Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing
Abstract
:1. Introduction
2. Results
2.1. Putative Conopeptide Precursors Predicted by ConoSorter
2.2. Confirmation by RT-PCR and Classification of Conotoxins
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. RNA Extraction and Library Preparation and Sequencing
4.3. De Novo Transcriptome Sequencing and Putative Conopeptide Precursors Predicted by ConoSorter
4.4. Annotation of Conotoxins
4.5. Confirmation by RT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kohn, A.J. Conus envenomation of humans: In fact and fiction. Toxins 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zheng, Y.; Tang, H. Identifying the types of ion channel-targeted conotoxins by incorporating new properties of residues into pseudo amino acid composition. BioMed Res. Int. 2016, 2016, 3981478. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Peng, C.; Zhu, Y.; Sun, Y.; Zhao, T.; Huang, Y.; Shi, Q. High throughput identification of novel conotoxins from the vermivorous oak cone snail (Conus quercinus) by transcriptome sequencing. Int. J. Mol. Sci. 2018, 19, 3901. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Li, C.; Dong, S.; Wu, Y.; Zhangsun, D.; Luo, S. Discovery methodology of novel conotoxins from Conus species. Marine. Mar. Drugs 2018, 16, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.D.; Norton, R.S. Conotoxin gene superfamilies. Mar. Drugs 2014, 12, 6058–6101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, W.; Zhangsun, D.; Luo, S. Diversity of conopeptides and their precursor genes of Conus litteratus. Mar. Drugs 2020, 18, 464. [Google Scholar] [CrossRef] [PubMed]
- Olivera, B.M. Conus venom peptides: Reflections from the biology of clades and species. Annu. Rev. Ecol. Syst. 2002, 33, 25–47. [Google Scholar] [CrossRef]
- Jin, A.H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef]
- Buczek, O.; Olivera, B.M.; Bulaj, G. Propeptide does not act as an intramolecular chaperone but facilitates protein disulfide isomerase-assisted folding of a conotoxin precursor. Biochemistry 2004, 43, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Duggan, P.J.; Tuck, K.L. Bioactive mimetics of conotoxins and other venom peptides. Toxins 2015, 7, 4175–4198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque, H.M.; Dias, S.C.; Franco, O.L. Structural and functional analyses of cone snail toxins. Mar. Drugs 2019, 17, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kim, Y.; Back, S.K.; Choi, H.W.; Lee, J.Y.; Jung, H.H.; Ryu, J.H.; Suh, H.W.; Na, H.S.; Kim, H.J.; et al. Analgesic effect of highly reversible ω-conotoxin FVIA on N type Ca2+ channels. Mol. Pain 2010, 6, 1744–8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Peng, C.; Yang, J.; Yi, Y.; Zhang, J.; Shi, Q. Cone snails: A big store of conotoxins for novel drug discovery. Toxins 2017, 9, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem. 2018, 26, 2738–2758. [Google Scholar] [CrossRef] [PubMed]
- Duda, J.T.F.; Kohn, A.J.; Palumbi, S.R. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. 2001, 73, 391–409. [Google Scholar] [CrossRef]
- Aguilar, M.B.; López-Vera, E.; Heimer de la Cotera, E.P.; Falcón, A.; Olivera, B.M.; Maillo, M. I-conotoxins in vermivorous species of the West Atlantic: Peptide sr11a from Conus spurius. Peptides 2007, 28, 18–23. [Google Scholar] [CrossRef]
- Zamora-Bustillos, R.; Aguilar, M.B.; Falcón, A. Identification, by molecular cloning, of a novel type of I2-superfamily conotoxin precursor and two novel I2-conotoxins from the worm-hunter snail Conus spurius from the Gulf of Mexico. Peptides 2010, 31, 384–393. [Google Scholar] [CrossRef]
- López-Vera, E.; Aguilar, M.B.; Schiavon, E.; Marinzi, C.; Ortiz, E.; Restano Cassulini, R.; Batista, C.V.F.; Possani, L.D.; Heimer de la Cotera, E.P.; Peri, F.; et al. Novel α-conotoxins from Conus spurius and the α-conotoxin EI share high-affinity potentiation and low-affinity inhibition of nicotinic acetylcholine receptors. FEBS J. 2007, 274, 3972–3985. [Google Scholar] [CrossRef]
- Luna-Ramírez, K.S.; Aguilar, M.B.; Falcón, A.; Heimer de la Cotera, E.P.; Olivera, B.M.; Maillo, M. An O-conotoxin from the vermivorous Conus spurius active on mice and mollusks. Peptides 2007, 28, 24–30. [Google Scholar] [CrossRef]
