Advances in the Study of Marine Products with Lipid-Lowering Properties
Abstract
:1. Introduction
2. Algal Marine Products
2.1. Seaweed Polysaccharides
2.1.1. Fucoidan
2.1.2. Alginate
2.1.3. Ulvan
2.1.4. Carrageenan
2.2. Fucoxanthin
2.3. Phlorotannins
3. Marine Products of Animal Origin
3.1. Proteins and Bioactive Peptides
3.2. Lipids
3.3. Polysaccharides
3.3.1. Fucoidans
3.3.2. Chitosan
3.4. Saponins
3.5. Astaxanthin
4. Secondary Metabolites and Other Marine-Derived Products
5. Conclusions and Future Outlooks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette transporter |
ACC | acetyl-CoA carboxylase |
ALT | alanine aminotransferase |
AMPK | Adenosine 5′-monophosphate-activated protein kinase |
aP2 | adipocyte protein 2 |
AST | aspartate aminotransferase |
CAT | catalase |
C/EBP | CCAAT/enhancer binding protein |
CVD | cardiovascular diseases |
CYP7A1 | cholesterol 7alpha-hydroxylase A1 |
DHA | docosahexaenoic acid |
DSW | deep sea water |
EPA | eicosapentaenoic acid |
GSH-Px | glutathione peroxidase |
HDL-C | high-density lipoprotein cholesterol |
HMGCR | 3-hydroxyl 3-methyl glutaryl coenzyme A reductase |
LCAT | Lecithin: cholesterol acyltransferase |
LDL-C | low-density lipoprotein cholesterol |
LDLR | LDL receptor |
LXR | Liver X receptor |
NCD | noncommunicable diseases |
NPC1L1 | Niemann-Pick C1 like 1 |
PCSK9 | proprotein convertase subtilisin/kexin type 9 |
PGC1 | PPARγ coactivator 1α |
PPAR | peroxisome proliferator-activated receptor |
PUFA | polyunsaturated fatty acids |
SMYD3 | SET and MYND domain containing 3 |
SOD | superoxide dismutase |
SR | scavenger receptor |
SREBP | sterol-regulatory element binding protein |
TC | total cholesterol |
TG | triglyceride |
UCP | uncoupling protein |
References
- World Health Organization. World Health Statistics 2020; World Health Organization: Geneva, Switzerland, 2020; p. 12. [Google Scholar]
- Mayakrishnan, V.; Kannappan, P.; Abdullah, N.; Ahmed, A.B.A. Cardioprotective activity of polysaccharides derived from marine algae: An overview. Trends Food Sci. Technol. 2013, 30, 98–104. [Google Scholar] [CrossRef]
- Kobiyama, K.; Ley, K. Atherosclerosis. Circ. Res. 2018, 123, 1118–1120. [Google Scholar] [CrossRef] [PubMed]
- Woollard, K.J.; Geissmann, F. Monocytes in atherosclerosis: Subsets and functions. Nat. Rev. Cardiol. 2010, 7, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Boren, J.; Williams, K.J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: A triumph of simplicity. Curr. Opin. Lipidol. 2016, 27, 473–483. [Google Scholar] [CrossRef]
- Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino, R.B., Sr.; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 2015, 131, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Albany, C.J.; Trevelin, S.C.; Giganti, G.; Lombardi, G.; Scotta, C. Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Front. Immunol. 2019, 10, 2795. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Cho, Y.R.; Park, G.M.; Won, K.B.; Ann, S.H.; Yang, D.H.; Kang, J.W.; Lim, T.H.; Kim, H.K.; Choe, J.; et al. High-density lipoprotein cholesterol and the risk of obstructive coronary artery disease beyond low-density lipoprotein cholesterol in non-diabetic individuals. Eur. J. Prev. Cardiol. 2020, 27, 706–714. [Google Scholar] [CrossRef]
- Maffeis, C.; Surano, M.G.; Cordioli, S.; Gasperotti, S.; Corradi, M.; Pinelli, L. A High-fat vs. a Moderate-fat Meal in Obese Boys: Nutrient Balance, Appetite, and Gastrointestinal Hormone Changes. Obesity 2010, 18, 449–455. [Google Scholar] [CrossRef]
- Fisher, J.; Liu, Y.; Birch, L.L.; Rolls, B.J. Effects of portion size and energy density on young children’s intake at a meal. Am. J. Clin. Nutr. 2007, 86, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Cotton, J.R.; Burley, V.J.; Weststrate, J.A.; Blundell, J.E. Dietary fat and appetite: Similarities and differences in the satiating effect of meals supplemented with either fat or carbohydrate. J. Hum. Nutr. Diet. 2007, 20, 186–199. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Song, B.-L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, T.R.; Kjekshus, J.; Berg, K.; Haghfelt, T.; Faergeman, O.; Thorgeirsson, G.; Pyorala, K.; Miettinen, T.; Wilhelmsen, L.; Olsson, A.G.; et al. Randomized Trial of Cholesterol-Lowering in 4444 Patients with Coronary-Heart-Disease—The Scandinavian Simvastatin Survival Study (4s). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Brown, M.S.; Goldstein, J.L. A Receptor-Mediated Pathway for Cholesterol Homeostasis. Science 1986, 232, 34–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, J.; Cobbe, S.M.; Ford, I.; Isles, C.G.; Lorimer, A.R.; Macfarlane, P.W.; Mckillop, J.H.; Packard, C.J. Prevention of Coronary Heart-Disease with Pravastatin in Men with Hypercholesterolemia. N. Engl. J. Med. 1995, 333, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.; Armitage, J.; Parish, S.; Sleight, P.; Peto, R.; Collaborati, H.P.S. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: A randomised placebo-controlled trial. Lancet 2002, 360, 7–22. [Google Scholar]
