Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of the Procedures of Different Extraction Techniques on G. lemaneiformis
2.1.1. Changes in G. lemaneiformis during Alkali Extraction
2.1.2. Changes in G. lemaneiformis during Enzymatic-Extraction
2.1.3. Changes in G. lemaneiformis in Enzyme-Assisted Alkali Extraction
2.2. Effects of Extraction Technologies on Physicochemical Properties of Agar
2.2.1. Effect of Pretreatment Procedure on Sulfate Content, 3,6-AG Content, Gel Strength, Algae Loss Rate, and Agar Yield
2.2.2. Effect of Pretreatment Procedures on the Whiteness, Transparency, Viscosity, Dissolving Temperature, Gelling Temperature, and Melting Temperature of Agar
2.3. FT-IR Analysis of Agar Extracted from Each Procedure
3. Materials and Methods
3.1. Chemicals
3.2. Agar Extraction from G. lemaneiformis
3.2.1. Traditional Alkali Extraction
3.2.2. Enzyme-Assisted Extraction of Agar
3.2.3. Enzymatic-Extraction of Agar
3.3. Characterization of Treated Seaweed and Extracted Agar
3.3.1. Scanning Electron Microscopy (SEM)
3.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)
3.3.3. Determination of Physicochemical Properties
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rocha, C.M.R.; Sousa, A.M.M.; Kim, J.K.; Magalhães, J.M.C.S.; Yarish, C.; Gonçalves, M.D.P. Characterization of agar from Gracilaria for nutrient bioextraction in open water farms. Food Hydrocoll. 2019, 89, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Hong-Bo, S.; Di, X.; Song, Q. Progress in Gracilaria biology and developmental utilization: Main issues and prospective. Rev. Fish. Sci. 2009, 17, 494–504. [Google Scholar] [CrossRef]
- Patil, N.P.; Le, V.; Sligar, A.D.; Mei, L.; Chavarria, E.Y.Y.; Baker, A.B. Algal polysaccharides as therapeutic agents for atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 153–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, G.U.; Konreddy, A.K.; Mishra, S. Novel hybrid biosorbents of agar: Swelling behaviour, heavy metal ions and dye removal efficacies. Int. J. Biol. Macromol. 2018, 117, 902–910. [Google Scholar] [CrossRef]
- Gioele, C.; Marilena, S.; Valbona, A.; Nunziacarla, S.; Andrea, S.; Antonio, M. Gracilaria gracilis, Source of agar: A short review. Curr. Org. Chem. 2017, 21, 380–386. [Google Scholar] [CrossRef]
- Lee, W.K.; Lim, Y.Y.; Ho, C.L. pH affects growth, physiology and agar properties of agarophyte Gracilaria changii (Rhodophyta) under low light intensity from Morib, Malaysia. Reg. Stud. Mar. Sci. 2019, 30, 100738. [Google Scholar] [CrossRef]
- Rodriguez Sanchez, R.A.; Canelon, D.J.; Cosenza, V.A.; Fissore, E.N.; Gerschenson, L.N.; Matulewicz, M.C.; Ciancia, M. Gracilariopsis hommersandii, a red seaweed, source of agar and sulfated polysaccharides with unusual structures. Carbohydr. Polym. 2019, 213, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Carmona, G.; Freile-Pelegrín, Y.; Hernández Garibay, E. Conventional and alternative technologies for the extraction of algal polysaccharides. In Functional Ingredients from Algae for Foods and Nutraceuticals; Woodhead Publishing: Sawston, UK, 2013; pp. 475–516. [Google Scholar]
- Lee, W.K.; Lim, Y.Y.; Leow, A.T.C.; Namasivayam, P.; Abdullah, J.O.; Ho, C.L. Factors affecting yield and gelling properties of agar. J. Appl. Phycol. 2016, 29, 1527–1540. [Google Scholar] [CrossRef]
- Freile-Pelegrín, Y.; Robledo, D. Influence of alkali treatment on agar from Gracilaria cornea from Yucatán, México. J. Appl. Phycol. 1997, 9, 533–539. [Google Scholar]
- Praiboon, J.; Chirapart, A.; Akakabe, Y.; Bhumibhamon, O.; Kajiwara, T. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci. Asia 2006, 32, 11–17. [Google Scholar] [CrossRef]
- Romero, J.B.; Villanueva, R.D.; Montano, M.N. Stability of agar in the seaweed Gracilaria eucheumatoides (Gracilariales, Rhodophyta) during postharvest storage. Bioresour. Technol. 2008, 99, 8151–8155. [Google Scholar] [CrossRef]
