Next Article in Journal
Viriditoxin Stabilizes Microtubule Polymers in SK-OV-3 Cells and Exhibits Antimitotic and Antimetastatic Potential
Next Article in Special Issue
Therapeutic Potential of (−)-Agelamide D, a Diterpene Alkaloid from the Marine Sponge Agelas sp., as a Natural Radiosensitizer in Hepatocellular Carcinoma Models
Previous Article in Journal
Nostoc edaphicum CCNP1411 from the Baltic Sea—A New Producer of Nostocyclopeptides
Previous Article in Special Issue
Renieramycin T Induces Lung Cancer Cell Apoptosis by Targeting Mcl-1 Degradation: A New Insight in the Mechanism of Action
Open AccessArticle

New Tricks with an Old Sponge: Feature-Based Molecular Networking Led to Fast Identification of New Stylissamide L from Stylissa caribica

1
Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy
2
Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
3
Department of Biology and Marine Biology, University of North Carolina Wilmington, Center for Marine Science, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
*
Author to whom correspondence should be addressed.
Mar. Drugs 2020, 18(9), 443; https://doi.org/10.3390/md18090443
Received: 5 August 2020 / Revised: 22 August 2020 / Accepted: 25 August 2020 / Published: 27 August 2020
(This article belongs to the Special Issue Bioactive Compounds from Marine Sponges 2020)
Feature-based molecular networking was used to re-examine the secondary metabolites in extracts of a very well studied marine sponge, Stylissa caribica, known to contain a large array of cyclic peptides and brominated alkaloids. The analysis revealed the presence of 13 cyclic peptides in the sponge that had never been detected in previous work and appeared to be new compounds. The most abundant one was isolated and shown to be a new proline-rich cyclic heptapetide that was called stylissamide L (1). Structure of compound 1, including the cis/trans geometry of the three proline residues, was determined by extensive NMR studies; the l configuration of the seven amino acid residues was determined using Marfey’s method. Stylissamide L was tested for activity as a cell growth inhibitor and cell migration inhibitor on two cancer cell lines but, unlike other members of the stylissamide family, it showed no significant activity. This approach showed that even a thoroughly studied species such as S. caribica may contain new chemistry that can be revealed if studied with the right tools. View Full-Text
Keywords: cyclic peptides; dereplication; feature-based molecular networking; marine sponges; metabolomics; molecular networking; proline-rich peptides cyclic peptides; dereplication; feature-based molecular networking; marine sponges; metabolomics; molecular networking; proline-rich peptides
Show Figures

Graphical abstract

MDPI and ACS Style

Scarpato, S.; Teta, R.; Della Sala, G.; Pawlik, J.R.; Costantino, V.; Mangoni, A. New Tricks with an Old Sponge: Feature-Based Molecular Networking Led to Fast Identification of New Stylissamide L from Stylissa caribica. Mar. Drugs 2020, 18, 443.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop