/RSV0.12 µM (IC50)Ribavirin 0.08 µM (IC50)[100]
CPE inhibition assay/ Influenza A H3N3 virus16.2 µM (IC50)Oseltamivir 34.0 nM (IC50)[61]
(3E,8E,6S)-Undeca-3,8,10-trien-1,6-diol (286)CytotoxicitySRB/H197510.0 µM (IC50)Adriamycin 0.38 µM (IC50)[95]
Pectinases are hydrolytic enzymes that are accountable for the hydrolysis of pectins. They are commonly found in fungi, bacteria, and plants. They have remarkable importance in the food industry such as vegetables and fruits processing, wine production, and olive oil extraction, as well as coffee, cocoa, and tea fermentation. They are utilized in the beverage industry to produce high yields due to improving clarification and pressing of concentrated fruit juices [103]. Bastos et al. purified pectinase enzymes PG and PME from C. cladosporioides using the Buescher and Furmanski procedure after 10-day incubation and precipitation with (NH4)2SO4 and benzoate buffer at pH 4.0 [49].
Agarases and carrageenases can decompose algal biomass, producing carrageenans and agars that are the major components of the red algae cell wall. Furthermore, agarases hydrolyze agar, resulting in oligosaccharides that are employed as food additives with beneficial influences on human health [104,105]. Additionally, carrageenases are used to obtain carrageenans that have varied industrial applications as emulsifying, thickening, and gelling agents in the preparation of food, as well as bioactivities such as anti-tumor, antiviral, antithrombotic, immunomodulatory, anticoagulant, and antioxidant [106]. Cladosporium sp. isolated from the Antarctic macroalgae Ascoseira mirabilis and Georgiella confuens produced agarase that may have industrial importance in the extraction of agar or its byproducts such as bioactive galactose and oligosaccharides exist in the algal biomass to be utilized as substrates of 3rd generation bioethanol [11].
Xylan, the main component of hemicelluloses in the plant cell walls, represents about one-third of all renewable organic carbon on earth. Xylanases hydrolyze xylan to oligosaccharides that are further degraded to xylose. The latter is utilized for xylitol and bioethanol production. Xylanases have remarkable biotechnological influence in developing eco-friendly technologies in the pulp and paper industry and in food and feed industries, and for generating chemicals and liquid fuels from lignocellulose [107,108,109]. The cold-active xylanases have notable applications in bioremediation and food and textile and industries [110]. Cladosporium sp. isolated from Antarctic marine sponge had high xylanase potential when grown on wheat bran and pure xylans at lower temperatures that is a feature of cold-active enzymes [48]. Therefore, cold-active xylanases preparations from Cladosporium sp. could be convenient for many biotechnological processes, utilizing moderate- to low-temperature processes, especially those in food industries [48]. Gil-Durán et al. purified and characterized XynA, a cold-active endo-xylanase from Cladosporium sp. derived from Antarctic sponge. XynA is highly active on xylans with high arabinose content. Moreover, it is the most thermolabile endo-xylanase reported from filamentous fungus. Therefore, it could be a good alternative in some biotechnological operations to avoid heating, thereby reducing the costs [45].
The three main lignin-hydrolyzing enzymes that have great potential for industrial applications are LiP (lignin peroxidase), MnP (manganese-dependent peroxidase), and Lac (laccase) [111]. LiP is a high oxidant heme protein that oxidizes non-phenolic and phenolic substrates. MnP is a H2O2-dependent glycoprotein that needs Mn2+ for oxidizing aromatic dyes and mono-aromatic phenols [112]. Laccase is multi-copper oxidase, which oxidizes aromatic amines and catalyzes the O2 reduction to H2O [111]. C. cladosporioides CBMAI 857 isolated from the Brazilian cnidarian Palythoa variabilis produced ligninolytic enzymes (LiP, MnP, and Lac) with particular response to the various conditions of salinity and carbon sources. It possessed high values of MnP and laccase activities under salinity (12.5% and 23% w/v, respectively), indicating the potential use of this fungus for industrial applications and bioremediation of high-salt contaminated sites [50].
RBBR (Remazol Brilliant Blue R) and polymeric dyes decolorization has been assigned as an effective screening method for the fungi ability to degrade recalcitrant pollutants, including aromatic compounds such as PAHs. It was demonstrated that marine-derived fungi are often more effective than terrestrial fungi in treating various colored effluents because they are better adapted to perform under extreme conditions such as high salinity [113]. C. cladosporioides CBMAI-857 associated with the coral Palythoa caribaeorum was tested for its RBBR decolorizing potential. It had efficient dye decolorization potential (93%) after 12 days in both liquid and solid media [114]. Further, Cladosporium sp. associated with the seagrass Posidonia oceanica produced tannases and ligninolytic enzymes at high salt concentrations. Its laccase and peroxidase activity was evident by the degradation of RBBR and Amaranth Red dyes [12,115].
Invertase is a β-fructo-furanosidase that catalyzes sucrose conversion into fructose and glucose, giving invert syrup. This invert syrup is utilized in the beverage and food industries as a humectant in non-crystallizing creams, candies, artificial honey, and jam preparation [116]. Molasses is a sugar solution that is obtained as a co-product of sugar production. Due to its high sucrose content and low cost, it is utilized as an invertase production substrate to produce industrially valuable substances [117]. However, it contains melanoidins, which are dark brown pigments. Its discharge in the soil prohibits seed germination and decreases manganese availability and soil alkalinity. Furthermore, it blocks photosynthesis and sunlight penetration in the aquatic system [118]. Therefore, its removal from molasses-based wastewater is potentially important for environmental safety. Taskin et al. reported that C. herbarum ER-25 possessed a high invertase potential and removed melanoidins from molasses through bio-adsorption and biodegradation mechanisms by Lac and MnP in the non-sterilized medium than in sterilized one at 5.5 pH and 20 °C. Therefore, this cold-adapted fungus can be used for molasses de-colorization [46].
Cellulose is a main component of the plant material that is abundantly utilized for the production of alternative liquid fuels such as bioethanol. C. sphaerospermum obtained from deteriorated seaweed Ulva through SSF (solid-state fermentation) produced cellulase that had saccharification potential of seaweed biomass using green seaweed Ulva fasciata. Therefore, this cellulase can be utilized for saccharification of cellulosic feedstock for bioethanol production from marine macro-algal feedstock [47].
Biocatalysis is an eco-friendly process for renewable raw materials and clean energy production and for the remediation of environmental contaminants [119]. Recently, the synthesis of industrial and chemically interesting complex molecules using biocatalysts, including enzymes and whole-cell systems is a grown-research field. Reductases have been utilized for various substrates reduction such as aldehydes, carboxylic acid derivatives, ketones, nitro compounds, and nitriles [119,120]. Furthermore, it has been reported that microorganisms’ whole cells are a potential source for new enzymes used in carbonylated compounds reduction [121]. Knoevenagel condensation is a very useful synthetic tool for functionalization, as well as for increasing the carbon chains that is applied for the synthesis of intermediates polymers and various bioactive organic compounds [122]. Birolli et al. reported that the bio-reduction of Knoevenagel adducts between cyano-acetamide and aromatic aldehydes was achieved in considerable yields with whole-cells of Cladosporium sp. CBMAI 1237 isolated from Dragmacidon reticulatum, revealing the existence of ene-reductases [43]. Additionally, C. cladosporioides CBMAI-857 isolated from the Brazilian cnidarian Palythoa caribaeorum catalyzed the asymmetric bio-reduction of 1-(4-methoxyphenyl)ethanone to 1-(4-methoxyphenyl)ethanol [123]. Moreover, the sponge-associated C. cladosporioides CBMAI-857 catalyzed the enantio-selective bio-reduction of different aromatic ketones at pH 7.0 and 32 °C [124].

3. Secondary Metabolites and Bioactivities of Marine-Associated Cladosporium Species

Marine-associated Cladosporium species are rich with diverse types of metabolites with varied structural features such as macrolides, fatty acids, pyrones, phenolics, alkaloids, diketopiperazines, terpenes, sterols, quinones, lactones, and tetramic acid derivatives. Their classification was carried out here according to the chemical nature. During our search, it was found that some of the reported metabolites had the same structures and molecular formulae with different nomenclature. On the other hand, some metabolites had the same names with different structures. Moreover, some metabolites did not have names, thus they are named here using the AUPAC system for nomenclature. Herein, the reported secondary metabolites from Cladosporium species, as well as their bioactivities have been discussed (Table 1 and Table 2).

3.1. Tetramic Acid Derivatives

Tetramic acids are five-membered heterocycles with a pyrrolidine-2,4-dione core that are formed by the fusion of polyketide units and amino acid [125]. The tertarmic acid moiety is commonly present as 3-acyl or 4-O-alkyl ether derivatives [126]. These structures can be characterized as simple heterocycles or more complex systems possibly containing long chains or fused polycyclic skeletons [127]. They are found in varied natural metabolites and isolated from various terrestrial and marine species, such as bacteria, sponges, and fungi [127,128]. They exhibited a wide range of bioactivities: cytotoxic, antimicrobial, antiulcer, and antiviral [125]. Note that 30 tetramic acid derivatives have been reported from marine-derived Cladosporium species, 28 (93.3%) of them are from C. sphaerospermum.
The tetramic acid derivatives, cladosins A, B, D, and E (1, 2, 4, and 5) biosynthesized by C. sphaerospermum 2005-01-E3 obtained from deep-sea sludge had no activity towards influenza A H1N1 virus (Figure 1). While 3 exhibited anti-H1N1 activity (IC50 276.0 μM) in comparison to ribavirin (IC50 131.0 μM) [42]. Moreover, they showed no NF-κB inhibitory and no cytotoxic effect towards BGC-823, HL-60, HCT-8, A2780, A549, and Bel-7402 cell lines, as well as no activity towards Mycobacterium tuberculosis in the disk diffusion method [42]. Moreover, cladosins B (2), C (3), F (5), and L (11) separated from C. sphaerospermum SW67 associated with Hydractinia echinat hydroid polyp were assessed for protection towards cisplatin-caused cell damage in LLC-PK1 cells [53]. The co-treatment with compounds 2 and 5 alleviated the LLC-PK1 cells damage induced by cisplatin (Conc. 25 µM). Compound 2 (Conc. 100 µM) recovered cell viability with 90.68% that was more than NAC (N-acetylcysteine, 88.23%, Conc. 500 µM), whereas 5 (Conc. 50 and 100 μM) increased cell viability by 77.65 and 85.60%, respectively. Thus, 2 may be a candidate for treating cisplatin-produced unwanted effects and/or to prohibited nephrotoxicity induced by anticancer drugs. It was proposed that the existence of the C-8 hydroxy group may be essential for the reno-protective effect towards cisplatin-produced toxicity in LLC-PK1 cells [53].
In 2015, by OSMAC (one strain many compounds) technique, Yu et al. separated compounds 5 and 6 from C. sphaerospermum 2005-01-E3 that did not have anti-influenza A H1N1, anticancer, and anti-tubercular, as well as no NF-κB inhibitory activities [54]. Note that a tetramic acid derivative named cladosin L with a different structure was separated in 2020 by Pan et al. from the plant-associated C. sphaerospermum WBS017 isolated from Fritillaria unibracteata var. wabuensis [14]. Cladosins H-K (710) and cladodionen (13) were isolated from sediment-derived C. sphaerospermum L3P3 and evaluated for cytotoxic capacity towards PC-3, MGC-803, SH-SY5Y, and HCT-116 cell lines using SRB method and against K562 and HL-60 using MTT method (Figure 2). Compounds 810 and 13 had a cytotoxic effect against HL-60 and K562 cell lines with IC50 ranging from 2.8 to 7.8 μM, while 7 (IC50 > 10 μM) was inactive. The results revealed that the C-8 absolute configuration and aniline moiety were essential for activity [55] (Table 2).
C. sphaerospermum SW67 associated with marine invertebrate Hydractinia echinata yielded three new spirocyclic tetramic acid-related metabolites 12, 29, and 30 (Figure 3). Compound 12 has a tetramic acid moiety conjugated with an unprecedented 2,7-diazaspiro[4.5]decane-1,4-dione core one, while 29 and 30 are tetramic acid stereoisomers with a C-3 quaternary center, bearing a six-membered lactone ring and a trans-hexylenic alcohol side chain. These metabolites had weak inhibitory effects versus HCC70, Bt549, MDA-MB-468, and MDA-MB-231 in the SRB bioassay (IC50 ranged from 70 to 85 μM), compared to etoposide (IC50 ranged from 1.76 to 2.27 μM) [38].
C. sphaerospermum EIODSF 008 isolated from the deep-sea sediment collected from the East Indian Ocean yielded tetramic acid derivatives 13 and 2228 (Figure 4 and Figure 5). They were assessed for cytotoxicity towards HL-60, HepG2, and MCF-7. Only 13 had cytotoxicity (IC50 28.6 µM) towards the HL-60 cell line [57]. Additionally, they showed no antibacterial potential towards E. coli, M. luteus, and B subtilis [57]. Additionally, 13 showed cytotoxic capacity towards HL-60, HeLa, HCT-116, and MCF-7 cell lines (IC50 ranged from 9.1 to 19.1 μM), compared to ADR (adriamycin) (IC50 ranged from 0.02 to 0.67 μM). However, it did not have antibacterial activities (conc. 100 μg/mL) against B. subtilis, P. aeruginosa, C. perfringens, S. aureus, E. coli, and C. albicans [56]. Compounds 1421, new tetramic acid derivatives, were purified from the sea-sediment derived Cladosporium sp. acetone extract by Huang et al. in 2018. Compounds 1416 are unusual 3-acyltetramic acids, having at C-3 of the pyrrolidine-2,4-dione core, a six-membered lactone ring, and hexyl-enic alcohol chain. They showed no obvious AchEI activity in the modified Ellman’s enzyme assay [58]. Moreover, they displayed no anti-biofilm effect against C. albicans and S. aureus in the broth micro-dilution method and no cytotoxic effect towards HL60, HepG-2, and MCF-7 cell lines in the CCK8 assay [58].

3.2. Diketopiperazines

Diketopiperazines (DKPs) are cyclic dipeptides, consisting of two amino acids with or without extra structural modifications in the DKPs nucleus [108]. Their main skeleton comprises a six-membered piperazine nucleus produced from the double condensations among two amino acids [129,130]. The formation of peptide bonds in DKPs are catalyzed mainly by cyclodipeptide synthases (CDPSs) and non-ribosomal peptide synthetases (NRPSs) [131]. They possessed interesting bioactivities such as anti-Alzheimer, antimicrobial, antiviral, microtubule polymerization inhibitory, antitumor, anti-quorum-sensing, and haemosuppressor [129,130,132].
Cyclo-(Val-Pro) (32) and cyclo-(Phe-Pro) (33) were separated from the EtOAc extract of Cladosporium sp. F14 isolated from seawater and investigated for their anti-larval activity at conc. 50 µg/mL towards Bugula neritina and Balanus amphitrite larvae in the settlement inhibition assays [60] (Figure 6). They inhibited B. neritina settlement (EC50 70.43 and >200 µg/mL, respectively) and B. amphitrite settlement (EC50 68.57 and 37.82 µg/mL, respectively). Furthermore, 32 and 33 obviously prohibited L. hongkongensis growth (IZDs 8 mm and MICs 200 and 200 µg/mL, respectively), compared to streptomycin (MIC 250 µg/mL). The MICs of 33 towards Ruegeria sp. and M. luteus were 200 and 100 µg/mL, respectively, compared to streptomycin (MIC 500 and 250 µg/mL, respectively) [60]. On the other hand, thio-diketopiperazine derivatives, cladosporins A (36) and B (37), and haematocin (38) purified from the sediment-derived Cladosporium sp. were moderately cytotoxic towards HepG2 cell line (IC50 48, 21, and 42 μg/mL, respectively) [62].