- Preiss, D.; Tobert, J.A.; Hovingh, G.K.; Reith, C. Lipid-Modifying Agents, From Statins to PCSK9 Inhibitors. J. Am. Coll. Cardiol. 2020, 75, 1945–1955. [Google Scholar] [CrossRef]
- Nikolic, D.; Banach, M.; Chianetta, R.; Luzzu, L.M.; Stoian, A.P.; Diaconu, C.C.; Citarrella, R.; Montalto, G.; Rizzo, M. An overview of statin-induced myopathy and perspectives for the future. Expert Opin. Drug Saf. 2020, 19, 601–615. [Google Scholar] [CrossRef]
- Hamed, I.; Ozogul, F.; Ozogul, Y.; Regenstein, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. F 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Hu, X.Q.; Tao, N.P.; Wang, X.C.; Xiao, J.B.; Wang, M.F. Marine-derived bioactive compounds with anti-obesity effect: A review. J. Funct. Foods 2016, 21, 372–387. [Google Scholar] [CrossRef]
- Kim, S.K.; Wijesekara, I. Development and biological activities of marine-derived bioactive perptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Pereira, O.R.; Seca, A.M.L.; Pinto, D.C.G.A.; Silva, A.M.S. Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods. Mar. Drugs 2015, 13, 6838–6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seca, A.M.L.; Pinto, D.C.G.A. Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar. Drugs 2018, 16, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.G.; Lu, Y.A.; Li, X.N.; Hyun, J.M.; Kim, H.S.; Lee, J.J.; Kim, T.H.; Kim, H.M.; Kang, M.C.; Jeon, Y.J. Anti-Obesity Effects of Grateloupia elliptica, a Red Seaweed, in Mice with High-Fat Diet-Induced Obesity via Suppression of Adipogenic Factors in White Adipose Tissue and Increased Thermogenic Factors in Brown Adipose Tissue. Nutrients 2020, 12, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-Martinez, J.; Hernandez-Cruz, K.; Franco-Colin, M.; Mateo-Cid, L.E.; Mendoza-Gonzalez, C.; Blas-Valdivia, V.; Cano-Europa, E. Safety evaluation and antiobesogenic effect of Sargassum liebmannii J. Agardh (Fucales: Phaeophyceae) in rodents. J. Appl. Phycol. 2019, 31, 2597–2607. [Google Scholar] [CrossRef]
- Xu, S.Y.; Huang, X.S.; Cheong, K.L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef] [Green Version]
- Manlusoc, J.K.T.; Hsieh, C.L.; Hsieh, C.Y.; Salac, E.S.N.; Lee, Y.T.; Tsai, P.W. Pharmacologic Application Potentials of Sulfated Polysaccharide from Marine Algae. Polymers 2019, 11, 1163. [Google Scholar] [CrossRef] [Green Version]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Wang, S.C.; Yao, C.W.; Xu, Z.; Xu, X.M. Hypolipidemic effect of porphyran extracted from Pyropia yezoensis in ICR mice with high fatty diet. J. Appl. Phycol. 2016, 28, 1315–1322. [Google Scholar] [CrossRef]
- Lekshmi, V.S.; Kurup, G.M. Sulfated polysaccharides from the edible marine algae Padina tetrastromatica protects heart by ameliorating hyperlipidemia, endothelial dysfunction and inflammation in isoproterenol induced experimental myocardial infarction. J. Funct. Foods 2019, 54, 22–31. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.J.; Zhao, R.X. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [Green Version]
- Laurienzo, P. Marine Polysaccharides in Pharmaceutical Applications: An Overview. Mar. Drugs 2010, 8, 2435–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Hu, B.; Song, S.; Liang, H.; Ji, A. Research progress of fucoidan in anti-tumor mechanism. Chem. Life 2019, 39, 998–1003. [Google Scholar]
- Kim, J.; Kim, D.H.; Chun, S.H.; Park, H.Y.; Lee, K.W. Enhancement Natural Killer Cell Activity of Fucoidan in Lung Metastasis in vivo Model. FASEB J. 2018, 32, 1. [Google Scholar]
- Li, X.; Zhang, S. Study on the effect of anti—Aging and structure—Function relationship of fucoidan from kelp. Sci. Technol. Food Ind. 2015, 36, 117–121. [Google Scholar]
- Tomori, M.; Nagamine, T.; Miyamoto, T.; Iha, M. Evaluation of the Immunomodulatory Effects of Fucoidan Derived from Cladosiphon Okamuranus Tokida in Mice. Mar. Drugs 2019, 17, 547. [Google Scholar] [CrossRef] [Green Version]
- Daub, C.D.; Mabate, B.; Malgas, S.; Pletschke, B.I. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, alpha-glucosidase. Int. J. Biol. Macromol. 2020, 151, 412–420. [Google Scholar] [CrossRef]
- Yang, Z.X.; Yin, J.Y.; Wang, Y.F.; Wang, J.; Xia, B.; Li, T.; Yang, X.Q.; Hu, S.M.; Ji, C.F.; Guo, S.D. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. Int. J. Biol. Macromol. 2019, 134, 759–769. [Google Scholar] [CrossRef]
- Yin, J.Y.; Wang, J.; Li, F.H.; Yang, Z.X.; Yang, X.Q.; Sun, W.L.; Xia, B.; Li, T.; Song, W.G.; Guo, S.D. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Food Funct. 2019, 10, 5124–5139. [Google Scholar] [CrossRef]
- Krizshanovsky, S.P.; Kuznetsova, T.A.; Geltser, B.I.; Zaporozhets, T.S.; Ermakova, S.P.; Besednova, N.N. Fucoidan from brown algae fucus evanescens: new perspectives in the treatment of atherosclerosis. Russ. J. Biother. 2017, 16, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Yeom, M.; Hahm, D.H. Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. J. Pharmacol. Sci. 2016, 131, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Husni, A.; Pawestri, S.; Isnansetyo, A. Blood glucose level and lipid profile of alloxan-induced diabetic rats treated with Na-alginate from seaweed Turbinaria ornata (Turner) J. agardh. J. Teknol. 2016, 78, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Marounek, M.; Volek, Z.; Skrivanova, E.; Taubner, T.; Pebriansyah, A.; Duskova, D. Comparative study of the hypocholesterolemic and hypolipidemic activity of alginate and amidated alginate in rats. Int. J. Biol. Macromol. 2017, 105, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Idota, Y.; Kogure, Y.; Kato, T.; Ogawa, M.; Kobayashi, S.; Kakinuma, C.; Yano, K.; Arakawa, H.; Miyajima, C.; Kasahara, F.; et al. Cholesterol-Lowering Effect of Calcium Alginate in Rats. Biol. Pharm. Bull. 2016, 39, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.T.; Li, S.; Liu, W.J.; Xin, M.; Li, H.H.; Yu, G.L.; Guan, H.S.; He, X.X.; Li, C.X. The mechanisms of sulfated polysaccharide drug of propylene glycol alginate sodium sulfate (PSS) on bleeding side effect. Carbohyd. Polym. 2018, 194, 365–374. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, F.; Lin, H.; Fu, L. Physico-chemical property and hypoglycemic effect in vitro of soluble dietary fiber from Ulva lactuca. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2017, 46, 702–707. [Google Scholar]
- Li, W.D.; Jiang, N.F.; Li, B.X.; Wan, M.H.; Chang, X.T.; Liu, H.; Zhang, L.; Yin, S.P.; Qi, H.M.; Liu, S.M. Antioxidant activity of purified ulvan in hyperlipidemic mice. Int. J. Biol. Macromol. 2018, 113, 971–975. [Google Scholar] [CrossRef]
- Jiang, N.F.; Li, B.X.; Wang, X.Q.; Xu, X.N.; Liu, X.L.; Li, W.D.; Chang, X.T.; Li, H.; Qi, H.M. The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. Int. J. Biol. Macromol. 2020, 145, 1059–1065. [Google Scholar] [CrossRef]
- Chin, Y.X.; Mi, Y.; Cao, W.X.; Lim, P.E.; Xue, C.H.; Tang, Q.J. A Pilot Study on Anti-Obesity Mechanisms of Kappaphycus Alvarezii: The Role of Native -Carrageenanand the Leftover Sans-Carrageenan Fraction. Nutrients 2019, 11, 1133. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Zhong, W.W. Antihyperglycemic and antihyperlipidemic effects of low-molecular-weight carrageenan in rats. Open Life Sci. 2018, 13, 379–384. [Google Scholar] [CrossRef]
- Petryk, N.; Shevchenko, O. Anti-inflammatory Activity of Mesenchymal Stem Cells in lambda-Carrageenan-Induced Chronic Inflammation in Rats: Reactions of the Blood System, Leukocyte-Monocyte Ratio. Inflammation 2020. [Google Scholar] [CrossRef]
- de Campos Facchin, B.M.; da Rosa, J.S.; Luz, A.B.G.; Moon, Y.J.K.; de Lima, T.C.; Casoti, R.; Biavatti, M.W.; Dalmarco, E.M.; Frode, T.S. Systemic Administration of Calea pinnatifida Inhibits Inflammation Induced by Carrageenan in a Murine Model of Pulmonary Neutrophilia. Mediat. Inflamm. 2020, 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkachenko, A.S.; Gubina-Vakulyck, G.I.; Klochkov, V.K.; Kavok, N.S.; Onishchenko, A.I.; Gorbach, T.V.; Nakonechna, O.A. Experimental Evaluation of the Impact of Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles on the Carrageenan-Induced Intestinal Inflammation. Acta Medica Hradec Kralove 2020, 63, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Fukuda, S.; Izumi, H.; Saga, N. Anti-Oxidant and Fucoxanthin Contents of Brown Alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Mar. Drugs 2018, 16, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.P.; Xu, W.; Huang, X.Q.; Zhao, Y.Q.; Ren, Q.Q.; Hong, Z.A.; Huang, M.Q.; Xing, X. Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. J. Funct. Foods 2018, 48, 515–524. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chen, Y.L.; Huang, W.C.; Liou, C.J. Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochem. Bioph. Res. Commun. 2018, 495, 197–203. [Google Scholar] [CrossRef]
- Cui, Y.; Tang, N.; Niu, J.; Zhu, M.; Cheng, M.; Zhao, C.; Qi, H.; Liu, S. Study on the anti-aging effect of fucoxanthin on H_2O_2-induced premature senescence in WI-38 human diploid fibroblast cell. Chin. J. Mar. Drugs 2018, 37, 48–52. [Google Scholar]
- Grasa-Lopez, A.; Miliar-Garcia, A.; Quevedo-Corona, L.; Paniagua-Castro, N.; Escalona-Cardoso, G.; Reyes-Maldonado, E.; Jaramillo-Flores, M.E. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity. Mar. Drugs 2016, 14, 148. [Google Scholar] [CrossRef] [Green Version]