- Yousefi, M.K.; Islami, H.R.; Filizadeh, Y. Effect of extraction process on agar properties of Gracilaria corticata (Rhodophyta) collected from the Persian Gulf. Phycologia 2019, 52, 481–487. [Google Scholar] [CrossRef]
- Yarnpakdee, S.; Benjakul, S.; Kingwascharapong, P. Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll. 2015, 51, 217–226. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Z.; Mu, H.; Lin, Y.; Zhang, J.; Jiang, X. Impact of alkali pretreatment on yield, physico-chemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocoll. 2017, 70, 356–362. [Google Scholar] [CrossRef]
- Xiao, Q.; Weng, H.; Ni, H.; Hong, Q.; Lin, K.; Xiao, A. Physico chemical and gel properties of agar extracted by enzyme and enzyme-assisted methods. Food Hydrocoll. 2019, 87, 530–540. [Google Scholar] [CrossRef]
- Ummat, V.; Sivagnanam, S.P.; Rajauria, G.; O’Donnell, C.; Tiwari, B.K. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends Food Sci. Tech. 2021, 110, 90–106. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lee, W.K.; Phang, P.E.; Leow, S.M.; Namasivayam, A.C.T.; Abdullah, J.O. Expression analysis of potential transcript and protein markers that are related to agar yield and gel strength in Gracilaria changii (Rhodophyta). Algal Res. 2019, 41, 101532. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, Q.; Weng, H.; Zhang, Y.; Yang, Q.; Xiao, A. Extraction of sulfated agar from Gracilaria lemaneiformis using hydrogen peroxide-assisted enzymatic method. Carbohydr. Polym. 2020, 232, 115790. [Google Scholar] [CrossRef]
- Nishinari, K. Effect of alkali pretreatment on the rheological properties of concentrated agar-agar gels. Carbohydr. Polym. 1983, 3, 39–52. [Google Scholar] [CrossRef]
- Sousa, A.M.; Morais, S.; Abreu, M.H.; Pereira, R.; Sousa-Pinto, I.; Cabrita, E.J.; Delerue-Matos, C.; Goncalves, M.P. Structural, physical, and chemical modifications induced by microwave heating on native agar-like galactans. J. Agr. Food. Chem. 2012, 60, 4977–4985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudharsan, S.; Subhapradha, N.; Seedevi, P.; Shanmugam, V.; Madeswaran, P.; Shanmugam, A.; Srinivasan, A. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). Int. J. Biol. Macromol. 2015, 81, 1031–1038. [Google Scholar] [CrossRef]
- Liu, Q.M.; Yang, Y.; Maleki, S.J.; Alcocer, M.; Xu, S.S.; Shi, C.L.; Cao, M.J.; Liu, G.M. Anti-food allergic activity of sulfated polysaccharide from Gracilaria lemaneiformis is dependent on immunosuppression and inhibition of p38 MAPK. J. Agr. Food Chem. 2016, 64, 4536–4544. [Google Scholar] [CrossRef]
- Cui, M.; Wu, J.; Wang, S.; Shu, H.; Zhang, M.; Liu, K.; Liu, K. haracterization andanti-inflammatory effects of sulfated polysaccharide from the red seaweed Gelidium pacificum Okamura. Int. J. Biol. Macromol. 2019, 129, 377–385. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Jin, Y.; Zhang, W.; Liu, Y. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour. Technol. 2008, 99, 3301–3305. [Google Scholar] [CrossRef] [PubMed]
- Murano, E. Chemical structure and quality of agars from Gracilaria. J. Appl. Phycol. 1995, 7, 245–254. [Google Scholar] [CrossRef]
- Freile-Pelegrin, Y.; Murano, E. Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula. Bioresour. Technol. 2005, 96, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Oyieke, H.A. The yield, physical and chemical properties of agar gel from Gracilaria species (Gracilariales, Rhodophyta) of the Kenya Coast. Hydrobiologia 1993, 260–261, 613–620. [Google Scholar] [CrossRef]
- Montaiiol, N.; Villanueva, R.D.; Romero, J.B. Chemical characteristics and gelling properties of agar from two Philippine Gracilaria spp. (Gracilariales, Rhodophyta). J. Appl. Phycol. 1999, 11, 27–34. [Google Scholar]
- Villanueva, R.D.; Sousa, A.M.M.; Gonçalves, M.P.; Nilsson, M.; Hilliou, L. Production and properties of agar from the invasive marine alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J. Appl. Phycol. 2009, 22, 211–220. [Google Scholar] [CrossRef]
- Sasuga, K.; Yamanashi, T.; Nakayam, S.; Mikami, K. Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Res. 2017, 26, 123–130. [Google Scholar] [CrossRef]
- Kumar, V.; Fotedar, R. Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydr. Polym. 2009, 78, 813–819. [Google Scholar]
- Guerrero, P.; Garrido, T.; Leceta, I.; de la Caba, K. Films based on proteins and polysaccharides: Preparation and physical–chemical characterization. Eur. Polym. J. 2013, 49, 3713–3721. [Google Scholar] [CrossRef]
- Warren, F.J.; Perston, B.B.; Royall, P.G.; Butterworth, P.J.; Ellis, P.R. Infrared spectroscopy with heated attenuated total internal reflectance enabling precise measurement of thermally induced transitions in complex biological polymers. Anal. Chem. 2013, 85, 3999–4006. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.T.; Ajalloueian, F.; Yu, L.; Meyer, A.S. Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocoll. 2017, 63, 50–58. [Google Scholar] [CrossRef]
- Yaphe, W.; Arsenault, G.P. Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 1965, 13, 143–148. [Google Scholar] [CrossRef]
- Lee, W.K.; Namasivayam, P.; Ho, C.L. Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib, Malaysia. J. Appl. Phycol. 2013, 26, 1791–1799. [Google Scholar] [CrossRef]
- Cao, M.; Liu, X.; Luan, J.; Zhang, X. Characterization of physicochemical properties of carboxymethyl agar. Carbohydr. Polym. 2014, 111, 449–455. [Google Scholar] [CrossRef]
- Normand, V. Effect of sucrose on agarose gels mechanical behaviour. Carbohydr. Polym. 2003, 54, 83–95. [Google Scholar] [CrossRef]
PP | Nature | Alkali Extraction | Enzymatic-Extraction | Enzyme-Assisted Extraction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alkali | Acid | Bleaching | Extraction | Enzyme | Acid | Bleaching | Extraction | Enzyme | Alkali | Acid | Bleaching | Extraction | ||
WH (%) | 35.6 ± 0.3 | 45.7 ± 0.2 b | 43.1 ± 1.1 c | 61.3 ± 0.5 a | 62.9 ± 0.5 a | 42.9 ± 0.8 b | 32.9 ± 0.9 c | 46.8 ± 0.5 a | 44.4 ± 0.4 c | 36.5 ± 0.4 b | 34.3 ± 0.1 c | 34.8 ± 0.2 b | 42.4 ± 0.3 a | 50.2 ± 0.6 b |
GC | ||||||||||||||
AC | ||||||||||||||
TR (%) | 49.8 ± 0.5 | 44.4 ± 0.5 c | 54.8 ± 0.8 b | 59.9 ± 0.8 a | 62.0 ± 0.2 a | 52.6 ± 0.5 b | 34.6 ± 0.3 c | 59.0 ± 1.2 a | 58.0 ± 0.3 b | 52.9 ± 0.9 d | 56.3 ± 0.4 c | 57.6 ± 0.4 b | 60.8 ± 0.6 a | 61.9 ± 0.1 a |
VI (cP) | 9.3 ± 0.2 | 19.5 ± 0.6 c | 28.1 ± 1.6 a | 24.5 ± 1.1 b | 20.0 ± 0.4 a | 12.5 ± 0.0 b | 3.8 ± 0.2 c | 18.2 ± 0.8 a | 18.8 ± 0.3 b | 8.7 ± 1.1 c | 12.4 ± 0.4 b | 13.6 ± 0.9 b | 17.7 ± 0.6 a | 18.1 ± 0.5 b |
DT (°C) | 93.1 ± 1.0 | 91.1 ± 0.1 b | 92.4 ± 1.2 ab | 93.1 ± 0.1 a | 89.2 ± 0.0 b | 86.3 ± 0.0 b | 84.9 ± 0.6 c | 87.2 ± 0.0 a | 87.4 ± 1.0 c | 85.9 ± 0.2 b | 87.1 ± 0.5 a | 86.4 ± 0.0 b | 87.4 ± 0.1 a | 89.3 ± 0.1 b |
MT (°C) | 82.8 ± 0.1 | 86.4 ± 0.1 b | 89.6 ± 0.2 a | 89.5 ± 0.6 a | 89.5 ± 0.0 a | 82.9 ± 0.1 a | 71.9 ± 0.1 b | 82.5 ± 0.5 a | 82.2 ± 0.4 a | 79.2 ± 0.1 c | 84.4 ± 0.1 b | 84.5 ± 0.0 b | 85.5 ± 0.2 a | 85.9 ± 0.1 a |
GT (°C) | 34.0 ± 0.2 | 42.4 ± 0.4 a | 41.6 ± 1.0 b | 41.1 ± 0.3 ab | 36.0 ± 0.7 b | 35.1 ± 0.2 b | 32.9 ± 0.5 c | 36.9 ± 0.2 a | 32.8 ± 0.5 c | 33.6 ± 0.2 c | 34.8 ± 0.3 b | 33.9 ± 0.1 c | 35.8 ± 0.4 a | 35.8 ± 0.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Wang, X.; Zhang, J.; Zhang, Y.; Chen, J.; Chen, F.; Xiao, A. Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis. Mar. Drugs 2021, 19, 617. https://doi.org/10.3390/md19110617
Xiao Q, Wang X, Zhang J, Zhang Y, Chen J, Chen F, Xiao A. Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis. Marine Drugs. 2021; 19(11):617. https://doi.org/10.3390/md19110617
Chicago/Turabian StyleXiao, Qiong, Xinyi Wang, Jiabin Zhang, Yonghui Zhang, Jun Chen, Fuquan Chen, and Anfeng Xiao. 2021. "Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis" Marine Drugs 19, no. 11: 617. https://doi.org/10.3390/md19110617
APA StyleXiao, Q., Wang, X., Zhang, J., Zhang, Y., Chen, J., Chen, F., & Xiao, A. (2021). Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis. Marine Drugs, 19(11), 617. https://doi.org/10.3390/md19110617