3.3. Alkaloids

Fungal alkaloids are nitrogen-containing metabolites that are derived from amino acid metabolism and the mevalonate pathway [133]. Many studies reported the detection of various classeses of alkaloids from marine-derived fungi such as pyrrolidine, indole, pyrrolizidine, quinazoline, quinoline, and purine classes [134,135,136]. These metabolites have shown broad biological activities: cytotoxic, anti-inflammatory, antioxidant, antibacterial, antifungal, antiviral, protease inhibitory. Therefore, they could have a potential for the development of innovative therapies [134,135,136]. In the current work, 49 alkaloids, belonging to different classes have been reported. Among them, 27 alkaloids were reported from unidentified Cladosporium species.
The glyantrypine-type alkaloids, 4255, were separated from Cladosporium sp. PJX-41 isolated from mangrove and assessed for anti-H1N1 activity using CPE (cytopathic effect) inhibition assay (Figure 7 and Figure 8). Compounds 45, 49, 5153, and 55 displayed remarkable anti-H1N1 activities (IC50 values ranged from 82 to 89 μM), compared to ribavirin (IC50 87 μM), while 4244, 4648, 50, and 54 (IC50 100–150 μM) had weak activity [64]. The mycelium extract of the marine-derived Cladosporium sp. associated with Chondria crassicualis red alga afforded 56 that exhibited antioxidant potential (ED50 82.0 µM) more than oxybenzone (sunscreen agent, ED50 350 µM) as evident by their UV-A protecting potential [65]. Furthermore, it had a moderate antibacterial effect towards multidrug-resistant and methicillin-resistant S. aureus and S. aureus with MICs 31.0, 62.5, and 62.5, µg/mL, respectively [65]. The quinolactacins and citrinadins alkaloids 58, 68, and 70 separated from C. oxysporum were assessed for anti-plasmodial potential towards chloroquine-sensitive Plasmodium falciparum 3D7 [66] (Figure 9). Only 58 (conc. 3.13 µg to 25.0 µg) had an anti-plasmodial effect (EC50 24.8 µM), while 68 and 70 displayed no activity (EC50 > 25.0 µM), compared to artesunate (EC50 0.074 μM) in the SYBR Green I assay. Further, 58 (conc. ranged from 6.25 µM to 50.0 µM for 24 h) was investigated for apoptotic effect on 3D7-plasmodia strain by measuring the parasite ΔΨm (mitochondrial membrane potential). It induced loss of ΔΨm, leading to the release of cytochrome C from mitochondria to the cytosol resulted in parasite apoptosis. Therefore, it may provide a scaffold to apoptotic death in the stages of P. falciparum development [66]. Moreover, 58, 68, and 70 had no anti-buruli ulcer activity against Mycobacterium ulcerans (IC50 ˃ 10 µM), compared to rifampicin (IC50 ˂ 1 µM) in the Resazurin microtiter assay [66].
They had significant activity towards HepG-2 and MCF-7 (IC50 ranging from 78.57 to 96.54 µM and from 51.32 to 94.49 µM, respectively), compared to curcumin (IC50 61.38 and 20.68 µM, respectively). However, they showed moderate activity versus LNCap and LNCap (IC50 ranging from 32.94 to 45.71 µM and from 54.47 to 60.31 µM, respectively), in comparison to curcumin (IC50 6.15 and 13.78 µM, respectively) in the MTT assay [66]. Cladosporium sp. HNWSW-1 associated with the mangrove plant Ceriops tagal biosynthesized compounds 7476 that were assessed for their cytotoxic and α-glycosidase inhibitory effects (Figure 10). Compound 75 had cytotoxicity versus SGC-7901, K562, and BEL-7042 cell lines (IC50 41.7, 25.6, and 29.4 μM, respectively), whereas 76 revealed cytotoxic potential towards BEL-7042 and Hela cell lines (IC50 26.7 and 14.9 µM µM, respectively) in the MTT assay.
Additionally, 76 exhibited α-glucosidase inhibitory activity (IC50 78.2 µM), compared to acarbose (IC50 275.7 µM) in the glucose oxidase method [67]. Cladosporamide A (77) separated from Cladosporium sp. TPU1507 derived from marine sponge was assessed for its inhibitory effect towards PTP1B (protein tyrosine phosphatase) and TCPTP (T-cell PTP), using an enzyme-based assay [68]. It had mostly equivalent inhibition towards TCPTP and PTP1B (IC50 48 and 54 μM, respectively), in comparison to oleanolic acid (IC50 0.9 μM) [68]. Cao et al. purified a new 7-oxabicyclic[6.3.0]lactam, 78, from a gorgonian-derived Cladosporium sp. collected from the South China Sea. It (IC50 0.76–3.11 μM) exhibited significant cytotoxicity towards HeLa, P388, HT-29, and A549 cell lines [69]. On the other hand, it had weak antibacterial activity (MIC ˃ 25.0 μM) in broth dilution assay towards B. cereus, T. halophilus, S. epidermidis, S. aureus, E. coli, P. putida, N. brasiliensis, and V. parahaemolyticus [69]. Cladosporium sp. SCNU-F0001 isolated from a mangrove plant yielded a novel lactam macrolide named cladospamide A (79) that was evaluated for cytotoxic effect (conc. 50 μM) versus MDA-MB-435, A549, HCT116, HepG2, and BT549 in the MTT method and for antimicrobial potential (conc. 100 μg/mL) towards S. aureus, B. subtilis, E. coli, Salmonella ATCC 14028, and P. aeruginosa. Unfortunately, it exhibited no noticeable activity [70].
The new cyano-containing alkaloids, cladosporins A (80) and B (81) purified from Cladosporium sp. SCSIO z015 broth did not have an obvious anti-biofilm activity towards S. aureus, E. coli, and B. subtilis [36] (Figure 11).
In the DPPH assay, they also had no activity (IC50 > 100 µM), compared to ascorbic acid (IC50 4.9 µM). Besides, they showed moderate toxicity towards brine shrine naupalii (LC50s 72.0 and 81.7 µM, respectively), compared with toosendanin (LC50 21.2 µM) in the brine shrimp lethality assay [36]. In 2019, Bai et al. purified 84 and 85 from Cladosporium sp. JS1-2 isolated from the mangrove Ceriops tagal collected in the South China Sea. Compound 84 moderately prohibited the growth of Helicoverpa armigera Hubner newly hatched larvae (IC50 100 μg/mL), compared to azadirachtin (IC50 25 μg/mL). Further, they showed moderate antibacterial potential versus S. aureus with MICs 12.5 and 25.0 μg/mL, respectively, compared with ciprofloxacin (MIC 0.39 μg/mL) [71].

3.4. Macrolides

The term “macrolides” was first used to describe the natural antibiotics that have 12–16-membered macrocyclic lactone ring, functionalized by double bonds, and carrying different aminosaccharide and saccharide components [137]. Among these macrolides are 14-membered lactones (erythromycin and clarithromycin), 15-membered macrolides (azithromycin and spiramycin), and the 16-membered (avermectin B1a) that are clinically used macrolide antibiotics [138]. Members of this group possess a wide range of bioactivities such as antibacterial, anti-inflammatory, antiviral, antimalarial, antimitotic, and anticancer activity. They have been reported from various marine organisms [138,139]. The new 12-membered macrolide, cladospolide D (91), together with 88 and 89 were separated from Cladosporium sp. FT-0012 was obtained from Pohnpei Island, Federated State of Micronesia, and assessed for antimicrobial activity using paper disks at conc. 10 µg/disk (Figure 12). Compound 91 exhibited activity versus M. racemosus KF223, B. subtilis KB27, and P. oryzae KB110 (IZDs 11.5, 16.0, and 14.0 mm, respectively), while 88 was active (IZD 14.0 mm and IC50 17.0 µg/mL) towards X. campestris pv. oryzae. Moreover, 91 prohibited P. oryzae and M. racemosus growth (IC50s 29.0 and 0.15 µg/mL, respectively) [72].
Cladosporium sp. F14 isolated from seawater yielded a nine-membered macrolide, 92 that had weak antibacterial potential towards M. smegmatis, E. coli, B. thuringiensis, S. aureus, and B. subtilis and weak cytotoxic potential toward A435, HeLa, K562, and A549 in the MTT method [76]. C. herbarum isolated from Callyspongia aerizusa sponge yielded cladospolide B (89) and pandangolides 2–4 (9597) that showed no antimicrobial potential versus S. aureus ATCC 25923, B. subtilis 168, E. coli ATCC 25922, and C. albicans in the agar plate diffusion assay [74]. Moreover, the EtOAc extract of Cladosporium sp. IFB3lp-2 isolated from the mangrove forest of Hainan province of China yielded 88, 89, 9396, 100, and 116 that had no significant activity against HCT-116, Coxsachievirus A16, A549, MD-MBA-231, HepG2, human enterovirus 71, A375, and SW1116 cell lines (conc. 20 µM) in the MTT assay [73] (Figure 13).
Additionally, Cladosporium sp. SCNU-F0001 isolated from a mangrove plant biosynthesized a new macrolide thiocladospolide E (105), along with 89 that were evaluated for cytotoxic effect (conc. 50 μM) versus MDA-MB-435, A549, HCT116, HepG2, and BT549 in the MTT method and for antimicrobial potential (conc. 100 μg/mL) towards S. aureus, B. subtilis, E. coli, Salmonella ATCC 14028, and P. aeruginosa. Unfortunately, none of them exhibited noticeable activity [70]. Cao et al. purified 12-membered macrolides 89 and 117120 from a gorgonian-derived Cladosporium sp. collected from the South China Sea. They showed no cytotoxicity towards HeLa, P388, HT-29, and A549 cell lines [69]. Furthermore, they were evaluated for antibacterial activity in broth dilution assay towards B. cereus, T. halophilus, S. epidermidis, S. aureus, E. coli, P. putida, N. brasiliensis, and V. parahaemolyticus. Compounds 117119 exhibited antibacterial potential against all tested bacteria (MIC values ranging from 3.13 to 25.0 μM), however 89 and 120 had weak activity (MIC ˃ 25.0 μM) [69]. The metabolites 93 and 115 separated from Cladosporium sp. F14 at conc. 50 µg/mL had no anti-larval activity towards both B. neritina and B. amphitrite larvae in the settlement inhibition assays [60]. In 2019, Zhang et al. separated the new polyketides 98 and 99 and a known analog 93 from the rice culture EtOAc extract of C. cladosporioides associated with Bruguiera gymnorrhiza. Their configuration was established using ECD, modified Mosher’s, and X-ray diffraction methods, as well as optical rotations to be 5R, 11R for 98; 11R for 99; and 3R, 5S, 11S for 93. They had weak AChEI activity (IC50 > 50 µM), in comparison to tacrine in the modified Ellman’s method [40]. C. cladosporioides MA-299 obtained from the mangrove plant B. gymnorrhiza yielded 12-membered thio-macrolides 96 and 101104 that were assessed for antimicrobial potential against E. tarda QDIO-2 and E. ictarda QDIO-9 (aquatic pathogens) and C. glecosporioides QDAU-2, B. sorokiniana QDAU-5, P. piricola Nose QDAU-15, and F. oxysporum f. sp. cucumerinum QDAU-8 (plant pathogenic fungi) in the microtiter plates assay. All metabolites revealed activity against C. glecosporioides (MIC 1 or 2 μg/mL), compared to amphotericin B (MIC 0.5 μg/mL). Moreover, 101 and 104 showed noticeable activity (MIC 1.0 μg/mL) towards with E. tarda and E. ictarda, respectively, compared to chloramphenicol (MIC 0.5 μg/mL), while 102 and 104 exerted obvious effectiveness (MIC 1.0 μg/mL) versus F. oxysporum f. sp. cucumerinum, compared to amphotericin B (MIC 0.5 μg/mL). The data revealed that sulfur substituent may influence the macrolides’ bioactivities [39]. The newly reported 12-membered macrolides having thioethers 107112 and the related formerly reported 93 and 101 isolated from mangrove-derived C. oxysporum HDN13-314 had no cytotoxic activity versus HCT-116, BEL-7402, HL-60, A549, L-02, HeLa, K562, MGC-803, MCF-7, PC-3, SH-SY5Y, and MDA-MB-231 (IC50 > 50 μM) [78] (Figure 14).
Additionally, they exerted antibacterial activities versus the aquatic pathogens E. ictarda and E. tarda (MICs ranging from 4 to 32 μg/mL), whereas 108 had the best effect (MIC 4 μg/mL) versus E. tarda [78]. In 2020, new thiomacrolides thiocladospolides F (106) and G (108) and cladocladosin A (121), a macrolide with bicyclo 5/9-ring, were purified from C. cladosporioides MA-299 by Zhang et al. and assessed for antimicrobial effect versus various plant, human, and aquatic pathogenic microbes in the microtiter plates assay. All metabolites revealed activity (MIC ranging from 1.0 to 4.0 μg/mL) towards V. anguillarum and E. tarda (aquatic pathogenic bacteria) [79].
Moreover, 108 and 121 exerted activity (MICs 4.0 μg/mL) towards H. maydis (plant-pathogenic fungus) and P. aeruginosa (aquatic-pathogenic bacterium), respectively [79]. The new 12-membered macrolides, 113 and 114, purified from Cladosporium sp. L037 isolated from the Okinawan marine brown alga Actinotrichia fragilis exhibited cytotoxic influence (IC50 0.13 and 0.81 µg/mL, respectively) towards L1210 murine lymphoma cells in the MTT assay [80]. Moreover, 113 had antifungal potential against C. albicans, C. neoformans, A. niger, and N. crassa (MICs 8.4–16.7 µg/mL), whereas 114 exhibited antibacterial activity only towards M. luteus and inactive against the other microorganisms [80].

3.5. Butanolides and Butenolides

Butanolides and butenolides are five-membered γ-lactones which may also be regarded as furan derivatives. They are an important class of structural motifs often encountered in various natural metabolites and synthetic targets [140]. They have an impressive range of bioactivities including antibiotic, antitumor, and anticancer that are intimately connected to their relative and absolute configurations [141].
The newly separated C12-macrolide, cladospolide F (122), purified from a soft coral-associated fungus Cladosporium sp. TZP-29, together with the formerly isolated derivative 126 showed no cytotoxic effect towards A-549, SMMC-7721, and HeLa cells in the SRB method [41]. Wuringege et al. reported that the butenolide, 126 isolated from Cladosporium sp. IFB3lp-2 exhibited no significant activity against HCT-116, Coxsachievirus A16, A549, MD-MBA-231, HepG2, human enterovirus 71, A375, and SW1116 cell lines (Conc. 20 µM) in the MTT assay [73]. Moreover, it showed no cytotoxicity towards various cancer cell lines: HeLa, P388, HT-29, HCT-116, BEL-7402, HL-60, A549, L-02, HeLa, K562, MGC-803, MCF-7, PC-3, SH-SY5Y, MDA-MB-231, and A549 [69,78]. On the other hand, it had antibacterial activity in broth dilution assay towards B. cereus, T. halophilus, S. epidermidis, S. aureus, E. coli, P. putida, N. brasiliensis, and V. parahaemolyticus (MIC values ranging from 6.25 to 25.0 μM) [46]. Qi et al. stated that 126 displayed no anti-larval activity towards both B. neritina and B. amphitrite larvae in the settlement inhibition assays [60]. Additionally, it exerted antimicrobial activity versus E. ictarda and Cytospora mandshurica Miura (MIC 8 μg/mL) [78]. The new metabolites 123, 124, and 127 and the known analog 126 separated from C. cladosporioides were assessed for AChEI activity using modified Ellman’s method (Figure 15). Only 123 exhibited potent AChEI activity with the IC50 value of 40.26 µM, in comparison to tacrine, while other metabolites possessed weak activity (IC50 > 50 µM) [40].