- Zamora-Bustillos, R.; Aguilar, M.B.; Falcón, A.; Heimer de la Cotera, E.P. Identification, by RT-PCR, of four novel T-1-superfamily conotoxins from the vermivorous snail Conus spurius from the Gulf of Mexico. Peptides 2009, 30, 1396–1404. [Google Scholar] [CrossRef]
- Campos-Lira, E.; Carrillo, E.; Aguilar, M.B.; Gajewiak, J.; Gómez-Lagunas, F.; López-Vera, E. Conorfamide-Sr3, a structurally novel specific inhibitor of the Shaker K+ channel. Toxicon 2017, 138, 53–58. [Google Scholar] [CrossRef]
- López-Vera, E.; Martínez-Hernández, L.; Aguilar, M.B.; Carrillo, E.; Gajewiak, J. Studies of conorfamide-Sr3 on human voltage-gated Kv1 potassium channel subtypes. Mar. Drugs 2020, 18, 425. [Google Scholar] [CrossRef]
- Prashanth, J.R.; Lewis, R.J. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation. Toxicon 2015, 107, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wang, L.; Wu, Y.; Zhu, X.; Feng, Y.; Chen, Z.; Li, Y.; Sun, D.; Ren, Z.; Xu, A. Characterizing the evolution and functions of the M-superfamily conotoxins. Toxicon 2013, 76, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Abalde, S.; Tenorio, M.J.; Afonso, C.M.L.; Zardoya, R. Conotoxin diversity in Chelyconus ermineus (Born, 1778) and the convergent origin of piscivory in the Atlantic and Indo-Pacific cones. Genome Biol. Evol. 2018, 10, 2643–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi, C.; Liu, J.; Peng, C.; Liu, Y.; Jiang, X.; Zhao, Y.; Tang, S.; Wang, L.; Dong, M.; Chen, S.; et al. Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus. Genomics 2006, 88, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.S.; Jensen, S.; Ellison, M.; Matta, J.A.; Lee, W.Y.; Imperial, J.S.; Duclos, N.; Brockie, P.J.; Madsen, D.M.; Isaac, J.T.R.; et al. A novel Conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors. Curr. Biol. 2009, 19, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Dutertre, S.; Jin, A.H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J.; et al. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun. 2014, 5, 3521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudewi, A.A.R.; Susilawathi, N.M.; Mahardika, B.K.; Mahendra, A.N.; Pharmawati, M.; Phuong, M.A.; Mahardika, G.N. Selecting potential neuronal drug leads from conotoxins of various venomous marine cone snails in Bali, Indonesia. ACS Omega 2009, 4, 19483–19490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Barghi, N.; Lu, A.; Fedosov, A.E.; Bandyopadhyay, P.K.; Lluisma, A.O.; Concepcion, G.P.; Yandell, M.; Olivera, B.M.; Safavi-Hemami, H. Divergence of the venom exogene repertoire in two sister species of Turriconus. Genome. Biol. Evol 2017, 9, 2211–2225. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, V.; Dutertre, S.; Jin, A.H.; Lewis, R.J.; Taft, R.J.; Alewood, P.F. Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genom. 2013, 14, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutt, M.; Dutertre, S.; Jin, A.H.; Lavergne, V.; Alewood, P.F.; Lewis, R.J. Venomics reveals venom complexity of the piscivorous cone snail, Conus tulipa. Mar. Drugs 2019, 17, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Fu, Y.; Wang, L.; Liang, A.; Chen, S.; Xu, A. Identifying novel conopepetides from the venom ducts of Conus litteratus through integrating transcriptomics and proteomics. J. Proteomics 2019, 192, 346–357. [Google Scholar] [CrossRef]
- Azam, L.; McIntosh, J.M. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol. Sin. 2009, 30, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Morales-Gonzalez, D.; Flores-Martinez, E.; Zamora-Bustillos, R.; Rivera-Reyes, R.; Michel-Morfin, J.E.; Landa-Jaime, V.; Falcón, A.; Aguilar, M.B. Diversity of A-conotoxins of three worm-hunting cone snails (Conus brunneus, Conus nux, and Conus princeps) from the Mexican Pacific coast. Peptides 2015, 68, 25–32. [Google Scholar] [CrossRef]