- Gille, A.; Stojnic, B.; Derwenskus, F.; Trautmann, A.; Schmid-Staiger, U.; Posten, C.; Briviba, K.; Palou, A.; Bonet, M.L.; Ribot, J. A Lipophilic Fucoxanthin-Rich Phaeodactylum tricornutum Extract Ameliorates Effects of Diet-Induced Obesity in C57BL/6J Mice. Nutrients 2019, 11, 796. [Google Scholar] [CrossRef] [Green Version]
- Hitoe, S.; Shimoda, H. Seaweed fucoxanthin supplementation improves obesity parameters in mildly obese Japanese subjects. Funct. Foods Health D 2017, 7, 246–262. [Google Scholar] [CrossRef]
- Qin, Y. Applications of Bioactive Seaweed Substances in Functional Food Products. J. Food Sci. Technol. China 2019, 37, 18–23. [Google Scholar]
- Choi, E.K.; Park, S.H.; Ha, K.C.; Noh, S.O.; Jung, S.J.; Chae, H.J.; Chae, S.W.; Park, T.S. Clinical Trial of the Hypolipidemic Effects of a Brown Alga Ecklonia cava Extract in Patients with Hypercholesterolemia. Int. J. Pharmacol. 2015, 11, 798–805. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, L.; Im, S.; Hwang, O.; Kim, H.S.; Kang, M.C.; Lee, S.H. Anti-Obesity Effect of Diphlorethohydroxycarmalol Isolated from Brown Alga Ishige okamurae in High-Fat Diet-Induced Obese Mice. Mar. Drugs 2019, 17, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.X.; Liu, G.J.; Wang, Y.F.; Yin, J.Y.; Wang, J.; Xia, B.; Li, T.; Yang, X.Q.; Hou, P.B.; Hu, S.M.; et al. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2019, 67, 5782–5791. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.B.; Wang, Y.F.; Wang, Q.K.; Luo, X.; He, Y.H.; Song, Y.F. Hypolipidemic effects of sulfated fucoidan from Kjellmaniella crassifolia through modulating the cholesterol and aliphatic metabolic pathways. J. Funct. Foods 2018, 51, 8–15. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Cai, L.; Zhong, S.; Zhong, S.; Xie, E. The Regulatory Effect of Sargassum Fucoidan on the Lipid Metabolism Related Enzymes and Cholesterol Synthesis Key Enzyme of Hyperlipidemic Mice. J. Chin. Inst. Food Sci. Technol. 2017, 17, 10–16. [Google Scholar]
- Yokota, T.; Nomura, K.; Nagashima, M.; Kamimura, N. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(Shl) mice deficient in apolipoprotein E expression. J. Nutr. Biochem. 2016, 32, 46–54. [Google Scholar] [CrossRef]
- Nasri, M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. Adv. Food Nutr. Res. 2017, 81, 109–159. [Google Scholar]
- Han, Y.; Gao, Z.G.; Chen, L.Q.; Kang, L.; Huang, W.; Jin, M.J.; Wang, Q.M.; Bae, Y.H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B 2019, 9, 902–922. [Google Scholar] [CrossRef]
- Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharmaceut. 2013, 447, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Salamat-Miller, N.; Johnston, T.P. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int. J. Pharmaceut. 2005, 294, 201–216. [Google Scholar] [CrossRef]
- Zupancic, O.; Bernkop-Schnurch, A. Lipophilic peptide character—What oral barriers fear the most. J. Control Release 2017, 255, 242–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Hur, J.; Ham, S.A.; Jo, Y.; Lee, S.; Choi, M.J.; Seo, H.G. Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. Int. J. Biol. Macromol. 2017, 104, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Nasri, R.; Abdelhedi, O.; Jemil, I.; Ben Amor, I.; Elfeki, A.; Gargouri, J.; Boualga, A.; Karra-Chaabouni, M.; Nasri, M. Preventive effect of goby fish protein hydrolysates on hyperlipidemia and cardiovascular disease in Wistar rats fed a high-fat/fructose diet. RSC Adv. 2018, 8, 9383–9393. [Google Scholar] [CrossRef] [Green Version]
- Benaicheta, N.; Labbaci, F.Z.; Bouchenak, M.; Boukortt, F.O. Effect of sardine proteins on hyperglycaemia, hyperlipidaemia and lecithin: Cholesterol acyltransferase activity, in high-fat diet-induced type 2 diabetic rats. Br. J. Nutr. 2016, 115, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Jemil, I.; Abdelhedi, O.; Nasri, R.; Mora, L.; Marrekchi, R.; Jamoussi, K.; ElFeki, A.; Hajji, M.; Toldra, F.; Nasri, M. Hypolipidemic, antiobesity and cardioprotective effects of sardinelle meat flour and its hydrolysates in high-fat and fructose diet fed Wistar rats. Life Sci. 2017, 176, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Abdelhedi, O.; Khemakhem, H.; Nasri, R.; Jridi, M.; Mora, L.; Ben Amor, I.; Jamoussi, K.; Toldra, F.; Gargouri, J.; Nasri, M. Assessment of Cholesterol, Glycemia Control and Short- and Long-Term Antihypertensive Effects of Smooth Hound Viscera Peptides in High-Salt and Fructose Diet-Fed Wistar Rats. Mar. Drugs 2019, 17, 194. [Google Scholar] [CrossRef] [Green Version]
- Ben Slama-Ben Salem, R.; Ktari, N.; Bkhairia, I.; Nasri, R.; Mora, L.; Kallel, R.; Hamdi, S.; Jamoussi, K.; Boudaouara, T.; El-Feki, A.; et al. In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats. Food Res. Int. 2018, 106, 952–963. [Google Scholar] [CrossRef]
- Saravanan, P.; Davidson, N.C.; Schmidt, E.B.; Calder, P.C. Cardiovascular effects of marine omega-3 fatty acids. Lancet 2010, 376, 540–550. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.X.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Miller, M. Icosapent ethyl for hypertriglyceridemia: Insights from the REDUCE-IT Trial. Future Cardiol. 2019, 15, 391–394. [Google Scholar] [CrossRef]
- Mason, R.P.; Dawoud, H.; Jacob, R.F.; Sherratt, S.C.R.; Malinski, T. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin. Biomed. Pharmacother. 2018, 103, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Gonzalez, S.; Jackson, A.; Wilson, S.; Ramalingam, L.; Kalupahana, N.S.; Moustaid-Moussa, N. Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients 2019, 11, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuniga, J.; Cancino, M.; Medina, F.; Varela, P.; Vargas, R.; Tapia, G.; Videla, L.A.; Fernandez, V. N-3 PUFA Supplementation Triggers PPAR-alpha Activation and PPAR-alpha/NF-kappa B Interaction: Anti-Inflammatory Implications in Liver Ischemia-Reperfusion Injury. PLoS ONE 2011, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, N.; Irino, Y.; Shinohara, M.; Tsuda, S.; Mori, T.; Nagao, M.; Oshita, T.; Mori, K.; Hara, T.; Toh, R.; et al. Eicosapentaenoic Acid-Enriched High-Density Lipoproteins Exhibit Anti-Atherogenic Properties. Circ. J. 2018, 82, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Shearer, G.C.; Savinova, O.V.; Harris, W.S. Fish oil—How does it reduce plasma triglycerides? BBA Mol. Cell Biol. Lipids 2012, 1821, 843–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oishi, K.; Konishi, T.; Hashimoto, C.; Yamamoto, S.; Takahashi, Y.; Shiina, Y. Dietary fish oil differentially ameliorates high-fructose diet-induced hepatic steatosis and hyperlipidemia in mice depending on time of feeding. J. Nutr. Biochem. 2018, 52, 45–53. [Google Scholar] [CrossRef]
- Xie, Z.; Kang, H.; He, L.; Kuang, R. Effects and mechanism of deep-sea fish oil on blood lipid in hyperlipidemia rats. Chin. J. Clin. Pharmacol. Ther. 2017, 22, 870–874. [Google Scholar]
- Beppu, F.; Li, H.; Yoshinaga, K.; Nagai, T.; Yoshinda, A.; Kubo, A.; Kanda, J.; Gotoh, N. Dietary Starfish Oil Prevents Hepatic Steatosis and Hyperlipidemia in C57BLI6N Mice Fed High-fat Diet. J. Oleo Sci. 2017, 66, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Wang, D.; Zhou, M.M.; Du, L.; Xu, J.; Xue, C.H.; Wang, Y.M. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice. J. Oleo Sci. 2016, 65, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Sun, X.N.; Duan, M.M.; Luo, T.R.; Jiang, P.R.; Jiang, G.P.; Song, S.; Ai, C.Q. Effect of intake pattern of sulfated polysaccharides on its biological activity in high fat diet-fed mice. Int. J. Biol. Macromol. 2019, 132, 9–16. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Zhu, B.W.; Sun, Y.J.; Ai, C.Q.; Wang, L.L.; Wen, C.R.; Yang, J.F.; Song, S.; Liu, X.L. Sulfated Polysaccharide from Sea Cucumber and its Depolymerized Derivative Prevent Obesity in Association with Modification of Gut Microbiota in High-Fat Diet-Fed Mice. Mol. Nutr. Food Res. 2018, 62, 12. [Google Scholar] [CrossRef]
- Li, S.; Li, J.H.; Zhi, Z.J.; Hu, Y.Q.; Ge, J.; Ye, X.Q.; Tian, D.; Linhardt, R.J.; Chen, S.G. 4-O-Sulfation in sea cucumber fucodians contribute to reversing dyslipidiaemia caused by HFD. Int. J. Biol. Macromol. 2017, 99, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Q.; Li, S.; Li, J.H.; Ye, X.Q.; Ding, T.; Liu, D.H.; Chen, J.C.; Ge, Z.W.; Chen, S.G. Identification of a highly sulfated fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated tetrasaccharides units. Carbohyd. Polym. 2015, 134, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xue, C.H.; Chang, Y.G.; Xu, X.Q.; Ge, L.; Liu, G.C.; Wang, Y.C. Structure elucidation of fucoidan composed of a novel tetrafucose repeating unit from sea cucumber Thelenota ananas. Food Chem. 2014, 146, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, J.H.; Zhi, Z.J.; Wei, C.Y.; Wang, W.J.; Ding, T.A.; Ye, X.Q.; Hu, Y.Q.; Linhardt, R.J.; Chen, S.G. Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers. Carbohyd. Polym. 2017, 173, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Sofy, A.R.; Hmed, A.A.; Alnaggar, A.E.-A.M.; Dawoud, R.A.; Elshaarawy, R.F.M.; Sofy, M.R. Mitigating effects of Bean yellow mosaic virus infection in faba bean using new carboxymethyl chitosan-titania nanobiocomposites. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef]
- Kong, S.Z.; Li, J.C.; Li, S.D.; Liao, M.N.; Li, C.P.; Zheng, P.J.; Guo, M.H.; Tan, W.X.; Zheng, Z.H.; Hu, Z. Anti-Aging Effect of Chitosan Oligosaccharide on D-Galactose-Induced Subacute Aging in Mice. Mar. Drugs 2018, 16, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Fang, B.; Yong, Y.H.; Li, X.W.; Gong, D.L.; Li, J.Y.; Yu, T.Y.; Gooneratne, R.; Gao, Z.H.; Li, S.D.; et al. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-kappa B signaling pathway. Carbohyd. Polym. 2019, 219, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Kwon, Y.I.; Lee, C.; Apostolidis, E.; Kim, Y.C. Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPAR expression. Biofactors 2017, 43, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krajewska, B. Chitin and Its Derivatives as Supports for Immobilization of Enzymes. Acta Biotechnol. 1991, 11, 269–277. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Shen, X.; Li, X.D.; Chen, B.L.; Fan, L.Q.; Xia, Q.M.; Zhao, L.M. Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). J. Funct. Foods 2019, 57, 7–18. [Google Scholar] [CrossRef]
- Ju, Y.Y.; Huang, Y.Y.; Xiao, M.T.; Ye, J. Hypolipidaemic and antioxidant activities of chito-oligosaccharides in hyperlipidaemic rats induced by high-fat diet. Maejo Int. J. Sci. Technol. 2019, 13, 72–81. [Google Scholar]
- Wang, Q.; Jiang, Y.; Luo, X.; Wang, C.; Wang, N.; He, H.; Zhang, T.; Chen, L. Chitooligosaccharides Modulate Glucose-Lipid Metabolism by Suppressing SMYD3 Pathways and Regulating Gut Microflora. Mar. Drugs 2020, 18, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhang, L.Y.; Li, Z.J.; Xue, C.H.; Dong, P.; Huang, Q.R.; Wang, Y.M.; Zhang, T.T. Characterization and Absorption Kinetics of a Novel Multifunctional Nanoliposome Stabilized by Sea Cucumber Saponins Instead of Cholesterol. J. Agric. Food Chem. 2020, 68, 642–651. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, T.T.; Che, H.X.; Zhang, L.Y.; Xue, C.H.; Chang, Y.G.; Wang, Y.M. Saponins of sea cucumber attenuate atherosclerosis in ApoE(-/-) mice via lipid-lowering and anti-inflammatory properties. J. Funct. Foods 2018, 48, 490–497. [Google Scholar] [CrossRef]
- Meng, J.; Hu, X.Q.; Zhang, T.T.; Dong, P.; Li, Z.J.; Xue, C.H.; Chang, Y.G.; Wang, Y.M. Saponin from sea cucumber exhibited more significant effects than ginsenoside on ameliorating high fat diet-induced obesity in C57BL/6 mice. MedChemComm 2018, 9, 725–734. [Google Scholar] [CrossRef]
- Chen, C.; Han, X.Q.; Dong, P.; Li, Z.J.; Yanagita, T.; Xue, C.H.; Zhang, T.T.; Wang, Y.M. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice. Food Funct. 2018, 9, 861–870. [Google Scholar] [CrossRef]
- Wu, D.; Xu, H.; Chen, J.Y.; Zhang, L.S. Effects of Astaxanthin Supplementation on Oxidative Stress A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Vitam. Nutr. Res. 2020, 90, 179–194. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, J.; Dai, R. Effects of astaxanthin on lipid-lowering, anti-oxidation and anti-inflammation of atherosclerosis in ApoE knockout mice. Chin. J. Immunol. 2020, 36, 794–798. [Google Scholar]
- Zou, T.; Yang, H.; Tang, X.; Ling, W. Protection of astaxanthin against high-fat diet-induced non-alcoholic fatty liver disease in mice. Acta Nutr. Sin. 2016, 38, 386–390. [Google Scholar]
- Zuo, Z.; Shao, Y.; Liu, Y.; Bu, Y.; Wang, H.; Li, N.; Liu, Z. Astaxanthin Regulates Liver Lipid Metabolism and Circadian Gene Expression. Food Sci. 2019, 40, 165–172. [Google Scholar]
- Jia, Y.; Wu, C.; Kim, J.; Kim, B.; Lee, S.J. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. J. Nutr. Biochem. 2016, 28, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Faraone, I.; Sinisgalli, C.; Ostuni, A.; Armentano, M.F.; Carmosino, M.; Milella, L.; Russo, D.; Labanca, F.; Khan, H. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review. Pharmacol. Res. 2020, 155, 104689. [Google Scholar] [CrossRef] [PubMed]
- Gunasinghe, M.A.; Kim, A.T.; Kim, S.M. Inhibitory Effects of Vanadium-Binding Proteins Purified from the Sea Squirt Halocynthia roretzi on Adipogenesis in 3T3-L1 Adipocytes. Appl. Biochem. Biotech. 2019, 189, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Wang, D.; Wen, M.; Du, L.; Xue, C.H.; Wang, J.F.; Xu, J.; Wang, Y.M. Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid from Cucumaria frondosa. J. Funct. Foods 2017, 28, 28–35. [Google Scholar] [CrossRef]
- Wen, M.; Fu, X.Y.; Han, X.Q.; Hu, X.Q.; Dong, P.; Xu, J.; Xue, Y.; Wang, J.F.; Xue, C.H.; Wang, Y.M. Sea Cucumber Saponin Echinoside A (EA) Stimulates Hepatic Fatty Acid beta-Oxidation and Suppresses Fatty Acid Biosynthesis Coupling in a Diurnal Pattern. J. Nutr. Sci. Vitaminol. 2016, 62, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Hu, S.M.; Pang, X.Y.; Wang, J.F.; Yin, J.Y.; Li, F.H.; Wang, J.; Yang, X.Q.; Xia, B.; Liu, Y.H.; et al. The marine-derived furanone reduces intracellular lipid accumulation in vitro by targeting LXR alpha and PPAR alpha. J. Cell Mol. Med. 2020, 24, 3384–3398. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Meng, T.; Zuo, L.; Bei, Y.; Zhang, Q.H.; Su, Z.J.; Huang, Y.D.; Pang, J.Y.; Xiang, Q.; Yang, H.T. Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models. Mar. Drugs 2017, 15, 163. [Google Scholar] [CrossRef] [Green Version]
- Ha, B.G.; Moon, D.S.; Kim, H.J.; Shon, Y.H. Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes. Biomed. Pharmacother. 2016, 83, 477–484. [Google Scholar] [CrossRef]
- Chang, W.T.; Lu, T.Y.; Cheng, M.C.; Lu, H.C.; Wu, M.F.; Hsu, C.L. Deep Sea Water Improves Abnormalities in Lipid Metabolism through Lipolysis and Fatty Acid Oxidation in High-Fat Diet-Induced Obese Rats. Mar. Drugs 2017, 15, 386. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Kwon, Y.S.; Kim, S.; Moon, D.S.; Kim, H.J.; Nam, K.S. Regulatory mechanism of mineral-balanced deep sea water on hypocholesterolemic effects in HepG2 hepatic cells. Biomed Pharmacother. 2017, 86, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Chun, S.Y.; Kwon, Y.S.; Kim, S.; Nam, K.S. Deep sea water improves hypercholesterolemia and hepatic lipid accumulation through the regulation of hepatic lipid metabolic gene expression. Mol. Med. Rep. 2017, 15, 2814–2822. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-S.; Yu, T.; Yang, K.; Choi, S.; Lee, S.-M.; Park, K.-Y. Cube natural sea salt ameliorates obesity in high fat diet-induced obese mice and 3T3-L1 adipocytes. Sci. Rep. 2020, 10, 3407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Source | Experimental Model | Index | Mechanism | Ref |
---|---|---|---|---|---|
Porphyran | Pyropia yezoensis | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | To be determined | [29] |
Sulfated polysaccharides | Padina tetrastromatica | Isoproterenol Induced myocardial infarction rat model | TC, TG, LDL-C, HDL-C | Regulate the expressions of SREBP-2 and LDL-R | [30] |
Fucoidan A3 | Ascophyllum nodosum | Hyperlipidemia mice | TC, TG, Fat pad index | Enhance RCT-related genes expression | [38] |
Fucoidan | Ascophyllum nodosum | Hyperlipidemia mice | TC, TG, Fat pad index | Enhance RCT-related genes and proteins expression | [39] |
Fucoidan | Fucus vesiculosus | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Regulate the expression of key enzymes of cholesterol and triglyceride syntheses | [41] |
Fucoidan A2 | Ascophyllum nodosum | Hyperlipidemia mice | TC, TG, HDL-C, Fat pad index | Modulate RCT-related protein expression | [64] |
Fucoidan | Kjellmaniella crassifolia | Hyperlipemia rats | TG | Inhibit cholesterol and aliphatic acid synthesis, accelerate the oxidation of aliphatic acid | [65] |
Fucoidan | Sargassum wightii | Hyperlipidemia mice | TC | Inhibit HMGCoA reductase activity, improve LCAT, HL, LPL activity | [66] |
Fucoidan | Brown algae | Apolipoprotein E-deficient mice | TC, TG, LDL-C, HDL-C | Induce LPL activity, inhibit the effects of inflammation and oxidative stress | [67] |
Sodium alginate | Turbinaria ornata (Turner) J.Agardh | Diabetic rats | TC, LDL-C, HDL-C | Increase fecal excretion of cholesterol | [42] |
Sodium alginate and amidated sodium alginate | Brown algae | Hyperlipemia rats | TC, TG | Increase fecal excretion of cholesterol and coprostanol | [43] |
Calcium alginate | Brown algae | Hyperlipemia rats | TC | Enhance fecal excretion of bile acid | [44] |
Ulvan | Ulva pertusa | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Protect against the liver damage of oxidative stress | [47] |
Ulvan | Ulva pertusa | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Improve hypolipidemic activities | [48] |
Carrageenan | Kappaphycus alvarezii | Hyperlipidemia mice | TC | Regulate genes in lipid metabolism | [49] |
Carrageenan | Eucheuma spinosum | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Increase intestinal content, inhibit intestinal mucosal absorption, accelerate peristalsis in the small intestine | [50] |
Fucoxanthin | Laminaria japonica | Hyperlipidemia mice | TC, TG | Regulate the expression of IRS-1/PI3K/AKT and AMPK signaling pathway | [55] |
Fucoxanthin | Phaeodactylum tricornutum | Hyperlipidemia mice | TG | Increase enzymatic activity of lipoprotein metabolism key enzymes | [59] |
Fucoxanthin | Algae | Obese people | TG | Inhibit lipid accumulation | [60] |
Phlorotannins | Ecklonia cava | Hypercholesterolemia people | TC, LDL-C | Inhibit lipid accumulation | [62] |
Diphlorethohydroxycarmalol | Ishige okamurae | Hyperlipidemia mice | TG, LDL-C, HDL-C | Inhibit lipid biosynthesis | [63] |
Name | Source | Experimental Model | Index | Mechanism | Ref |
---|---|---|---|---|---|
Protein hydrolysates | Goby fish | Hyperlipidemia rats | TC, TG, LDL-C | Inhibit lipid accumulation | [74] |
Fish protein | Sardine | Hyperlipidemia rats | TC, TG | Reverse cholesterol transport | [75] |
Protein hydrolysates | Smooth hound | Hyperlipidemia rats | TC, TG | Not specified | [77] |
Protein hydrolysates | Octopus vulgaris | Hyperglycemic rats | TC, TG, LDL-C | Inhibit lipid accumulation | [78] |
Protein hydrolysates | Sardinella aurita | Hyperlipidemia rats | TC, TG, LDL-C, HDL-C | Decrease the pancreatic lipase activity | [76] |
Collagen peptide | Tuna | 3T3-L1 preadipocytes | TC, TG | Inhibit adipocyte differentiation | [73] |
Vanadium-binding proteins | Squirt Halocynthia | 3T3-L1 Adipocytes | TC, TG | Decrease adipogenesis | [115] |
DHA | Fish oil | Hyperlipidemia mice | TC, TG | Inhibit lipogenesis | [87] |
EPA/DHA | Deep-sea fish oil | Hyperlipidemia rats | TC, TG, LDL-C | Regulate the response level to oxidative stress, improve expression level of the SIRT1 and PPAR-a proteins | [88] |
DHA/EPA | Starfish Oil | Hyperlipidemia mice | TC, TG, LDL-C | Improve lipid metabolism | [89] |
EPA | Cucumaria frondosa | Hyperlipidemia mice | TG, HDL-C | Suppress lipid accumulation | [116] |
Phospholipid | Cucumaria frondosa | Hyperlipidemia mice | TC, TG, LDL-C | Suppress hepatic fatty acid synthesis, enhance hepatic fatty acid B-oxidation | [90] |
Sulfated polysaccharides | Abalone gonad | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Inhibited fat accumulation | [91] |
Sulfated polysaccharides | Stichopus japonicus | Hyperlipidemia mice | TC, TG, LDL-C | Modulate the gut microbiota, improve microbial metabolites and gut tissue | [92] |
Fucoidan | Pearsonothuria graeffei, Isostichopus badionotus | Hyperlipidemia rats | TC, TG, LDL-C, HDL-C | Improve lipid metabolism | [93] |
Fucoidan, fucosylated chondroitin sulfate | Pearsonothuria graeffei, Isostichopus badionotus | Hyperlipidemia rats | TC, TG, LDL-C, HDL-C | Inhibit pancreatic lipase | [96] |
Chitooligosaccharide | Commercial procurement | Hyperlipidemia mice | TC, TG, LDL-C | Decrease the uptake of FFAs and triglyceride synthesis | [102] |
Chitooligosaccharides | Commercial procurement | Hyperlipidemia rats | TC, TG, LDL-C, HDL-C | Improve lipid metabolism | [103] |
Chitooligosaccharides | Snow crab | HepG2 cells, Hyperglycemic rats | TC, TG, LDL-C | Regulate HMGCR, improve lipid metabolism | [104] |
Saponins | Sea cucumber | Hyperlipidemia rats | TC, TG, LDL-C, HDL-C | Enhance RCT-related genes and proteins expression | [106] |
Saponins | Pearsonothuria graeffe | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Inhibit lipid synthesis, accelerate lipid beta-oxidation | [107] |
Saponins | Sea cucumber | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Improve lipid metabolism | [108] |
Echinoside A | Pearsonothria graeffei | Chow fed mice | TC, TG | Improve lipid metabolism | [117] |
Astaxanthin | Commercial procurement | Nonalcoholic fatty liver disease | TC, TG, LDL-C, HDL-C | To be determined | [111] |
Astaxanthin | Commercial procurement | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | Improve lipid metabolism | [112] |
Astaxanthin | Commercial procurement | Hyperlipidemia mice | TC, TG, LDL-C, HDL-C | To be determined | [110] |
Astaxanthin | Commercial procurement | Hyperlipidemia mice | TC, TG | Activate PPAR alpha and inhibit PPAR gamma and Akt | [113] |
Name | Source | Experimental Model | Index | Mechanism | Ref |
---|---|---|---|---|---|
Furanone | Fungus setosphaeria sp | RAW 264.7 cells | TC, TG | Upregulate PPARα | [118] |
Xyloketal B | Fungusxylaria sp | Hyperlipidemia mice | TC, TG, LDL-C | Reduce lipid accumulation | [119] |
Cube natural sea salt | Sea | 3T3-L1 adipocytes, Hyperlipidemia mice | TC, TG, LDL-C | Reduce lipid accumulation, regulate the beta-oxidation, lipolysis | [124] |
Deep sea water | Sea | 3T3-L1 preadipocytes | TC, TG, LDL-C | Improve lipid metabolism | [120] |
Deep sea water | Sea | 3T3-L1 preadipocytes, Hyperlipidemia rats | TC, TG, LDL-C | Improve lipolysis and fatty acid oxidation | [121] |
Deep sea water | Sea | HepG2 cells | TC, TG, LDL-C | Induce LDLR and ApoA1 transcriptions, inhibit PCSK9 mRNA expression | [122] |
Deep sea water | Sea | Hyperlipidemia rats | TC, LDL-C, HDL-C | Enhance LDLR expression, suppress fatty acid synthase and SREBP-1c expression | [123] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Cao, Q.; Xing, M.; Xiao, H.; Cheng, Z.; Song, S.; Ji, A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar. Drugs 2020, 18, 390. https://doi.org/10.3390/md18080390
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Marine Drugs. 2020; 18(8):390. https://doi.org/10.3390/md18080390
Chicago/Turabian StyleZhao, Jiarui, Qi Cao, Maochen Xing, Han Xiao, Zeyu Cheng, Shuliang Song, and Aiguo Ji. 2020. "Advances in the Study of Marine Products with Lipid-Lowering Properties" Marine Drugs 18, no. 8: 390. https://doi.org/10.3390/md18080390
APA StyleZhao, J., Cao, Q., Xing, M., Xiao, H., Cheng, Z., Song, S., & Ji, A. (2020). Advances in the Study of Marine Products with Lipid-Lowering Properties. Marine Drugs, 18(8), 390. https://doi.org/10.3390/md18080390