3.6. Seco-Acids

The seco-acids 128, 130, and 141 isolated from Cladosporium sp. IFB3lp-2 EtOAc extract had no noticeable cytotoxicity versus HCT-116, Coxsachievirus A16, A549, MD-MBA-231, HepG2, human enterovirus 71, A375, and SW1116 cell lines (Conc. 20 µM) in the MTT assay [73]. Compound 131 did not show any anti-larval activity towards both B. neritina and B. amphitrite larvae [60]. Moreover, 132 did not have cytotoxic activity towards HCT-116, BEL-7402, HL-60, A549, L-02, HeLa, K562, MGC-803, MCF-7, PC-3, SH-SY5Y, and MDA-MB-231 (IC50 > 50 μM) [78], while it exhibited weak activity versus the aquatic pathogens E. ictarda, E. tarda, and Cytospora glecosporioides (MICs ranging from 16 to 32 μg/mL) [78]. Cladospolide E (129) separated from a soft coral-associated Cladosporium sp. TZP-29, together with the formerly isolated derivatives 130 and 131 had no cytotoxic effect towards A-549, SMMC-7721, and HeLa cells in the SRB method. Moreover, 129131 with IC50 ranged from 7.1 to 13.1 µM remarkably reduced the accumulation of lipid elicited by oleic acid (OA) in the HepG2 liver cells, in comparison to lovastatin as determined by oil-red O staining and intracellular triglyceride (TG) and total cholesterol (TC) quantification (Figure 16).
Further, they exhibited potent lipid-lowering potential in HepG2 hepatocytes, revealing a promising anti-hyperlipidemic capacity [41]. The new fatty acid esters 133, 134, and 138 and new fatty acids 135137, 139, and 140 isolated from C. cladosporioides OUCMDZ-187 obtained from the mangrove plant Rhizophora stylosa collected in Shankou, Guangxi Province of China showed no cytotoxic effects (IC50 > 50 μM) towards K562, A549, and HeLa cells in the SRB method [81]. Additionally, they revealed no antimicrobial activities (MIC > 150 μM) towards S. aureus CGMCC-1.2465, E. coli CGMCC-1.2389, E. aerogenes CGMCC-1.0876, P. aeruginosa CGMCC-1.1785, B. subtilis CGMCC-1.3376, and C. albicans CGMCC-2.2086 in the agar dilution method [81].

3.7. Tetralones (Napthalenones)

Tetralones comprise a bicyclic aromatic hydrocarbon and a ketone and are regarded as benzo-fused cyclohexanone derivatives. They played a substantial role as a starting material for the synthesis of a range of synthetic heterocyclic compounds and pharmaceuticals due to their potential reactivity and suitability [142]. Additionally, they are precursors of many natural metabolites and their derivatives. They have been used in the synthesis of therapeutically functional compounds such as antibiotics, acetylcholinesterase inhibitors, antidepressants, and antitumor alkaloids [142,143].
Cladosporone A (152), a new dimeric tetralone bridged via C-C linkage, was separated from Cladosporium sp. KcFL6 derived from the mangrove plant Kandelia candel, together with 142144 (Figure 17). In anti-COX-2 assay, 144 and 152 displayed COX-2 inhibitory activities (IC50 60.2 and 49.1 μM, respectively), in comparison to NS-398 and indomethacin [82]. Moreover, none of these metabolites had antimicrobial activities against A. baumannii ATCC-19606, S. aureus ATCC-29213, E. faecalis ATCC-29212, A. hydrophila ATCC-7966, E. coli ATCC-25922, K. pneumonia ATCC-13883, Fusarium sp., F. oxysporum f. sp. cucumeris, F. oxysporum f. sp. niveum, A. niger, and R. solani in the disc diffusion assay [82].
Compounds 143 and 152 had moderate cytotoxic activity towards Huh-7, K562, HL-60, MCF-7, H1975, U937, A549, BGC823, MOLT-4, and HeLa cell lines (IC50 of 143 ranging from 11.4 to 72.5 µM and for 152 ranging from 10.1 to 53.7 µM), compared to trichostatin A in the trypan blue-cell viability assay [82]. Zurlo et al. reported that 142 had a remarkable anti-proliferative potential towards SW480, HT-29, and CaCo-2, in particular towards HT-29. It was revealed that HT-29 cells exposure to 142 produced G1/S phase cell cycle arrest, assisted by a vigorous p21waf1/cip1 expression, a significant down-regulation of CDK4, CDK2, cyclin E, and cyclin D1, and repression of CDK4 and CDK2 kinase activity [144]. It was demonstrated that its antiproliferative potential towards HT-29 cells was mediated via activation PPARγ, resulting in upregulation of p21waf1/cip1 expression and inducing degradation of β-catenin, as well as impairing TCF/β-catenin pathway as evident by reduced cyclin D1 and c-Myc transcription. Finally, it induced the expression of E-cadherin, therefore antagonizing invasion and metastasis [145]. C. cladosporioides HDN14-342 isolated from marine sediments yielded tetralone derivatives 143, 145147, 154, and 155 that were evaluated for cytotoxic activities towards HCT-116, HeLa, and A549 cell lines by SRB method and towards HL-60 and K562 cell lines by MTT method, in comparison to doxorubicin (IC50 0.2–0.8 µM). Compounds 146 and 147 were active towards K562, HeLa, and HCT-116 cell lines (IC50 ranging from 3.9 to 23.0 µM), while other metabolites had no activity (IC50 > 50.0 µM) [83]. In 2020, He et al. reported that 143 possessed no anti-allergic effect (IC50 > 200 µM) on RBL-2H3 cells, in comparison to loratadine (IC50 35.01 µM) using fluorometric assay [75]. In 2017, Li et al. separated six cladosporol derivatives, cladosporol C (143) and cladosporols F-J (146 and 148151) from the marine algal-derived C. cladosporioides EN-399 and evaluated their cytotoxic activities towards H446, A549, HeLa, L02, Huh7, LM3, SW1990, and MCF-7 using MTT assay. Note that 143, 148, and 149 displayed cytotoxic activities towards most of the tested cell lines with IC50 ranging from 1.0 to 20.0 μM. Notably, 149 had cytotoxic effect towards LM3, A549, and Huh7 cell lines (IC50 4.1, 5.0, and 1.0 μM, respectively), compared to cisplatin (IC50 1.3 μM for A549 and 9.1 μM for LM3) and fluorouracil (IC50 6.2 μM for Huh7), whereas 143 exhibited cytotoxic activity (IC50 4.0 μM) towards H446 cell line, compared to adriamycin (IC50 4.0 μM). These results revealed that the existence of dihydro-1,4-naphthoquinone nucleus was important for the activity (149 vs. 146, 148, and 143, 150, and 151) and C-4 methoxyl strengthened the activity (148 vs. 151) [84].
Moreover, their antimicrobial potential was assessed versus E. coli, A. hydrophila, S. aureus, E. tarda, P. aeruginosa, M. luteus, V. alginolyticus, V. parahemolyticus, V. harveyi, A. brassicae, F. oxysporum, G. graminis, C. gloeosporioides, and P. piricolav using micro-plate assay. Compounds 143, 146, and 148151 showed inhibitory potential towards M. luteus, E. coli, and V. harveyi (MICs 4–128 μg/mL). None of them had activity (MIC > 128 μg/mL) towards other tested microbes [84]. Bai et al. purified 143 and 145 from Cladosporium sp. JS1-2 isolated from the mangrove Ceriops tagal collected in the South China Sea [71]. Compound 145 prohibited the growth of Helicoverpa armigera Hubner newly hatched larvae (IC50 150 μg/mL), compared to azadirachtin (IC50 25 μg/mL) [71]. Further, they showed antibacterial potential versus S. aureus with MIC 6.25 and 1.56 μg/mL, respectively, compared with ciprofloxacin (MIC 0.39 μg/mL) [71]. Cladosporium sp. KFD33 isolated from blood cockle collected from Haikou Bay produced 150 and 153 that exhibited quorum sensing inhibitory potential towards Chromobacterium violaceum CV026 (MICs 30 and 20 µg/well, respectively) in the well diffusion assay [85]. Nevertheless, 156 had no observable cytotoxic activity towards SF-268, NCI-H460, MCF-7, and HepG-2 (conc. 100 μM) in the SRB assay [87]. The new naphthalenone derivative 157, in addition to 156, 158, and 159 isolated Cladosporium sp. JJM22 associated with the mangrove plant C. tagal had no cytotoxic effect (IC50 > 10 μM) versus HeLa cell line in the MTT assay, compared to epirubicin [88] (Figure 18). In the micro-plate assay, only 158 exhibited noticeable antibacterial potential towards S. aureus, B. cereus, E. coli, V. alginolyticus, V. parahemolyticus, and MR S. aureus (conc. 20 μM) [88]. One new tetralone derivative, aladothalen (160) and previously reported (3S,4S)-3,4,8-trihydroxy-1-tetralone (159) were isolated from a sediment-associated Cladosporium sp. HDN17-58 (Figure 17). Note that 160 possessed potent bacteriostatic potential versus Mycobacterium phlei, B. cereus, and MRCNS (methicillin-resistant coagulase-negative Staphylococci) (MIC values of 25, 50, and 25 µM, respectively), compared to ciprofloxacin [89].

3.8. Perylenequinones

Perylenequinones comprise a class of natural products characterized by an oxidized pentacyclic core. They are dark-colored pigments isolated from diverse sources such as mold species, plants, and aphids [146]. They reported to have anthelmintic, photoactivity, antiviral and antitumor [146].
Four new perylenequinone derivatives, altertoxins VIII–XI (161164), were isolated from Cladosporium sp. KFD33 (Figure 19). They exhibited quorum sensing inhibitory potential towards C. violaceum CV026 with MICs ranging from 20 to 30 µg/well in the well diffusion assay [85]. Structurally, these metabolites related to altertoxins I–III previously were reported from Alternaria alternata [147].

3.9. Naphthalene Derivatives

Naphthalenes are a class of arenes containing two ortho-fused benzene rings that have been reported from plants, liverworts, fungi, and insects [148]. Their derivatives exhibited anti-inflammatory, antimicrobial, antioxidant, anti-protozoal, cytotoxic, and anti-platelet aggregation activities [148].
Cladosporium sp. associated with the mangrove C. tagal biosynthesized the naphthalene derivatives 166168 that had anti-inflammatory potential via in-vitro inhibition of induced NO (nitric oxide) production by LPS (lipopolysaccharide) in RAW264.7 cells [91] (Figure 20). The mangrove-associated fungus Cladosporium sp. JJM22 yielded new naphthalene-chromane derivatives, cladonaphchroms A (169) and B (170), and related metabolites 165 and 168 that were assessed for antibacterial effectiveness versus S. albus ATCC-8799, E. coli ATCC-25922, B. subtilis ATCC-6633, Micrococcus tetragenus ATCC-13623, and M. luteus ATCC-9341, employing microplate assay. Compound 169 possessed significant potential against S. albus (MIC 1.25 µg/mL), compared to ciprofloxacin (MIC 0.6 µg/mL). Moreover, 169 and 170 demonstrated broad-spectrum antifungal activities (MICs 25.0–100.0 µg/mL) towards P. parasitica var. nicotianae, A. brassicicola, B. oryzae, C. capsici, C. paradoxa Moreau, and D. medusaea Nitschke, compared to pochloraz (MICs 12.5–50.0 µg/mL) [90]. Wu et al. stated that 166 had no cytotoxic effect (IC50 > 10 μM) versus HeLa cell line in the MTT assay and no antibacterial activity towards S. aureus, B. cereus, E. coli, V. alginolyticus, V. parahemolyticus, and MR S. aureus (conc. 20 μM) in the microplate assay [88].

3.10. Xanthones

Xanthones are secondary metabolites commonly reported from plants, fungi, and lichen [149]. They are heterocyclic metabolites with a xanthene-9-one framework, which is connected to different functional groups: methoxy, hydroxyl, prenyl, and dihydrofuran [150]. These metabolites showed diverse bioactivities: anti-HIV, anti-leishmanial, antitumor, anti-quorum sensing, antimicrobial, anti-inflammatory, antimalarial, advanced glycation end-products inhibitory, antioxidant, antihypertensive, and cytotoxic [150,151].
C. halotolerans GXIMD 02502 associated with the coral Porites lutea yielded compounds 171177 that were evaluated for their cytotoxicity versus 22RV1 and C4-2B (prostatic cancer cell lines), as well as RWPE-1 (normal prostate epithelial cell). Among them, 171173, 175, and 176 revealed notable cytotoxicity versus C4-2B and 22RV1 cells (inhibitions ranged from 55.8% to 82.1% at conc. 10 µM), whereas 176 was the potent one (inhibitions 77.7% and 82.1%, respectively). On the other hand, they exhibited nearly no cytotoxic effect versus RWPE-1 cell (inhibition < 27% at conc. 10 µM) [92] (Figure 21).

3.11. Tropolones

Tropolones are natural metabolites with a cyclohepta-2,4,6-trienone moiety [152]. They are known to be produced by fungi, bacteria, and plants. It was reported to display diverse bioactivities, including antimicrobial, antiviral, anti-HIV, hepatitis, anti-inflammatory, and anticancer [152].
Silber et al. reported the isolation of malettinins A–C (178180), along with the new metabolite, malettinin E (181) from Cladosporium sp. strain KF501 isolated from the German Wadden Sea (Figure 22). These metabolites have dihydropyran/tropolone structures connected to a furan ring. The configuration of 181 was determined by the single-crystal X-ray diffraction method. Interestingly, this was the first report for tropolones isolation from genus Cladosporium. They were evaluated for antimicrobial activity towards X. campestris, B. subtilis, S. epidermidis, C. albicans, and Trichophyton rubrum using the microplate assay. Note that 178181 exhibited weak antifungal potential towards Trichophyton rubrum (IC50 30.7–83.2 μM), whereas 179181 exhibited weak antibacterial effect towards Xanthomonas campestris (IC50 28.3–37.9 μM), compared to chloramphenicol (IC50 2.1 μM) [93].

3.12. Binaphthopyrones

Bisnaphthopyrones are dimers, belonging to naphthopyrones. They have C13 basic skeleton (C6-C4-C3) that consists of naphthalene and pyrone cores [153].
The new binaphthopyrone, cladosporinone (182), and the formerly isolated viriditoxin (183) and viriditoxin derivatives (184 and 185) were separated the sediment associated C. cladosporioides (Figure 23). Note that 183 was firstly reported from Aspergillus viridinutans [154]. They were assayed for their cytotoxic potential versus L5178Y cells in the MTT assay. Compound 183 was the most potent one (IC50 0.1 μM), however 182 and 184 had a cytotoxic effect (IC50 0.88 and 0.25 μM, respectively). However, 185 was ineffective [94]. Note that all metabolites had selective potential towards S. aureus ATCC-29213, with 183 being the most effective (MIC 0.023 μM) [94].

3.13. Benzopyranes, Benzopyrones, and Pyrones

Wang et al. reported the separation of compounds 188190, 193, 200, 201, and 203 from Cladosporium sp. OUCMDZ-302 isolated from mangrove plant Excoecaria agallocha. They possessed no cytotoxic effect towards BEL-7402, A549, HeLa, K562, HL-60, and H1975 cell lines in the MTT and SRB methods. Whilst 201 and 203 showed radical scavenging activity against DPPH (IC50 5.66 and 6.67 µM, respectively). None of these metabolites exhibited antimicrobial activities against E. coli, E. aerogenes, P. aeruginosa, B. subtilis, and C. albicans [95]. The newly isolated benzopyrone, clapone (192), had no α-glycosidase inhibitory effect and no cytotoxic activity towards SGC-7901, K562, Hela, and BEL-7042 cell lines in the MTT assay [67]. Furthermore, 186 and 205 displayed no cytotoxic effect (IC50 > 10 μM) versus HeLa cell line in the MTT assay, as well as no antibacterial potential towards S. aureus, B. cereus, E. coli, V. alginolyticus, V. parahemolyticus, and MR S. aureus (conc. 20 μM) in the microplate assay [88]. C. halotolerans GXIMD 02502 associated with the coral Porites lutea yielded a new benzopyranone derivative, coniochaetone K (196) with unusual C-8 carboxyl, along with 194, 195, 197, and 198 that were evaluated for their cytotoxicity versus 22RV1, C4-2B, and RWPE-1 cell lines (Figure 24).
Among them, 194 and 196 revealed notable cytotoxicity versus 22RV1 cells (inhibition 67.4% and 64.6%, respectively, at conc. 10 µM). On the other hand, they exhibited nearly no cytotoxic effect versus RWPE-1 and C4-2B cells [92]. Bai et al. reported that 206 prohibited the growth of H. armigera Hubner newly hatched larvae (IC50 100 μg/mL), compared to azadirachtin (IC50 25 μg/mL) [71]. Further, it showed moderate antibacterial potential versus S. aureus (MIC 6.25 μg/mL), compared with ciprofloxacin (MIC 0.39 μg/mL) [71]. Cladosporin C (207) did not have obvious anti-biofilm activity towards S. aureus, E. coli, and B. subtilis [36]. On the other hand, it showed moderate toxicity towards brine shrine naupalii (LC50 49.9 µM), compared to toosendanin (LC50 21.2 µM) in the brine shrimp lethality assay [36]. Furthermore, 210 possessed no anti-allergic effect (IC50 > 200 µM) on RBL-2H3 cells, in comparison to loratadine (IC50 35.01 µM) using fluorometric assay [75]. α-Pyrone derivatives 211213 were separated from C. herbarum isolated from the sponge Aplysina aerophoba (Figure 25). Compounds 211 and 212 had activity towards Artemia salina (conc. 100 µg and 50 µg) with mortality rates 85 and 75% and 80 and 65%, respectively, while 213 did not have any activity. Besides, 213 showed growth inhibitory activity towards Spodoptera littoralis larvae (7 and 33% at conc. 250 and 100 ppm, respectively) [96]. However, 211213 did not show any noticeable antimicrobial activity in the agar plate diffusion assay [96].

3.14. Lactones, Cyclohexene, and Azaphilone Derivatives

In 2020, He et al. purified 216 from C. cladosporioides that possessed no anti-allergic effect (IC50 > 200 µM) on RBL-2H3 cells, in comparison to loratadine (IC50 35.01 µM) using fluorometeric assay [75]. The mangrove plant C. tagal associated-fungus Cladosporium sp. JJM22 produced new cyclohexene derivatives, cladoscyclitols A–D (218221) (Figure 26). Compound 219 (IC50 2.95 μM) revealed potent α-glucosidase inhibitory activity, compared to acarbose (IC50 2.35 μM) in the colorimetric assay [97]. On the other hand, it had no antimicrobial potential towards S. aureus ATCC-6538, E. coli ATCC-25922, B. cereu ATCC-6633, V. alginolyticus ATCC-3787, V. Parahemolyticus ATCC-17802, or MRSA CMCC-B-63303 in the micro-plate assay [97]. Perangustols A (223) and B (224), representing new azaphilone epimers, together with bicyclic diol (225) were separated from sea sediment-associated C. perangustum FS62 fungus. They had no observable cytotoxic activity towards SF-268, NCI-H460, MCF-7, and HepG-2 (Conc. 100 μM) in the SRB assay [87].

3.15. Phenolics and Other Aromatic Compounds

In the DPPH assay, 233 and 235 showed DPPH radical scavenging activity (IC50s 0.24 and 2.65 µM, respectively), in comparison to ascorbic acid (IC50 3.29 µM). Further, none of these compounds had antimicrobial potential versus P. aeruginosa, E. aerogenes, B. subtilis, E. coli, and C. albicans [95]. The metabolites 232, 238, and 249 were separated from EtOAc extract of Cladosporium sp. F14 isolated from seawater and investigated for their anti-larval activity (conc. 50 µg/mL) towards B. neritina and B. amphitrite larvae in the settlement inhibition assays [60] (Figure 27). Compound 232 had weak larvae settlement inhibition towards B. neritina and B. Amphitrite, respectively, whereas 238 and 249 showed weak inhibitory effects towards B. amphitrite and B. neritina larvae, respectively. In another larval settlement bioassay, 232, 238, and 249 inhibited B. neritina larval settlement (EC50 11.51, 102.23, and 77.85 µg/mL, respectively) and B. amphitrite larval settlement (EC50 84.28, 53.65, and 9.18 µg/mL, respectively). The larval settlement EC50 values of 249 towards B. amphitrite and 232 towards B. neritina were less than the US Navy program established standard requirement (EC50 25.0 µg/mL), revealing the potential of 232 and 249 as antifouling agents [60]. Furthermore, 232 obviously prohibited L. hongkongensis growth (IZD 8 mm and MIC 80 µg/mL), compared to streptomycin (MIC 250 µg/mL) [60]. The ribofuranose phenol derivative, 239 isolated Cladosporium sp. JJM22 associated with the mangrove plant C. tagal had no cytotoxic effect (IC50 > 10 μM) versus HeLa cell line in the MTT assay, compared to epirubicin [88].
Additionally, it exhibited no noticeable antibacterial potential towards S. aureus, B. cereus, E. coli, V. alginolyticus, V. parahemolyticus, and MR S. aureus (conc. 20 μM) in the microplate assay [88]. The new ribofuranose phenol derivative, 240 (IC50 2.05 μM) revealed potent α-glucosidase inhibitory activity, compared to acarbose (IC50 2.35 μM) in the colorimetric assay [97]. On the other hand, it had no antimicrobial potential towards S. aureus ATCC-6538, E. coli ATCC-25922, B. cereus ATCC-6633, V. alginolyticus ATCC-3787, V. Parahemolyticus ATCC-17802, and MRSA CMCC-B-63303 in the microplate assay [97]. Phytochemical investigation of the mycelium extract of the marine-derived fungus Cladosporium sp. associated with Chondria crassicualis red alga resulted in the separation of a phenol derivative, clavatol (241) that exhibited antioxidant capacity (ED50 227.0 µM) more than oxybenzone (sunscreen agent, ED50 350 µM) as evident by their UV-A protecting potential [65]. On the other hand, it was inactive towards MDRSA, MRSA, and S. aureus [65]. Fan et al. stated that compounds 242 and 243 exhibited no observable cytotoxic activity towards SF-268, NCI-H460, MCF-7, and HepG-2 (Conc. 100 μM) in the SRB assay [87] (Figure 28). Cladosporin D (247) did not have obvious anti-biofilm activity towards S. aureus, E. coli, and B. subtilis [36], while it exhibited significant antioxidant activity (IC50 16.4 µM), compared with ascorbic acid (IC50 4.9 µM). Besides, it showed moderate toxicity towards brine shrine naupalii (LC50 81.4 µM), comparing with toosendanin (LC50 21.2 µM) in the brine shrimp lethality assay [13].
Compound 248 separated from Cladosporium sp. TPU1507 derived from marine sponge and assessed for inhibitory effect towards PTP1B and TCPTP using enzyme-based assay [68]. It showed an inhibitory effect on TCPTP (IC50 27 μM) that was 2-fold weaker than on PTP1B (IC50 11 μM) [68]. The new phthalide, herbaric acid (250), separated from C. herbarum isolated from Callyspongia aerizusa had no activity towards A. salina and HL-60 human leukemia cell line [96]. In addition, the newly separated abscisic acid analog 251 from Cladosporium sp. OUCMDZ-1635 possessed no cytotoxic effect towards MCF-7, HeLa, HCT-116, HeLa, HCT-116, K562, and HL-60. Furthermore, it did not show antibacterial activity (conc. 100 μg/mL) against B. subtilis, P. aeruginosa, C. perfringens, S. aureus, E. coli, and C. albicans [56]. The new pentenoic acid derivative, 1,1′-dioxine-2,2′-dipropionic acid (252) prohibited the growth of H. armigera Hubner newly hatched larvae (IC50 150 μg/mL), compared to azadirachtin (IC50 25 μg/mL) [71]. Further, it showed moderate antibacterial potential versus S. aureus (MIC 25.0 μg/mL), compared with ciprofloxacin (MIC 0.39 μg/mL) [71]. The furan carboxylic acid metabolites, Sumiki’s acid (253) and acetyl Sumiki’s acid (254) exerted activity towards S. aureus and B. subtilis (IZDs 7 mm at conc. 5 µg/disk), whereas they had no activity towards C. albicans and E. coli [74].

3.16. Sterols and Terpenes

A study conducted by Yu et al. in 2018 led to the separation of a new pregnane; 3α-hydroxy-7-ene-6,20-dione (268) and six sterol derivatives: 256, 258, 260, 262, 263, and 267 from gorgonian-associated Cladosporium sp. WZ-2008-0042 [100]. Note that 268 was reported in the same year by Pang et al. as new metabolites with the name cladosporisteroid B from Cladosporium sp. SCSIO41007 associated with Callyspongia sp. [61]. These metabolites (IC50 values ranging from 0.11 to 0.17 µM) revealed antiviral activity against RSV (respiratory syncytial virus) with therapeutic ratio (TC50/IC50) values ranging from 5.18 to 9.92, in comparison to ribavirin in the neuraminidase inhibition assay. This could be due to their binding to RSV GREs (glucocorticoid response elements) [100]. Moreover, they (conc. 0.1 mg/mL) displayed weak to moderate AChEI potential, in comparison to huperzine A and galanthamine using the modified Ellman’s method [100]. Further, 268 had no noticeable antibacterial potential towards B. cereus, M. luteus, S. aureus, V. anguillarum E. coli, Shigella dysenteriae, B. subtilis, and V. Parahemolyticus, while 263 was moderately active (MIC 3.13 μM) towards S. dysenteriae [100]. In 2020, He et al. reported that 256, 261, 265, 266, and 268 separated from C. cladosporioides sea sediment-derived fungus possessed no anti-allergic effect on RBL-2H3 cells, in comparison to loratadine using fluorometeric assay [75] (Figure 29 and Figure 30). In 2018, Pang et al. separated new sterol cladosporisteroid A (264) and new pregnanes, cladosporisteroid B (268) and cladosporisteroid C (269), along with 259, 265, and 270 from Cladosporium sp. SCSIO41007 isolated from Callyspongia sp. and assessed their antiviral activity towards EV71 and H3N2 using CCK-8 and CPE assays, respectively. Only, 268 (IC50 16.2 μM) had weak activity towards H3N2 compared to oseltamivir (IC50 34.0 nM). Moreover, they revealed no cytotoxic effect towards K562, MCF-7, and SGC-7901 in the CCK-8 assay [61]. Additionally, 268 was purified from C. sphaerospermum EtOAc fraction by HPLC with the aid of LCMS and assessed for its influence on adipogenesis and lipid metabolism during maturation of adipocyte (Conc. 1.25, 2.5, 5, and 10 μM) using 3T3-L1 preadipocytes [101]. It substantially prohibited lipid accumulation and differentiation of 3T3-L1-preadipocytes into adipocytes, leading to reducing Adipsin (adipocyte marker gene) expression. Further, it significantly upregulated ATGL (lipolytic gene, Conc. 5 and 10 μM) and reduced FASN and SREBP1 (lipogenic genes, conc. 1.25, 2.5, 5, and 10 μM) expression. Collectively, 268 facilitated lipid metabolism and disrupted adipogenesis via promoting lipolysis and prohibiting lipogenesis [101].

3.17. Alcohols and Aldehydes

Gallo et al. reported for the first time from fungi the isolation of α,β-unsaturated aldehydes (271284) from the culture of Cladosporium sp. isolated from intertidal marine sediment [102] (Figure 31). They exerted antimicrobial activity towards E. coli ATCC-25922, B. subtilis ATCC-6633, and C. albicans ATCC-18804 in the agar diffusion method. It is noteworthy that this class of metabolites had been reported formerly from red algae (e.g., Corallina mediterranea and Laurencia papillosa, L. spectabilis, and L. undulata) [155,156]. The new aliphatic alcohols, (2S,3S,4E)-hepta-4,6-diene-2,3-diol (285) and (3E,8E,6S)-Undeca-3,8,10-trien-1,6-diol (286) were assessed for cytotoxic potential versus HeLa, BEL-7402, HL-60, A549, K562, and H1975 cell lines. Compound 286 had a cytotoxic effect versus H1975 cell line (IC50 10.0 µM), compared to ADR (IC50 0.38 µM). While both metabolites revealed no antioxidant and antimicrobial capacities [95].

3.18. Bioactivities of Cladosporium Species Extracts

Ding et al. stated that Cladosporium sp. isolate N5 associated with Porphyra yezoensis red alga did not produce any pathogenic symptoms in the reinfection assay. Further, its EtOAc extract displayed no lethality to A. salina and had a moderate antimicrobial activity which indicated that Cladosporium sp. had no toxicity to the aquatic ecosystem and could be applied as a biocontrol agent [59]. In the disc diffusion method, Cladosporium sp. EIODSF 008 EtOAc extract exhibited significant antibacterial potential towards E. coli, M. luteus, and B. subtilis (conc. 100 µg/disc) [57]. The EtOAc extract of Cladosporium sp. EN-S01 isolated from Sargassum cinereum brown algae showed anticancer activity towards MCF-7, HeLa, and DU-145 cell lines (IC50 8.46, 9.87, and 98.03 µg/mL, respectively). The extract had greater cytotoxic activity and anti-proliferative towards MCF-7 and HeLa cell lines than towards DU-145 [157]. Moreover, the EtOAc extract of C. cladosporioides KT384175 isolated from the seaweed Sargassum wightii possessed remarkable antioxidant potential that was comparable to ascorbic acid, as well as significant Fe3+ reducing power that could be referred to its phenolic contents. Moreover, it revealed anti-angiogenic potential as evidenced by the decrease in the number and length of blood vessel branches on CAM (chick chorioallantoic membrane) in-vivo in the CAM assay. Further, C. cladosporioides extract (conc. 1.0 mg/mL) had lower wound healing potential than thalidomide (conc. 1.0 µg/mL) in the in vitro scratch assay using MCF-7 cells [158]. The sea water-derived fungus Cladosporium sp. F14 can produce antifouling and antibiotic metabolites in the existence of xylose or glucose. Significantly, it showed higher antibiotic activity towards M. luteus, P. piscida, Rhodovulum sp., Ruegeria sp., V. fluvialis, and V. harveyi in the existence of a sugar carbon source than in its absence in the disc diffusion assay, even though the fungal cells were well-grown under both conditions. Moreover, it possessed antifouling potential as it reduced the attachment of B. neritina (bryozoan larvae) in the larval settlement assay [159]. The gold nanoparticles synthesized from C. cladosporioides isolated from the seaweed S. wightii possessed noticeable antimicrobial potential towards E. coli MTCC-118, B. subtilis MTCC-441, S. aureus MTCC-7443, P. aeruginosa MTCC-424, and A. niger MTCC-281 with the highest growth inhibition towards S. aureus (IZD 12 mm) and least activity against B. subtilis (IZD 9.5 mm), compared to ampicillin (IZDs 15 and 12 mm, respectively) in the well diffusion method. Furthermore, they also had significant antioxidant potential comparable to ascorbic acid in the DPPH assay and moderate effectiveness in reducing power assay [160]. Ameen et al. reported that the AgNPs synthesized from C. halotolerans biomass isolated from the marine debris collected around Tarout Island showed a significant free radical scavenging effect (%inhibition 78% within 30 min incubation) in the DPPH assay. Moreover, it exhibited cytotoxic potential towards MCF-7 (IC50 34.27 µL/mL), compared to cisplatin (IC50 17.69 µL/mL) in the MTT assay, as well as an antifungal effect against A. niger (%inhibition 70 and 45% at conc. 1000 and 500 ppm, respectively) in the broth dilution method [161].
From the comprehensive review of the available literature, it was noticed that C. phlei (causal agent of Timothy leaf spot disease) and C. cucumerinum (causal agent of scab disease of many Cucurbitaceae plants) were isolated mainly from plant sources [162,163,164,165]. These species produced perylenequinone derivatives as major metabolites which are responsible for pigmentation and discolorations of the leaves [162,165]. Additionally, cotylenins, plant growth regulators were isolated from an unidentified Cladosporium species [166,167,168,169,170]. However, tetralones, seco-acids, macrolides, diketopiperazines, alkaloids, and tetramic acid derivatives were reported mainly from marine-associated Cladosporium species.

4. Conclusions

Numerous structurally diverse biometabolites are discovered from marine-derived fungi that represent a rich library for the development of drug lead. Marine-associated Cladosporium species are of biotechnological and industrial relevance and could be considered as substantial enzyme producers. Their enzymes are active in harsh conditions such as extremely low temperatures and high salinity. Therefore, they can be utilized in various industrial and biotechnological applications. Besides, these species were found to be a wealthy pool covering a wide array of metabolites with various bioactivities. Over the past 22 years, 286 metabolites have been separated from marine-associated Cladosporium species isolated from various marine samples, including mangrove, sediment, sponges, corals, gorgonians, algae, bivalves, hydroids, and others (Figure 32).
More than 75% of these metabolites have been reported from unidentified Cladosporium sp. (175 metabolites, 61%) and C. cladosporioides (53 metabolites, 18.5%) (Figure 33).
The results revealed that alkaloids, macrolides, tetramic acid and pyrone derivatives, and phenolics are the major metabolites reported from this marine-associated fungal species (Figure 34). They could be privileged and useful candidates for chemists and biologists to design structurally novel and pharmacologically important compounds for various diseases.
Although the structural diversity of these metabolites, they were insufficiently evaluated for their bioactivities. Most of them had been assessed for their antimicrobial, cytotoxicity, antiviral, and insecticidal activities (Figure 35).
Figure 36 illustrated the prominent activities of each class of secondary metabolites.
However, there are limited studies that focus on the mechanism of action of these metabolites. Many of the tested metabolites possessed no noticeable efficacy in some of the tested activities. Therefore, estimation of other potential bioactivities and derivatization of these metabolites, as well as the mechanistic and in vivo studies of the active metabolites should clearly be the target of future research.

5. Strategies for Activating Silencing Gene Clusters

Growing evidence has revealed that the activation of silent gene clusters has the potential to significantly enhance the discovery of new natural metabolites of high-therapeutic leads. Different strategies to awake the silent biosynthetic gene clusters of Cladosporium species such as co-cultivation of organisms and elicitors epigenetic, as well as, modifiers can be applied [171,172,173,174]. The production of secondary metabolites (SMs) is affected by cultivation media, environment, and conditions [171,175]. Therefore, manipulating the culture conditions can improve the outputs from living organisms. Small changes in the growth media composition can induce not only variation in the amount of SMs, but also the production of a completely different pattern of molecules [171,172,173]. OSMAC (one strain many compounds) is a form of strain improvement that summarized the ability of single strains to produce different compounds when growing under different conditions e.g., aeration rate, media composition, type of culturing vessel, or a combination of these factors [174,175,176]. Challenging the fungi with external cues or chemicals has been shown to enhance the SMs production. Antibiotics have been widely reported as elicitors that can activate a broad spectrum of silent BGCs [171,172,173,174]. The co-cultivation of strains of the same or different species has been shown to represent a promising strategy for the activation of silent BGCs that enhances the production of SMs and discovery of new bioactive SMs [171,172,177]. Activation of silent biosynthetic gene clusters (BGCs) by quorum sensing class of signaling molecule is another strategy that has been shown to dramatically increase SMs production [171,172,173]. Engineering strains to circumvent the regulatory systems has the potential to free silent BGCs from their locked-in state and result in a significantly enhancement of SMs production. This can be done through various ways such as ribosome and polymerase engineering, an awakening of the genes encoding transcriptional regulatory proteins, and deletion or deactivation of the suppressor proteins. Another approach is the insertion of inducible artificial promoters to drive the expression of the silent genes [171,172,178]. Modulating epigenetic control also plays a role in the expression of silent gene clusters linked to natural product expression [173,179].

Author Contributions

G.A.M. and S.R.M.I. contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IFPRP: 50-166-1442 and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IFPRP: 50-166-1442 and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

[3H]PDBu: [3H]Phorbol-12,13-dibutyrate; 22RV1: Human prostatic cancer cell line; 3T3-L1; Mouse adipocyte-like cell line; 786-0: Human renal carcinoma cell line; A2780; Human ovarian cancer cell; A375: Melanoma cell line; A549: Lung adenocarcinoma epithelial cell line; Ab1: Proto-oncogene 1, non-receptor tyrosine kinase; ABPA: Allergic bronchopulmonary aspergillosis; ADR: Adriamycin; ATGL: Adipose triglyceride lipase; ATP: Adenosine triphosphate; Bax/Bcl-2: Apoptosis regulator BAX; Bcap-37: Human breast carcinoma cell line; Bel-7402: Human hepatocellular carcinoma cell line; BGC-823: Human gastric cancer cell line; BT549: Human breast cancer cells line; C4-2B: Human prostatic cancer cell line; C4-2B: Human prostatic cancer cell line; CAM: Chick chorioallantoic membrane assay; CCK8: Cell Counting kit-8; CD25: Cluster of differentiation 25; CD28: Cluster of differentiation 28; CD3: Cluster of differentiation 3; CDK: Cyclin-dependent kinase; CDKI: Cyclin-dependent kinase Inhibitor; CDPSs: Cyclodipeptide synthases; CM: Corrected mortality; COX-2: Cyclooxygenase-2; CPE: Cytopathic effect; DAPI: 4,6-Diamidino-2-phenylindole; DELFIA: Dissociation-enhanced lanthanide fluorescence immunoassay; DKPs: Diketopiperazines; DMSO: Dimethylsulfoxide; DPPH: 1,1-Diphenyl-2-picrylhydrazyl; DU-145: Human prostate cancer cell line; ED50: Effective dose 50; EGFR: Epidermal growth factor receptor; ERK: Extracellular signal-regulated protein kinase; EtOAc: Ethyl acetate; EtOH: Ethanol; EV71: Enterovirus 71; FASN: Fatty acid synthase; FRAP: Ferric reducing antioxidant power; FSW: Filtered seawater; Fyn: Proto-oncogene tyrosine-protein kinase; GREs: Glucocorticoid response elements; GW9662: Selective PPAR antagonist for PPARγ; H1974: Human colorectal cancer cell line; H3N2: Influenza A virus subtype H3N2; H446: Human small cell lung carcinoma; HCC70: Human breast cancer cells line; HCT-116: Human colon cancer cell line; HCT-15: Human colon cancer cell line; HCT-8: Human colorectal cancer cell line; HeLa: Human epithelioid cervix carcinoma cell line; HeLa S3: Human cervix carcinoma cell line; HepG-2: Human liver cancer cell line; HL-60: Human promyelocytic leukemia cell; HT-29: Human colorectal adenocarcinoma cell line; HTRF: Homogeneous time-resolved fluorescence assay; Huh-7: Differentiated hepatocyte-derived cellular carcinoma cell line; IC50: Half-maximal inhibitory concentration; IFNγ: Interferon γ; IL-2: Interleukin-2; IZD: Inhibition zone diameter; JNK: c-Jun NH2-terminal kinase; Jurkat: Human T lymphoblastic leukemia cell lines; K562: Human kidney cancer cell line; L02: Human hepatic cancer cell line; L1210: Mouse lymphocytic leukemia cell line; L5178Y: Murine lymphoma cell line; Lac: Laccase; LBD: Ligand binding domain; LC3-I, II: Microtubule-associated proteins 1A/1B light chain 3B; LC50: Lethal concentration 50; LCK: Lymphocyte-specific protein tyrosine kinase; LiP: Lignin peroxidase; LLC-PK1: Epithelial-like pig kidney cell line; LM3: Human hepatocellular carcinoma cell line; LNCap: Human prostate cancer cell line; LPS: Lipopolysaccharide; MCF-7: Breast cancer cell line; MDA-MB-231: Human breast cancer cell line; MDA-MB-435: Human breast cancer cell line; MDA-MB-468: Human breast cancer cell line; MDCK: Madin–Darby canine kidney; MD-MBA-231: Breast adenocarcinoma cell line; MeOH: Methanol; MGC-803: Human gastric carcinoma cell line; MIC: Minimum inhibitory concentration; MMP: Mitochondrial membrane potential; MnP: Manganese-dependent peroxidase; MOLT-4: T lymphoblast-acute lymphoblastic leukemia; MRCNS: Methicillin-resistant coagulase-negative Staphylococci; mRNA: Messenger ribonucleic acid; MRSA: Methicillin-resistant Staphylococcus aureus; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NAC: N-acetylcysteine; NCI-H460: Human lung carcinoma cell line; NF-kB: Nuclear factor Kappa B; NO: Nitric oxide; NRPSs: Non-ribosomal peptide synthetases; NS-398: N-[2-(cyclohexyloxy)-4-nitrophenyl]methanesulfonamide; OA: Oleic acid; OCI-AML3: Acute myeloid leukemia cell line; OSMAC: One strain many compounds; OVCAR-3: Human ovarian Cancer cell line; P0: PAX6 promoter; P1: PAX6 promoter; P21: N-Myc-cyclin-dependent kinase inhibitor 1A; p21waf1/cip1: Cyclin kinase inhibitor p21; P388: Mouse lymphocytic leukemia cell line; PANC-1: Human Pancreatic cancer cell line; PAX6: Paired box gene 6; PBMC: Peripheral blood mononuclear cell; PC-3: Human prostate carcinoma cell line; PG: Polygalacturonase; PGF2α: Prostaglandin F2α; PKA: cAMP-dependent protein kinase; PKC: Protein kinase C; PMA: Phorbol 12-myristate 13-acetate; PME: Pectin methylesterase; PPARγ: Peroxisome proliferator-activated receptor γ; PPRE: Peroxisome proliferator-activated receptor response element; PTP: Protein tyrosine phosphatase; Pα: PAX6 promoter; RHO: Rhodopsin; RSV: Respiratory syncytial virus; RWPE-1: Human normal prostate epithelial cell; SAR: Structure–activity relationship; SF-268: Human glioblastoma cell line; SGC-7901: Human gastric cancer cell line; SH-SY5Y: Human neuroblastoma cell line; SK-BR-3: Human Breast cancer cell line; SMMC-7721: Human hepatoma carcinoma cell line; SPR: Surface plasmon resonance; SRB: Sulforhodamine B; SREBP1: Sterol regulatory element binding transcription factor 1; SW1116: Human colon cancer cell line; SW1990: Human pancreatic adenocarcinoma cell line; T47D: Human breast cancer cell line; TC: Total cholesterol; TC50: Half toxic concentration; TCF: T cell factor; TCPTP: T Cell protein tyrosine phosphatase; TG: Total triglyceride; TRF: Time-resolved fluorescence; U937: Human myeloid leukaemia cell line; WERI: Retinoblastoma cell line; WST-1: (4-[3-4-Iodophenyl]-2-(4-nitrophenyl)-2H-5-tetrazolio)-1,3-benzene disulfonate); Y-79: Retinoblastoma cell line.