- Bernaldez-Sarabia, J.; Figueroa-Montiel, A.; Duenas, S.; Cervan-tes-Luevano, K.; Beltran, J.A.; Ortiz, E.; Jimenez, S.; Possani, L.D.; Paniagua-Solis, J.F.; Gonzalez-Canudas, J.; et al. The Diversi-fied O-Superfamily in Californiconus californicus Presents a Conotoxin with Antimycobacterial Activity. Toxins 2019, 11, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Nor-ton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS ONE 2014, 9, e87648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.B.; Lezama-Monfil, L.; Maillo, M.; Pedraza-Lara, H.; López-Vera, E.; Heimer de la Cotera, E.P. A biologically active hydrophobic T-1-conotoxin from the venom of Conus spurius. Peptides 2006, 27, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.B.; Pérez-Reyes, L.I.; López, Z.; de la Cotera, E.P.H.; Falcón, A.; Ayala, C.; Galván, M.; Salvador, C.; Escobar, L.I. Peptide Sr11a from Conus spurius is a novel peptide blocker for Kv1 potassium channels. Peptides 2010, 31, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Maillo, M.; Aguilar, M.B.; Lopéz-Vera, E.; Craig, A.G.; Bulaj, G.; Olivera, B.M.; Heimer De La Cotera, E.P. Conorfamide, a Conus Venom Peptide Belonging to the RFamide Family of Neuropeptides. Toxicon 2002, 40, 401–407. [Google Scholar] [CrossRef]
- Aguilar, M.B.; Luna-Ramírez, K.S.; Echeverría, D.; Falcón, A.; Olivera, B.M.; Heimer de la Cotera, E.P.; Maillo, M. Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the Venom of Conus spurius with activity in mice and mollusks. Peptides 2008, 29, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Ortiz, J.A.; Cano, H.; Marí, F. Intraspecies variability and conopeptide profiling of the injected venom of Conus ermineus. Peptides 2011, 32, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2013, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008, 2008, 619832. [Google Scholar] [CrossRef]
- Kaas, Q.; Yu, R.; Jin, A.H.; Dutertre, S.; Craik, D.J. ConoServer: Updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012, 40, D325–D330. [Google Scholar] [CrossRef]
Precursors | ID | SF | ORF Sequence |
---|---|---|---|
Sr3.M01 | DN55915 c1g1i844 | M | MMSKLGVLLTICLLLFPLTALPLDEDQPADRPAERTQDIAT EQHPFFDPVKRCCDWPCTIGCIPCCK |
Sr3.M02 | DN55915 c1g1i644 | M | MMSKLGVLLTICLLLFPLTALPLDEDQPVHRPAERMQDISS DQHLFFDLIKRCCELPCGVCISCCGR |
Sr1.A01 | DN55576 c0g3i132 | A | MGMRMVITVFLLVVLTTIVVSPTSDRGPASNHKNFRASNR ISREAPKECCENPPCRATNLGQCG |
Sr1.A02 | DN55798 c5g2i322 | A | MGIRMMFTVFLLVVLATTVVSFTSDSAFDSRNVAANDK VSDMIALTARRTCCSRPTCRMEYPELCGGRR |
Sr15.O01 | DN25679 c0g1i142 | O | MEKLMMLILIATALFSILVVIGGDGEKPPMGRTAAQRRLPL RRGDCKPRGSYCNEDKECCPTLECKCQGDQCPQTDSKCRP |
Sr21.CII01 | DN53806 c4g4i124 | CII * | MAMNMSMTLSVFVMVVMAAAVVGFSPLKEQHLSRMKRN DRSCCLNKTYECLLGHPGKEYEYVTSCYADASILCGATNVY DGCCRGYKYCVWLHTYDKSLETAHGMCQNETCIPQSDN |
Sr22.CII02 | DN55158 c1g2i934 | CII * | MTMDMKMTFSRFVLVVLITTIVGSSVHGSEVPDNLNHCW LLRFRMCLKNLGTHEVWFDFCTKAVASAYGQETIRMDCT VFEFCYYRCQVLGESPKPEDHCWTATAETVTGRLEDLETC |
ID-Trinity | Primer Sequence |
---|---|
DN55915c1g1i844 | F: 5′-TAAGGCTACTTGCAACAAGGG-3′ R: 5′-AGGACAAGAGGGATCGATAGCAGT-3′ |
DN55576c0g3i132 | F: 5′-ATATAACCATGGGCATGCGGATG-3′ R: 5′-GAAGTCGAGGGCTACTGCAACAT-3′ |
DN53806c4g4i124 | F: 5′-CCCAGAAGGAAACAGAAGAGTTATCG-3′ R: 5′-ACAGGACGTGGCGTGAGGA-3′ |
DN55798c5g2i322 | F: 5′-ATCCAGCTCTGCATTCACCTGAC-3′ R:5′-TCAGAGGGTCCTGGAGTATCAGC-3′ |
DN55915c1g1i644 | F: 5′-CGTGGTCGTGATAACAAAG-3′ R:5′-GAACGCCACAGCTAGGACAAGAG-3′ |
DN55158c1g2i934 | F: 5′-GACACACTGAACAAGGAAGCACA-3′ R:5′-GGTCATGTCAGCACGTTTCCAGA-3′ |
DN25679c0g1i142 | F:5′-CTTTATGTTGGACGGCATG-3′ R:5′-CCGTCGTCTCAGCACAGACATAG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora-Bustillos, R.; Martínez-Núñez, M.A.; Aguilar, M.B.; Collí-Dula, R.C.; Brito-Domínguez, D.A. Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing. Mar. Drugs 2021, 19, 547. https://doi.org/10.3390/md19100547
Zamora-Bustillos R, Martínez-Núñez MA, Aguilar MB, Collí-Dula RC, Brito-Domínguez DA. Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing. Marine Drugs. 2021; 19(10):547. https://doi.org/10.3390/md19100547
Chicago/Turabian StyleZamora-Bustillos, Roberto, Mario Alberto Martínez-Núñez, Manuel B. Aguilar, Reyna Cristina Collí-Dula, and Diego Alfredo Brito-Domínguez. 2021. "Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing" Marine Drugs 19, no. 10: 547. https://doi.org/10.3390/md19100547
APA StyleZamora-Bustillos, R., Martínez-Núñez, M. A., Aguilar, M. B., Collí-Dula, R. C., & Brito-Domínguez, D. A. (2021). Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing. Marine Drugs, 19(10), 547. https://doi.org/10.3390/md19100547