References

  1. Townsed, M.; Davies, K.; Hanley, N.; Hewitt, J.E.; Lundquist, C.J.; Lohrer, A.M. The challenge of implementing the marine ecosystem service concept. Front. Mar. Sci. 2018, 5, 359. [Google Scholar] [CrossRef] [Green Version]
  2. Boeuf, G. Marine biodiversity characteristics. C. R. Biol. 2011, 334, 435–440. [Google Scholar] [CrossRef] [PubMed]
  3. Donato, P.D.; Buono, A.; Poli, A.; Finore, I.; Abbamondi, G.R.; Nicolaus, B.; Lama, L. Exploring marine environments for the identification of extremophiles and their enzymes for sustainable and green bioprocesses. Sustainability 2019, 11, 149. [Google Scholar] [CrossRef] [Green Version]
  4. Bonugli-Santos, R.C.; Dos Santos Vasconcelos, M.R.; Passarini, M.R.; Vieira, G.A.; Lopes, V.C.; Mainardi, P.H.; Dos Santos, J.A.; de Azevedo Duarte, L.; Otero, I.V.; da Silva Yoshida, A.M.; et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol. 2015, 6, 269. [Google Scholar] [CrossRef] [PubMed]
  5. Varrella, S.; Barone, G.; Tangherlini, M.; Rastelli, E.; Dell’Anno, A.; Corinaldesi, C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J. Fungi 2021, 7, 391. [Google Scholar] [CrossRef] [PubMed]
  6. Lindequist, U. Marine-derived pharmaceuticals-challenges and opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [Google Scholar]
  8. Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012, 19, 85–98. [Google Scholar] [CrossRef] [Green Version]
  9. Retter, A.; Nilsson, R.H.; Bourlat, S.J. Exploring the taxonomic composition of two fungal communities on the Swedish west coast through metabarcoding. Biodivers. Data J. 2019, 7, e35332. [Google Scholar] [CrossRef] [Green Version]
  10. Fan, B.; Parrot, D.; Blümel, M.; Labes, A.; Tasdemir, D. Influence of OSMAC-based cultivation in metabolome and anticancer activity of fungi associated with the brown alga Fucus Vesiculosus. Mar. Drugs 2019, 17, 67. [Google Scholar] [CrossRef] [Green Version]
  11. Furbino, L.E.; Pellizzari, F.M.; Neto, P.C.; Rosa, C.A.; Rosa, L.H. Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biol. 2018, 41, 527–535. [Google Scholar] [CrossRef]
  12. Panno, L.; Bruno, M.; Voyron, S.; Anastasi, A.; Gnavi, G.; Miserere, L.; Varese, G.C. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia Oceanica. New Biotechnol. 2013, 30, 685–694. [Google Scholar] [CrossRef]
  13. Jones, E.B.G.; Sakayaroj, J.; Suetrong, S.; Somrithipol, S.; Pang, K.L. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers. 2009, 35, 187. [Google Scholar]
  14. Jones, E.B.G. Are there more marine fungi to be described? Bot. Mar. 2011, 54, 343–354. [Google Scholar] [CrossRef]
  15. Marinefungi. Available online: https://www.marinefungi.org/ (accessed on 9 November 2021).
  16. Hasan, S.; Ansari, M.I.; Ahmad, A.; Mishra, M. Major bioactive metabolites from marine fungi: A Review. Bioinformation 2015, 11, 176–181. [Google Scholar] [CrossRef]
  17. Jayawardena, R.S.; Hyde, K.D.; Chen, Y.J.; Papp, V.; Palla, B.; Papp, D.; Bhunjun, C.S.; Hurdeal, V.G.; Senwanna, C.; Manawasinghe, I.S.; et al. One stop shop IV: Taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). Fungal Divers. 2020, 103, 87–218. [Google Scholar] [CrossRef]
  18. Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef] [Green Version]
  19. Levetin, E.; Dorsey, K. Contribution of leaf surface fungi to the air spora. Aerobiologia 2006, 22, 3–12. [Google Scholar] [CrossRef]
  20. Heuchert, B.; Braun, U.; ScHuBert, K. Morphotaxonomic revision of fungi-colous Cladosporium species (hyphomycetes). Schlechtendalia 2005, 13, 1–78. [Google Scholar]
  21. Bensch, K.; Groenewald, J.Z.; Meijer, M.; Dijksterhuis, J.; Jurjević, Ž.; Andersen, B.; Houbraken, J.; Crous, P.W.; Samson, R.A. Cladosporium species in indoor environments. Stud. Mycol. 2018, 89, 177–301. [Google Scholar]
  22. El-Dawy, E.G.A.E.M.; Gherbawy, Y.A.; Hussein, M.A. Morphological, molecular characterization, plant pathogenicity and biocontrol of Cladosporium complex groups associated with faba beans. Sci. Rep. 2021, 11, 14183. [Google Scholar] [CrossRef] [PubMed]
  23. Denning, D.W.; O’Driscoll, B.R.; Hogaboam, C.M.; Bowyer, P.; Niven, R.M. The link between fungi and severe asthma: A summary of the evidence. Eur. Resp. J. 2006, 27, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Van Kan, J.A.; Van den Ackerveken, G.F.J.M.; De Wit, P.J.G.M. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol. Plant Microbe Interact. 1991, 4, 52–59. [Google Scholar] [CrossRef] [PubMed]
  25. Batra, N.; Kaur, H.; Mohindra, S.; Singh, S.; Shamanth, A.S.; Rudramurthy, S.M. Cladosporium sphaerospermum causing brain abscess, a saprophyte turning pathogen: Case and review of published reports. J. Mycol. Med. 2019, 29, 180–184. [Google Scholar] [CrossRef]
  26. Sandoval-Denis, M.; Gené, J.; Sutton, D.A.; Wiederhold, N.P.; Cano-Lira, J.F.; Guarro, J. New species of Cladosporium associated with human and animal infections. Persoonia 2016, 36, 281–298. [Google Scholar] [CrossRef] [Green Version]
  27. Simon-Nobbe, B.; Denk, U.; Pöll, V.; Rid, R.; Breitenbach, M. The spectrum of fungal allergy. Int. Arch. Allergy Immunol. 2008, 145, 58–86. [Google Scholar] [CrossRef] [Green Version]
  28. De Hoog, G.S.; Guarro, J.; Gené, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; Centraalbureau voor Schimmelcultures (CBS): Utrecht, The Netherlands, 2000. [Google Scholar]
  29. Hamayun, M.; Khan, S.A.; Ahmad, N.; Tang, D.S.; Kang, S.M.; Na, C.I.; Sohn, E.Y.; Hwang, Y.H.; Shin, D.H.; Lee, B.H.; et al. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol. 2009, 25, 627–632. [Google Scholar] [CrossRef]
  30. Sellart-Altisent, M.; Torres-Rodríguez, J.M.; Gómez de Ana, S.; Alvarado-Ramírez, E. Microbiota fúngica nasal en sujetos alérgicos y sanos [Nasal fungal microbiota in allergic and healthy subjects]. Rev. Iberoam. Micol. 2007, 24, 125–130. [Google Scholar] [CrossRef]
  31. Sandoval-Denis, M.; Sutton, D.A.; Martin-Vicente, A.; Cano-Lira, J.F.; Wiederhold, N.; Guarro, J.; Gené, J. Cladosporium species recovered from clinical samples in the United States. J. Clin. Microbiol. 2015, 53, 2990–3000. [Google Scholar] [CrossRef] [Green Version]
  32. Sun, J.Z.; Liu, X.Z.; McKenzie, E.H.C.; Jeewon, R.; Liu, J.K.; Zhang, X.L.; Zhao, Q.; Hyde, K.D. Fungicolous fungi: Terminology, diversity, distribution, evolution and species checklist. Fungal Divers. 2019, 95, 337–430. [Google Scholar] [CrossRef]
  33. Torres, D.E.; Rojas-Martínez, R.I.; Zavaleta-Mejia, E.; Guevara-Fefer, P.; Márquez-Guzmán, G.J.; Perez-Martinez, C. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of Chrysanthemum white rust. PLoS ONE 2017, 12, e0170782. [Google Scholar] [CrossRef] [Green Version]
  34. Jashni, M.K.; van der Burgt, A.; Battaglia, E.; Mehrabi, R.; Collemare, J.; de Wit, P.J. Transcriptome and proteome analyses of proteases in biotroph fungal pathogen Cladosporium fulvum. J. Plant Pathol. 2020, 102, 377–386. [Google Scholar] [CrossRef]
  35. Ge, J.; Yin, Y.; Jiang, X.; Liu, W.; Yao, B.; Luo, H. Gene cloning and characterization of a novel glucose oxidase from Cladosporium tianshanense SL19. J. Agric. Sci. Technol. 2019, 12, 49–57. [Google Scholar]
  36. Amin, M.; Zhang, X.Y.; Xu, X.Y.; Qi, S.H. New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Nat. Prod. Res. 2020, 34, 1219–1226. [Google Scholar] [CrossRef]
  37. Pan, F.; El-Kashef, D.H.; Kalscheuer, R.; Müller, W.E.G.; Lee, J.; Feldbrügge, M.; Mándi, A.; Kurtán, T.; Liu, Z.; Wu, W.; et al. New hybrid polyketides from the endophytic fungus Cladosporium sphaerospermum WBS017. Eur. J. Med. Chem. 2020, 191, 112159. [Google Scholar] [CrossRef]
  38. Rischer, M.; Lee, S.R.; Eom, H.J.; Park, H.B.; Vollmers, J.; Kaster, A.-K.; Shin, Y.-H.; Oh, D.-C.; Kim, K.H.; Beemelmanns, C. Spirocyclic cladosporicin A and cladosporiumins I and J from a Hydractinia-associated Cladosporium sphaerospermum SW67. Org. Chem. Front. 2019, 6, 1084–1093. [Google Scholar] [CrossRef]
  39. Zhang, F.Z.; Li, X.M.; Yang, S.Q.; Meng, L.H.; Wang, B.G. Thiocladospolides A-D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3. J. Nat. Prod. 2019, 82, 1535–1541. [Google Scholar] [CrossRef]
  40. Zhang, F.Z.; Li, X.M.; Li, X.; Yang, S.Q.; Meng, L.H.; Wang, B.G. Polyketides from the mangrove-derived endophytic fungus Cladosporium cladosporioides. Mar. Drugs 2019, 17, 296. [Google Scholar] [CrossRef] [Green Version]
  41. Zhu, M.; Gao, H.; Wu, C.; Zhu, T.; Che, Q.; Gu, Q.; Guo, P.; Li, D. Lipid-lowering polyketides from a soft coral-derived fungus Cladosporium sp. TZP29. Bioorg. Med. Chem. Lett. 2015, 25, 3606–3609. [Google Scholar] [CrossRef]
  42. Wu, G.; Sun, X.; Yu, G.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod. 2014, 77, 270–275. [Google Scholar] [CrossRef]
  43. Birolli, W.G.; Zanin, L.L.; Jimenez, D.E.Q.; Porto, A.L.M. Synthesis of Knoevenagel adducts under microwave irradiation and biocatalytic ene-reduction by the marine-derived fungus Cladosporium sp. CBMAI 1237 for the production of 2-cyano-3-phenylpropanamide derivatives. Mar. Biotechnol. 2020, 22, 317–330. [Google Scholar] [CrossRef]
  44. Birolli, W.G.; de Santos, A.D.; Alvarenga, N.; Garcia, A.C.F.S.; Romão, L.P.C.; Porto, A.L.M. Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar. Pollut. Bull. 2018, 129, 525–533. [Google Scholar] [CrossRef]
  45. Gil-Durán, C.; Ravanal, M.C.; Ubilla, P.; Vaca, I.; Chávez, R. Heterologous expression, purification and characterization of a highly thermolabile endoxylanase from the Antarctic fungus Cladosporium sp. Fungal Biol. 2018, 122, 875–882. [Google Scholar] [CrossRef]
  46. Taskin, M.; Ortucu, S.; Unver, Y.; Tasar, O.C.; Ozdemir, M.; Kaymak, H.C. Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf. Environ. Prot. 2016, 103, 136–143. [Google Scholar] [CrossRef]
  47. Trivedi, N.; Reddy, C.; Radulovich, R.; Jha, B. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res. 2015, 9, 48–54. [Google Scholar] [CrossRef]
  48. Del-Cid, A.; Ubilla, P.; Ravanal, M.C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez, R. Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl. Biochem. Biotechnol. 2014, 172, 524–532. [Google Scholar] [CrossRef]
  49. Bastos, S.C.; Pimenta, C.J.; Dias, D.R.; Chalfoun, S.M.; Ange’lico, C.L.; Tavares, L.S. Pectinases from a new strain of Cladosporium cladosporioides (Fres.) De Vries isolated from coffee bean. World J. Agric. Sci. 2013, 9, 167–172. [Google Scholar]
  50. Bonugli-Santos, R.C.; Durrant, L.R.; da Silva, M.; Sette, L.D. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb. Technol. 2010, 46, 32–37. [Google Scholar] [CrossRef]
  51. Duarte, A.W.F.; Dayo-Owoyemi, I.; Nobre, F.S.; Pagnocca, F.C.; Chaud, L.C.S.; Pessoa, A.; Felipe, M.G.; Sette, L.D. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 2013, 17, 1023–1035. [Google Scholar] [CrossRef]
  52. Ball, A.; Truskewycz, A. Polyaromatic hydrocarbon exposure: An ecological impact ambiguity. Environ. Sci. Pollut. Res. 2013, 20, 4311–4326. [Google Scholar] [CrossRef]
  53. Lee, S.R.; Lee, D.; Eom, H.J.; Rischer, M.; Ko, Y.-J.; Kang, K.S.; Kim, C.S.; Beemelmanns, C.; Kim, K.H. Hybrid polyketides from a Hydractinia-associated Cladosporium sphaerospermum SW67 and their putative biosynthetic origin. Mar. Drugs 2019, 17, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Yu, G.H.; Wu, G.W.; Zhu, T.J.; Gu, Q.Q.; Li, D.H. Cladosins F and G, two new hybrid polyketides from the deep-sea-derived Cladosporium sphaerospermum 2005-01-E3. J. Asian Nat. Prod. Res. 2015, 17, 120–124. [Google Scholar] [CrossRef] [PubMed]
  55. Zhang, Z.; He, X.; Wu, G.; Liu, C.; Lu, C.; Gu, Q.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Aniline-tetramic acids from the deep-sea-derived fungus Cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA. J. Nat. Prod. 2018, 81, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
  56. Zhu, G.; Kong, F.; Wang, Y.; Fu, P.; Zhum, W. Cladodionen, a cytotoxic hybrid polyketide from the marine-derived Cladosporium sp. OUCMDZ-1635. Mar. Drugs 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
  57. Liang, X.; Huang, Z.H.; Ma, X.; Qi, S.H. Unstable tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sphaerospermum EIODSF 008. Mar. Drugs 2018, 16, 448. [Google Scholar] [CrossRef] [Green Version]
  58. Huang, Z.-H.; Nong, X.-H.; Liang, X.; Qi, S.-H. New tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z0025. Tetrahedron 2018, 74, 2620–2626. [Google Scholar] [CrossRef]
  59. Ding, L.; Qin, S.; Li, F.; Chi, X.; Laatsch, H. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis. Curr. Microbiol. 2008, 56, 229–235. [Google Scholar] [CrossRef]
  60. Qi, S.-H.; Xu, Y.; Xiong, H.-R.; Qian, P.-Y.; Zhang, S. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J. Microbiol. Biotechnol. 2009, 25, 399–406. [Google Scholar] [CrossRef]
  61. Pang, X.; Lin, X.; Wang, J.; Liang, R.; Tian, Y.; Salendra, L.; Luo, X.; Zhou, X.; Yang, B.; Tu, Z.; et al. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007. Steroids 2018, 129, 41–46. [Google Scholar] [CrossRef]
  62. Gu, B.; Zhang, Y.; Ding, L.; He, S.; Wu, B.; Dong, J.; Zhu, P.; Chen, J.; Zhang, J.; Yan, X. Preparative separation of sulfur-containing diketopiperazines from marine fungus Cladosporium sp. using high-speed counter-current chromatography in stepwise elution mode. Mar. Drugs 2015, 13, 354–365. [Google Scholar] [CrossRef] [Green Version]
  63. Manríquez, V.; Galdámeza, A.; Veliz, B.; Rovirosa, J.; Díaz-Marrero, A.R.; Cueto, M.; Darias, J.; Martínez, C.; San-Martín, A. N-methyl-1H-indole-2-carboxamide from the marine fungus Cladosporium cladosporioides. J. Chil. Chem. Soc. 2009, 54, 314–316. [Google Scholar] [CrossRef] [Green Version]
  64. Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J. Nat. Prod. 2013, 76, 1133–1140. [Google Scholar] [CrossRef]
  65. Yang, G.; Nenkep, V.N.; Siwe, X.N.; Leutou, A.S.; Feng, Z.H.; Zhang, D.; Choi, H.D.; Kang, J.S.; Son, B.W. An acetophenone derivative, clavatol, and a benzodiazepine alkaloid, circumdatin A, from the marine-derived fungus Cladosporium. Nat. Prod. Sci. 2009, 15, 130–133. [Google Scholar]
  66. Kyeremeh, K.; Owusu, K.B.-A.; Ofosuhene, M.; Ohashi, M.; Agyapong, J.; Camas, A.S.; Camas, M. Anti-proliferative and antiplasmodia activity of quinolactacin A2, citrinadin A and butrecitrinadin co-isolated from a Ghanaian mangrove endophytic fungus Cladosporium oxysporum strain BRS2A-AR2F. J. Chem. Appl. 2017, 3, 12. [Google Scholar]
  67. Wang, P.; Cui, Y.; Cai, C.; Chen, H.; Dai, Y.; Chen, P.; Kong, F.; Yuan, J.; Song, X.; Mei, W.; et al. Two new succinimide derivatives cladosporitins A and B from the mangrove-derived fungus Cladosporium sp. HNWSW-1. Mar. Drugs 2019, 17, 4. [Google Scholar] [CrossRef] [Green Version]
  68. Rotinsulu, H.; Yamazaki, H.; Sugai, S.; Iwakura, N.; Wewengkang, D.S.; Sumilat, D.A.; Namikoshi, M. Cladosporamide A, a new protein tyrosine phosphatase 1B inhibitor, produced by an Indonesian marine sponge-derived Cladosporium sp. J. Nat. Med. 2018, 72, 779–783. [Google Scholar] [CrossRef]
  69. Cao, F.; Yang, Q.; Shao, C.L.; Kong, C.J.; Zheng, J.J.; Liu, Y.F.; Wang, C.Y. Bioactive 7-oxabicyclic[6.3.0]lactam and 12-membered macrolides from a gorgonian-derived Cladosporium sp. fungus. Mar. Drugs 2015, 13, 4171–4178. [Google Scholar] [CrossRef] [Green Version]
  70. Huang, C.; Chen, T.; Yan, Z.; Guo, H.; Hou, X.; Jiang, L.; Long, Y. Thiocladospolide E and cladospamide A, novel 12-membered macrolide and macrolide lactam from mangrove endophytic fungus Cladosporium sp. SCNU-F0001. Fitoterapia 2019, 137, 104246. [Google Scholar] [CrossRef]
  71. Bai, M.; Zheng, C.J.; Tang, D.Q.; Zhang, F.; Wang, H.Y.; Chen, G.Y. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JS1-2. J. Antibiot. 2019, 72, 779–782. [Google Scholar] [CrossRef]
  72. Zhang, H.; Tomoda, H.; Tabata, N.; Miura, H.; Namikoshi, M.; Yamaguchi, Y.; Masuma, R.; Omura, S. Cladospolide D, a new 12-membered macrolide antibiotic produced by Cladosporium sp. FT-0012. J. Antibiot. 2001, 54, 635–641. [Google Scholar] [CrossRef] [Green Version]
  73. Wuringege Guo, Z.K.; Wei, W.; Jiao, R.H.; Yan, T.; Zang, L.Y.; Jiang, R.; Tan, R.X.; Ge, H.M. Polyketides from the plant endophytic fungus Cladosporium sp. IFB3lp-2. J. Asian Nat. Prod. Res. 2013, 15, 928–933. [Google Scholar] [CrossRef]
  74. Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono Berg, A.; Gräfe, U. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J. Nat. Prod. 2001, 64, 527–530. [Google Scholar] [CrossRef]
  75. He, Z.H.; Zhang, G.; Yan, Q.X.; Zou, Z.B.; Xiao, H.X.; Xie, C.L.; Tang, X.X.; Luo, L.Z.; Yang, X.W. Cladosporactone A, a unique polyketide with 7-methylisochromen-3-one skeleton from the deep-sea-derived fungus Cladosporium cladosporioides. Chem. Biodivers. 2020, 17, e2000158. [Google Scholar] [CrossRef]
  76. Gao, C.H.; Nong, X.H.; Qi, S.H.; Luo, X.M.; Zhang, S.; Xiong, H.R. A new nine-membdered lactone from a marine fungus Cladosporium sp. F14. Chin. Chem. Lett. 2010, 21, 1355–1357. [Google Scholar] [CrossRef]
  77. Gesner, S.; Cohen, N.; Ilan, M.; Yarden, O.; Carmeli, S. Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J. Nat. Prod. 2005, 68, 1350–1353. [Google Scholar] [CrossRef]
  78. Wang, W.; Feng, H.; Sun, C.; Che, Q.; Zhang, G.; Zhu, T.; Li, D. Thiocladospolides F-J, antibacterial sulfur containing 12-membered macrolides from the mangrove endophytic fungus Cladosporium oxysporum HDN13-314. Phytochemistry 2020, 178, 112462. [Google Scholar] [CrossRef]
  79. Zhang, F.Z.; Li, X.M.; Meng, L.H.; Wang, B.G. Cladocladosin A, an unusual macrolide with bicyclo 5/9 ring system, and two thiomacrolides from the marine mangrove-derived endophytic fungus, Cladosporium cladosporioides MA-299. Bioorg. Chem. 2020, 101, 103950. [Google Scholar] [CrossRef]
  80. Shigemori, H.; Kasai, Y.; Komatsu, K.; Tsuda, M.; Mikami, Y.; Kobayashi, J. Sporiolides A and B, new cytotoxic twelve-membered macrolides from a marine-derived fungus Cladosporium pecies. Mar. Drugs 2004, 2, 164–169. [Google Scholar] [CrossRef] [Green Version]
  81. Peng, X.; Wang, Y.; Zhu, G.; Zhu, W. Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides. Magn. Reson. Chem. 2018, 56, 18–24. [Google Scholar] [CrossRef]
  82. Ai, W.; Lin, X.; Wang, Z.; Lu, X.; Mangaladoss, F.; Yang, X.; Zhou, X.; Tu, Z.; Liu, Y. Cladosporone A, a new dimeric tetralone from fungus Cladosporium sp. KcFL6’ derived of mangrove plant Kandelia candel. J. Antibiot. 2015, 68, 213–215. [Google Scholar] [CrossRef]
  83. Zhang, Z.; He, X.; Liu, C.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Clindanones A and B and cladosporols F and G, polyketides from the deep-sea derived fungus Cladosporium cladosporioides HDN14-342. RSC Adv. 2016, 6, 76498–76504. [Google Scholar] [CrossRef]
  84. Li, H.L.; Li, X.M.; Mándi, A.; Antus, S.; Li, X.; Zhang, P.; Liu, Y.; Kurtán, T.; Wang, B.G. Characterization of cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides en-399 and configurational revision of the previously reported cladosporol derivatives. J. Org. Chem. 2017, 82, 9946–9954. [Google Scholar] [CrossRef] [PubMed]
  85. Zhang, F.; Zhou, L.; Kong, F.; Ma, Q.; Xie, Q.; Li, J.; Dai, H.; Guo, L.; Zhao, Y. Altertoxins with quorum sensing inhibitory activities from the marine-derived fungus Cladosporium sp. KFD33. Mar. Drugs 2020, 18, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Zhen, F.; Zhang-hua, S.; Yu-chan, C.; Hao-hua, L.; Wei-min, Z. Cladosperanol A, a new dimeric tetralone from marine-derived fungus cladosporium perangustum. Nat. Prod. Res. Dev. 2016, 28, 486–489. [Google Scholar]
  87. Fan, Z.; Sun, Z.H.; Liu, H.X.; Chen, Y.C.; Li, H.H.; Zhang, W.M. Perangustols A and B, a pair of new azaphilone epimers from a marine sediment-derived fungus Cladosporium perangustm FS62. J. Asian Nat. Prod. Res. 2016, 18, 1024–1029. [Google Scholar] [CrossRef]
  88. Wu, J.T.; Zheng, C.J.; Zhang, B.; Zhou, X.M.; Zhou, Q.; Chen, G.Y.; Zeng, Z.E.; Xie, J.L.; Han, C.R.; Lyu, J.X. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JJM22. Nat. Prod. Res. 2019, 33, 34–40. [Google Scholar] [CrossRef]
  89. Fan, C.; Zhou, G.; Wang, W.; Zhang, G.; Zhu, T.; Che, Q.; Li, D. Tetralone derivatives from a deep-sea derived fungus Cladosporium sp. HDN17-58. Nat. Prod. Commun. 2021, 16, 1934578X211008322. [Google Scholar] [CrossRef]
  90. Ma, R.-Z.; Zheng, C.-J.; Zhang, B.; Yang, J.-Y.; Zhou, X.-M.; Song, X.-M. Two New naphthalene-chroman coupled derivatives from the mangrove-derived fungus Cladosporium sp. JJM22. Phytochem. Lett. 2021, 43, 114–116. [Google Scholar] [CrossRef]
  91. Li, Z.; Yang, J.Y.; Caj, J.; Ouyang, Z.J.; Zhou, C.H.; Chen, G.Y.; Zhou, X.M. Study on secondary metabolites of endophytic fungus Cladosporium sp. JJM22 hosted in Ceriops tagal. Zhongguo Zhong Yao Za Zhi 2021, 46, 2079–2083. [Google Scholar]
  92. Wang, C.N.; Lu, H.M.; Gao, C.H.; Guo, L.; Zhan, Z.Y.; Wang, J.J.; Liu, Y.H.; Xiang, S.T.; Wang, J.; Luo, X.W. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502. Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
  93. Silber, J.; Ohlendorf, B.; Labes, A.; Wenzel-Storjohann, A.; Näther, C.; Imhoff, J.F. Malettinin E, an antibacterial and antifungal tropolone produced by a marine Cladosporium strain. Front. Mar. Sci. 2014, 1, 35. [Google Scholar] [CrossRef] [Green Version]
  94. Liu, Y.; Kurtán, T.; Yun Wang, C.; Han Lin, W.; Orfali, R.; Müller, W.E.; Daletos, G.; Proksch, P. Cladosporinone, a new viriditoxin derivative from the hypersaline lake derived fungus Cladosporium cladosporioides. J. Antibiot. 2016, 69, 702–706. [Google Scholar] [CrossRef]
  95. Wang, L.; Han, X.; Zhu, G.; Wang, Y.; Chairoungdua, A.; Piyachaturawat, P.; Zhum, W. Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha. Front. Chem. 2018, 6, 344. [Google Scholar] [CrossRef]
  96. Jadulco, R.; Brauers, G.; Edrada, R.A.; Ebel, R.; Wray, V.; Sudarsono, S.; Proksch, P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod. 2002, 65, 730–733. [Google Scholar] [CrossRef]
  97. Zhang, B.; Wu, J.T.; Zheng, C.J.; Zhou, X.M.; Yu, Z.X.; Li, W.S.; Chen, G.Y.; Zhu, G.Y. Bioactive cyclohexene derivatives from a mangrove-derived fungus Cladosporium sp. JJM22. Fitoterapia 2021, 149, 104823. [Google Scholar] [CrossRef]
  98. San-Martin, A.; Painemal, K.; Diaz, Y.; Martinez, C.; Rovirosa, J. Metabolites from the marine fungus Cladosporium cladosporioides. J. Argent. Chem. Soc. 2005, 93, 247–251. [Google Scholar]
  99. Kuznetsova, T.A.; Afiyatullov, S.A.; Denisenko, V.A.; Pivkin, M.V.; Elyakov, G.B. Sterols from a marine isolate of the fungus Cladosporium sphaerospermum Penz. Biochem. Syst. Ecol. 1998, 26, 365–366. [Google Scholar] [CrossRef]
  100. Yu, M.L.; Guan, F.F.; Cao, F.; Jia, Y.L.; Wang, C.Y. A new antiviral pregnane from a gorgonian-derived Cladosporium sp. fungus. Nat. Prod. Res. 2018, 32, 1260–1266. [Google Scholar] [CrossRef]
  101. Lee, S.R.; Kang, H.; Yoo, M.J.; Yu, J.S.; Lee, S.; Yi, S.A.; Beemelmanns, C.; Lee, J.; Kim, K.H. Anti-adipogenic pregnane steroid from a Hydractinia-associated fungus, Cladosporium sphaerospermum SW67. Nat. Prod. Sci. 2020, 26, 230–235. [Google Scholar]
  102. Gallo, M.L.; Seldes, A.M.; Cabrera, G.M. Antibiotic long-chain and α,β-unsaturated aldehydes from the culture of the marine fungus Cladosporium sp. Biochem. Syst. Ecol. 2004, 32, 545–551. [Google Scholar] [CrossRef]
  103. AlMatar, M.; Makky, E.A. Cladosporium cladosporioides from the perspectives of medical and biotechnological approaches. 3 Biotech 2016, 6, 4. [Google Scholar] [CrossRef] [Green Version]
  104. Armisén, R.; Galatas, F.; Hispanagar, A.S. Agar. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Cambridge, UK, 2000; pp. 21–40. [Google Scholar]
  105. Wang, J.; Jiang, X.; Mou, H.; Guan, H. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol. 2004, 16, 333–340. [Google Scholar] [CrossRef]
  106. Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med. 2013, 58, 187–205. [Google Scholar] [CrossRef] [Green Version]
  107. Ibrahim, S.R.M.; Mohamed, S.G.A.; Altyar, A.E.; Mohamed, G.A. Natural products of the fungal genus Humicola: Diversity, biological activity, and industrial importance. Curr. Microbiol. 2021, 78, 2488–2509. [Google Scholar] [CrossRef]
  108. Ibrahim, S.R.M.; Mohamed, S.G.A.; Sindi, I.A.; Mohamed, G.A. Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): An updated review from 2016 to 2021. Mycol. Prog. 2021, 20, 595–639. [Google Scholar] [CrossRef]
  109. Ibrahim, S.R.M.; Mohamed, S.G.A.; Altyar, A.E.; Mohamed, G.A. Genus Thielavia: Phytochemicals, industrial importance and biological relevance. Nat. Prod. Res. 2021, 1–16. [Google Scholar] [CrossRef]
  110. Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microb. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. D’Souza, D.T.; Tiwari, R.; Sah, A.K.; Raghukumara, C. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym. Microb. Technol. 2006, 38, 504–511. [Google Scholar] [CrossRef]
  112. Kuwahara, M.; Glenn, J.K.; Morgan, M.A.; Gold, M.H. Separation and characterization of two extracellular H2O2 dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1984, 169, 247–250. [Google Scholar] [CrossRef] [Green Version]
  113. Raghukumar, C.; Muraleedharan, U.; Gaud, V.R.; Mishra, R. Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavusisolated from a marine habitat. Enzym. Microb. Technol. 2004, 35, 197–202. [Google Scholar] [CrossRef]
  114. Da Silva, M.; Passarini, M.R.Z.; Bonugli, R.C.; Sette, L.D. Cnidarian-derived filamentous fungi from Brazil: Isolation, characterisation and RBBR decolourisation screening. Environ. Technol. 2008, 29, 1331–1339. [Google Scholar] [CrossRef]
  115. Panno, L.; Voyron, S.; Anastasi, A.; Mussat Sarto, R.; Varese, G.C. Biodiversity of marine fungi associated with the seagrass Posidonia oceanica: An ecological and biotechnological perspective. Biol. Mar. Mediterr. 2011, 18, 85–88. [Google Scholar]
  116. Taskin, M.; Esim, N.; Genisel, M.; Ortucu, S.; Hasenekoglu, I.; Canli, O.; Erdal, S. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields. Prep. Biochem. Biotechnol. 2013, 43, 177–188. [Google Scholar] [CrossRef]
  117. Veana, F.; Martínez-Hernández, J.L.; Aguilar, N.; Rodríguez-Herrera, R.; Michelena, G. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz. J. Microbiol. 2014, 5, 373–377. [Google Scholar] [CrossRef] [Green Version]
  118. Yadav, S.; Chandra, R. Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation 2012, 23, 609–620. [Google Scholar] [CrossRef]
  119. Gavrilescua, M.; Chisti, Y. Biotechnology-a sustainable alternative for chemical industry. Biotechnol. Adv. 2005, 23, 471–499. [Google Scholar] [CrossRef]
  120. Winkler, C.K.; Faber, K.; Hall, M. Biocatalytic reduction of activated C=C-bonds and beyond: Emerging trends. Curr. Opin. Chem. Biol. 2018, 43, 97–105. [Google Scholar] [CrossRef]
  121. Garzon-Posse, F.; Becerra-Figueroa, L.; Hernandez-Arias, J.; Gamba-Sanchez, D. Whole cells as biocatalysts in organic transformations. Molecules 2018, 23, 1265. [Google Scholar] [CrossRef] [Green Version]
  122. Khare, R.; Pandey, J.; Smriti, R.R. The importance and applications of Knoevenagel reaction (brief review). Orient. J. Chem. 2019, 35, 423–429. [Google Scholar] [CrossRef]
  123. Rocha, L.C.; Ferreira, H.V.; Luiz, R.F.; Sette, L.D.; Porto, A.L. Stereoselective bioreduction of 1-(4-methoxyphenyl) ethanone by whole cells of marine-derived fungi. Mar. Biotechnol. 2012, 14, 358–362. [Google Scholar] [CrossRef]
  124. Rocha, L.C.; Seleghim, M.H.R.; Comasseto, J.V.; Sette, L.D.; Porto, A.L.M. Stereoselective bioreduction of alpha-azido ketones by whole cells of marine-derived fungi. Mar. Biotechnol. 2015, 17, 736–742. [Google Scholar] [CrossRef] [PubMed]
  125. Athanasellis, G.; Igglessi-Markopoulou, O.; Markopoulos, J. Tetramic and tetronic acids as scaffolds in bioinorganic and bioorganic chemistry. Bioinorg. Chem. Appl. 2010, 2010, 315056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  126. Royles, B.J.L. Naturally occurring tetramic acids: Structure, isolation, and synthesis. Chem. Rev. 1995, 95, 1981–2001. [Google Scholar] [CrossRef]
  127. Mo, X.; Li, Q.; Ju, J. Naturally occurring tetramic acid products: Isolation, structure elucidation and biological activity. RSC Adv. 2014, 4, 50566–50593. [Google Scholar] [CrossRef]
  128. Jiang, M.; Chen, S.; Li, J.; Liu, L. The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar. Drugs 2020, 18, 114. [Google Scholar] [CrossRef] [Green Version]
  129. Gomes, N.G.M.; Pereira, R.B.; Andrade, P.B.; Valentao, P. Double the chemistry, double the fun: Structural diversity and biological activity of marine-derived diketopiperazine dimers. Mar. Drugs 2019, 17, 551. [Google Scholar] [CrossRef] [Green Version]
  130. Huang, R.M.; Yi, X.X.; Zhou, Y.Y.; Su, X.D.; Peng, Y.; Gao, C.H. An update on 2,5-diketopiperazines from marine organisms. Mar. Drugs 2014, 12, 6213–6235. [Google Scholar] [CrossRef]
  131. Borgman, P.; Lopez, R.D.; Lane, A.L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem. 2019, 17, 2305–2314. [Google Scholar] [CrossRef]
  132. Song, Z.; Hou, Y.; Yang, Q.; Li, X.; Wu, S. Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar. Drugs 2021, 19, 403. [Google Scholar] [CrossRef]
  133. Urban, S.; Hickford, S.J.H.; Blunt, J.W.; Munro, M.H.G.; Yue, Y.F.; Chang, Q.H.; Zhu, H.J.; Cao, F. Bioactive marine alkaloids. Curr. Org. Chem. 2000, 4, 765–807. [Google Scholar] [CrossRef]
  134. Meng, Z.H.; Sun, T.T.; Zhao, G.Z.; Yue, Y.-F.; Chang, Q.-H.; Zhu, H.-J.; Cao, F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. Mar. Life Sci. Technol. 2021, 3, 44–61. [Google Scholar] [CrossRef]
  135. Islam, M.T.; Mubarak, M.S. Pyrrolidine alkaloids and their promises in pharmacotherapy. Adv. Tradit. Med. 2020, 20, 13–22. [Google Scholar] [CrossRef]
  136. Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs 2015, 13, 4814–4914. [Google Scholar] [CrossRef] [Green Version]
  137. Woodward, R.B. Struktur und biogenese der makrolide. Angew. Chem. 1957, 69, 50–58. [Google Scholar] [CrossRef]
  138. Janas, A.; Przybylski, P. 14- and 15-membered lactone macrolides and their analogues and hybrids: Structure, molecular mechanism of action and biological activity. Eur. J. Med. Chem. 2019, 182, 111662. [Google Scholar] [CrossRef]
  139. Zhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs 2021, 19, 180. [Google Scholar] [CrossRef]
  140. Ray Choudhury, A.; Mukherjee, S. Deconjugated butenolide: A versatile building block for asymmetric catalysis. Chem. Soc. Rev. 2020, 49, 6755–6788. [Google Scholar] [CrossRef]
  141. Kumar, A.; Singh, V.; Ghosh, S. Butenolide: A Novel Synthesis and Biological Activities, 1st ed.; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2012. [Google Scholar]
  142. Gibson, M.Z.; Nguyen, M.A.; Zingales, S.K. Design, synthesis, and evaluation of (2-(pyridinyl)methylene)-1-tetralone chalcones for anticancer and antimicrobial activity. Med. Chem. 2018, 14, 333–343. [Google Scholar] [CrossRef]
  143. Gauni, B.; Mehariya, K.; Shah, A.; Duggirala, S.M. Tetralone scaffolds and their potential therapeutic applications. Lett. Drug Des. Disc. 2021, 18, 222–238. [Google Scholar] [CrossRef]
  144. Zurlo, D.; Leone, C.; Assante, G.; Salzano, S.; Renzone, G.; Scaloni, A.; Foresta, C.; Colantuoni, V.; Lupo, A. Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21waf1/cip1 expression in human colon carcinoma HT-29 cells. Mol. Carcinog. 2013, 52, 1–17. [Google Scholar] [CrossRef]
  145. Zurlo, D.; Assante, G.; Moricca, S.; Colantuoni, V.; Lupo, A. Cladosporol A, a new peroxisome proliferator-activated receptor γ (PPARγ) ligand, inhibits colorectal cancer cells proliferation through β-catenin/TCF pathway inactivation. Biochim. Biophys. Acta 2014, 1840, 2361–2372. [Google Scholar] [CrossRef]
  146. Mulrooey, C.A.; O’Brien, E.M.; Morgan, B.J.; Kozlowski, M.C. Perylenequinones: Isolation, synthesis, and biological activity. Eur. J. Org. Chem. 2012, 2012, 3887–3904. [Google Scholar] [CrossRef] [Green Version]
  147. Stack, M.E.; Prival, M.J. Mutagenicity of the Alternaria metabolites altertoxins I., II, and III. Appl. Environ. Microbiol. 1986, 52, 718–722. [Google Scholar] [CrossRef] [Green Version]
  148. Ibrahim, S.R.M.; Mohamed, G.A. Naturally occurring naphthalenes: Chemistry, biosynthesis, structural elucidation, and biological activities. Phytochem. Rev. 2016, 15, 279–295. [Google Scholar] [CrossRef]
  149. Vieira, L.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem. 2005, 12, 2413–2446. [Google Scholar] [CrossRef]
  150. Ibrahim, S.R.M.; Abdallah, H.M.; El-Halawany, A.M.; Radwan, M.F.; Shehata, I.A.; Al-Harshany, E.M.; Zayed, M.F.; Mohamed, G.A. Garcixanthones B and C, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem. Lett. 2018, 25, 12–16. [Google Scholar] [CrossRef]
  151. Mohamed, G.A.; Al-Abd, A.M.; El-Halawany, A.M.; Abdallah, H.M.; Ibrahim, S.R.M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 2017, 198, 302–312. [Google Scholar] [CrossRef]
  152. Guo, H.; Roman, D.; Beemelmanns, C. Tropolone natural products. Nat. Prod. Rep. 2019, 36, 1137–1155. [Google Scholar] [CrossRef]
  153. Choque, E.; El Rayess, Y.; Raynal, J.; Mathieu, F. Fungal naphtho-γ-pyrones—Secondary metabolites of industrial interest. Appl. Microbiol. Biotechnol. 2015, 99, 1081–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Suzuki, K.; Nozawa, K.; Nakajima, S.; Kawai, K. Structure revision of mycotoxin, viriditoxin, and its derivatives. Chem. Pharm. Bull. 1990, 38, 3180–3181. [Google Scholar] [CrossRef] [Green Version]
  155. De Rosa, S.; De Giulio, A.; Iodice, C.; Alcaraz, M.J.; Paya, M. Long-chain aldehydes from the red alga, Corallina Mediterr. Phytochemistry 1995, 40, 995–996. [Google Scholar] [CrossRef]
  156. Suzuki, M.; Kurosawa, E.; Kurata, K. (E)-2-Tridecyl-2-heptadecenal, an unusual metabolite from the red alga Laurencia sp. Bull. Chem. Soc. Jpn. 1987, 60, 3793–3794. [Google Scholar] [CrossRef] [Green Version]
  157. Wulandari, A.P.; Examinati, R.R.I.N.; Madihah; Huspa, D.H.P.; Andayaningsih, P.; Andayaningsih, P. Cytotoxicity of metabolites produced by endophytic fungus Cladosporium sp. isolated from marine macroalgae on in-vitro MCF-7, HeLa, and DU-145 cell lines. Int. J. Pharm. Pharm. Sci. 2018, 10, 72–76. [Google Scholar] [CrossRef]
  158. Hulikere, M.M.; Joshi, C.G.; Ananda, D.; Poyya, J.; Nivya, T. Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus) isolated from seaweed (Sargassum wightii). Mycology 2016, 7, 203–211. [Google Scholar] [CrossRef] [Green Version]
  159. Xiong, H.; Qi, S.; Xu, Y.; Miao, L.; Qian, P.Y. Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. J. Hydro-Environ. Res. 2009, 2, 264–270. [Google Scholar] [CrossRef]
  160. Hulikere, M.M.; Joshi, C.G.; Danagoudar, A.; Poyya, J.; Kudva, A.K.; Dhananjaya, B.L. Biogenic synthesis of gold nanoparticles by marine endophytic fungus Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem. 2017, 63, 137–144. [Google Scholar]
  161. Ameen, F.; Al-Homaidan, A.A.; Al-Sabr, A.; Almansob, A.; AlNAdhari, S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
  162. Arnone, A.; Assante, G.; Modugno, V.D.; Merlini, L.; Nasini, G. Perylenequinones from cucumber seedlings infected with Cladosporium cucumerinum. Phytochemisry 1988, 27, 1675–1678. [Google Scholar] [CrossRef]
  163. Arnone, A.; Camarda, L.; Nasini, G.; Merlini, L. Secondary mould metabolites. Part 13. Fungal perylenequinones: Phleichrome, isophleichrome, and their endoperoxides. J. Chem. Soc. Perkin Trans. 1 1985, 1387–1392. [Google Scholar] [CrossRef]
  164. Arone, A.; Assante, G.; Merlini, L.; Nasini, G. Structure and stereochemistry of cladochrome D and E, novel perylenequinone pigment from Cladosporium cladosporioides. Gazetta Chem. Ital. 1989, 119, 557–559. [Google Scholar]
  165. Mino, Y.; Idonuma, T.; Sakai, R. Effect of Phleichrome Produced by the Timothy Leaf Spot Fungus, Cladosporium phlei on the Invertases from the Host Leaves. Ann. Phytopathol. Soc. Jpn. 1979, 45, 463–467. [Google Scholar] [CrossRef]
  166. Sassa, T.; Negoro, T.; Ueki, H. Production and Characterization of a new fungal metabolite, cotylenol. Agric. Biol. Chem. 1972, 36, 2281–2285. [Google Scholar] [CrossRef]
  167. Sassa, T.; Ooi, T.; Nukina, M.; Ikeda, M.; Kato, N. Structural confirmation of cotylenin A, a novel fusicoccane-diterpene glycoside with potent plant growth-regulating activity from Cladosporium fungus sp. 501-7W. Biosci. Biotechnol. Biochem. 1998, 62, 1815–1818. [Google Scholar] [CrossRef] [Green Version]
  168. Sassa, T.; Togashi, M.; Kitaguchi, T. The structures of cotylenins A., B., C., D and E. Agric. Biol. Chem. 1975, 39, 1735–1744. [Google Scholar] [CrossRef]
  169. Sassa, T. Cotylenins, 13C NMR of cotylenins. Agric. Biol. Chem. 1979, 43, 385–387. [Google Scholar]
  170. Sassa, T. Cotylenins, leaf growth substances produced by a fungus. Part, I. Isolation and characterization of cotylenins A and B. Agric. Biol. Chem. 1971, 35, 1415–1418. [Google Scholar]
  171. Baral, B.; Akhgari, A.; Metsä-Ketelä, M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol. 2018, 3, 163–178. [Google Scholar] [CrossRef]
  172. Reich, M.; Labes, A. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar. Genom. 2017, 36, 57–75. [Google Scholar] [CrossRef]
  173. Scharf, D.H.; Brakhage, A.A. Engineering fungal secondary metabolism: A roadmap to novel compounds. J. Biotechnol. 2013, 163, 179–183. [Google Scholar] [CrossRef]
  174. Reen, F.J.; Romano, S.; Dobson, A.D.W.; O’Gara, F. The sound of silence: Activating silent biosynthetic gene clusters in marine microorganisms. Mar. Drugs 2015, 13, 4754–4783. [Google Scholar] [CrossRef] [Green Version]
  175. Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem 2002, 3, 619–627. [Google Scholar] [CrossRef]
  176. Scherlach, K.; Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 2009, 7, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
  177. Oh, D.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod. 2007, 70, 515–520. [Google Scholar] [CrossRef] [PubMed]
  178. Yeh, H.H.; Ahuja, M.; Chiang, Y.M.; Oakley, C.E.; Moore, S.; Yoon, O.; Hajovsky, H.; Bok, J.W.; Keller, N.P.; Wang, C.C.; et al. Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in Aspergillus nidulans Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS Chem. Biol. 2016, 11, 2275–2284. [Google Scholar] [CrossRef]
  179. Williams, R.B.; Henrikson, J.C.; Hoover, A.R.; Lee, A.E.; Cichewicz, R.H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem. 2008, 6, 1895–1897. [Google Scholar] [CrossRef]
Figure 1. Tetramic acid derivatives 15.
Figure 1. Tetramic acid derivatives 15.
Marinedrugs 19 00645 g001
Figure 2. Tetramic acid derivatives 69.
Figure 2. Tetramic acid derivatives 69.
Marinedrugs 19 00645 g002
Figure 3. Tetramic acid derivatives 1015.
Figure 3. Tetramic acid derivatives 1015.
Marinedrugs 19 00645 g003
Figure 4. Tetramic acid derivatives 1624.
Figure 4. Tetramic acid derivatives 1624.
Marinedrugs 19 00645 g004
Figure 5. Tetramic acid derivatives 2530.
Figure 5. Tetramic acid derivatives 2530.
Marinedrugs 19 00645 g005
Figure 6. Diketopiperazine derivatives 3138.
Figure 6. Diketopiperazine derivatives 3138.
Marinedrugs 19 00645 g006
Figure 7. Alkaloids 3949.
Figure 7. Alkaloids 3949.
Marinedrugs 19 00645 g007
Figure 8. Alkaloids 5061.
Figure 8. Alkaloids 5061.
Marinedrugs 19 00645 g008
Figure 9. Alkaloids 6270.
Figure 9. Alkaloids 6270.
Marinedrugs 19 00645 g009
Figure 10. Alkaloids 7179.
Figure 10. Alkaloids 7179.
Marinedrugs 19 00645 g010
Figure 11. Alkaloids 8087.
Figure 11. Alkaloids 8087.
Marinedrugs 19 00645 g011
Figure 12. Macrolides 88101.
Figure 12. Macrolides 88101.
Marinedrugs 19 00645 g012
Figure 13. Macrolides 102111.
Figure 13. Macrolides 102111.
Marinedrugs 19 00645 g013
Figure 14. Macrolides 112121.
Figure 14. Macrolides 112121.
Marinedrugs 19 00645 g014
Figure 15. Butenolides and butanolides 122127.
Figure 15. Butenolides and butanolides 122127.
Marinedrugs 19 00645 g015
Figure 16. Seco-acids 128141.
Figure 16. Seco-acids 128141.
Marinedrugs 19 00645 g016
Figure 17. Tetralones (napthalenones) 142153.
Figure 17. Tetralones (napthalenones) 142153.
Marinedrugs 19 00645 g017
Figure 18. Tetralones (napthalenones) 154160.
Figure 18. Tetralones (napthalenones) 154160.
Marinedrugs 19 00645 g018
Figure 19. Perylenequinone 161164.
Figure 19. Perylenequinone 161164.
Marinedrugs 19 00645 g019
Figure 20. Naphthalene derivatives 165170.
Figure 20. Naphthalene derivatives 165170.
Marinedrugs 19 00645 g020
Figure 21. Xanthones 171177.
Figure 21. Xanthones 171177.
Marinedrugs 19 00645 g021
Figure 22. Tropolones 178181.
Figure 22. Tropolones 178181.
Marinedrugs 19 00645 g022
Figure 23. Binaphthopyrones 182185.
Figure 23. Binaphthopyrones 182185.
Marinedrugs 19 00645 g023
Figure 24. Benzopyrone derivatives 186198.
Figure 24. Benzopyrone derivatives 186198.
Marinedrugs 19 00645 g024
Figure 25. Benzopyrone 199210 and pyrone (211214) derivatives.
Figure 25. Benzopyrone 199210 and pyrone (211214) derivatives.
Marinedrugs 19 00645 g025
Figure 26. Lactone (215217), cyclohexene (218222), and azaphilones (223225) derivatives.
Figure 26. Lactone (215217), cyclohexene (218222), and azaphilones (223225) derivatives.
Marinedrugs 19 00645 g026
Figure 27. Phenolics 226241.
Figure 27. Phenolics 226241.
Marinedrugs 19 00645 g027
Figure 28. Phenolics 242248 and others 249254.
Figure 28. Phenolics 242248 and others 249254.
Marinedrugs 19 00645 g028
Figure 29. Sterols 255262.
Figure 29. Sterols 255262.
Marinedrugs 19 00645 g029
Figure 30. Sterols 263267 and terpenes 268270.
Figure 30. Sterols 263267 and terpenes 268270.
Marinedrugs 19 00645 g030
Figure 31. Aldehydes (271284) and alcohols (285 and 286).
Figure 31. Aldehydes (271284) and alcohols (285 and 286).
Marinedrugs 19 00645 g031
Figure 32. Number of compounds separated from Cladosporium species isolated from various marine samples.
Figure 32. Number of compounds separated from Cladosporium species isolated from various marine samples.
Marinedrugs 19 00645 g032
Figure 33. Number of compounds separated from marine-derived Cladosporium species.
Figure 33. Number of compounds separated from marine-derived Cladosporium species.
Marinedrugs 19 00645 g033
Figure 34. Number of metabolites from each class of natural products.
Figure 34. Number of metabolites from each class of natural products.
Marinedrugs 19 00645 g034
Figure 35. Number of bioactive compounds in each tested activity.
Figure 35. Number of bioactive compounds in each tested activity.
Marinedrugs 19 00645 g035
Figure 36. Prominent activities of each class of metabolite from Cladosporium species.
Figure 36. Prominent activities of each class of metabolite from Cladosporium species.
Marinedrugs 19 00645 g036
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Mohamed, G.A.; Ibrahim, S.R.M. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar. Drugs 2021, 19, 645. https://doi.org/10.3390/md19110645

AMA Style

Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Marine Drugs. 2021; 19(11):645. https://doi.org/10.3390/md19110645

Chicago/Turabian Style

Mohamed, Gamal A., and Sabrin R. M. Ibrahim. 2021. "Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities" Marine Drugs 19, no. 11: 645. https://doi.org/10.3390/md19110645

APA Style

Mohamed, G. A., & Ibrahim, S. R. M. (2021). Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Marine Drugs, 19(11), 645. https://doi.org/10.3390/md19110645

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop