Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of the Final Extraction Temperature on the Yield and Extract Composition
2.2. Physicochemical Characterisation of the Extracts
2.2.1. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.2. Molecular Weight Distribution
2.2.3. Mechanical Characterisation of Alginate
2.3. Biological Characterisation and Application of the Extracts
2.3.1. Effect on Cell Viability
2.3.2. Production and Characterisation of Nanoparticles Formulated with Extracts from L. ochroleuca
3. Materials and Methods
3.1. Raw Materials
3.2. Hydrothermal Extraction
3.3. Alginate Extraction
3.4. Analytical Methodology
3.4.1. Composition of the Extracts
Carbohydrate Content
Phenolic Content
Antioxidant Activity
Soluble Sulphate Content
Soluble Protein Content
3.4.2. Chemical Characterisation of Extracts
Fourier-Transform Infrared Spectroscopy
Molecular Weight Distribution
3.4.3. Biological Characterisation and Application
Effect of Extracts on Cell Viability
Cell Culture
Evaluation of Metabolic Activity
Evaluation of Cell Membrane Integrity
3.5. Production and Characterisation of Nanoparticles
3.6. Mechanical Features of Alginate Fractions
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Koch, M.; Glombitza, K.W.; Eckhard, G. Phlorotannins of phaeophycea Laminaria ochroleuca. Phytochemistry 1980, 19, 1821–1823. [Google Scholar] [CrossRef]
- Bonfim-Mendonça, P.d.S.; Capoci, I.R.G.; Tobaldini-Valerio, F.K.; Negri, M.; Svidzinski, T.I.E. Overview of β-glucans from laminaria spp.: Immunomodulation properties and applications on biologic models. Int. J. Mol. Sci. 2017, 18, 1629. [Google Scholar] [CrossRef] [Green Version]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Recovery of bioactive and gelling extracts from edible brown seaweed Laminaria ochroleuca by non-isothermal autohydrolysis. Food Chem. 2019, 277, 353–361. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Res. 2018, 30, 128–148. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int. J. Biol. Macromol. 2019, 124, 451–459. [Google Scholar] [CrossRef]
- Abdala Díaz, R.T.; Casas Arrojo, V.; Arrojo Agudo, M.A.; Cárdenas, C.; Dobretsov, S.; Figueroa, F.L. Immunomodulatory and antioxidant activities of sulfated polysaccharides from Laminaria ochroleuca, Porphyra umbilicalis, and Gelidium corneum. Mar. Biotechnol. 2019, 21, 577–587. [Google Scholar] [CrossRef]
- Ale, M.T.; Meyer, A.S. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013, 3, 8131–8141. [Google Scholar] [CrossRef] [Green Version]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y. Effect of basic fibroblast growth factor released from chitosan – fucoidan nanoparticles on neurite extension. J. Tissue Eng. Regen. Med. 2016, 418–427. [Google Scholar] [CrossRef]
- Uzunalli, G. Nanomaterials for Wound Healing. In Nanomaterials for Regenerative Medicine, Stem Cell Biology and Regenerative Medicine; Tekinay, A.B., Ed.; Humana Press: Totowa, NZ, USA, 2020; pp. 81–117. ISBN 9783030312022. [Google Scholar]
- Barbosa, A.I.; Costa Lima, S.A.; Reis, S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules 2019, 24, 346. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.G.; Venkatesan, J.; Shim, M.S. Selective anticancer therapy using pro-oxidant drug-loaded chitosan–fucoidan nanoparticles. Int. J. Mol. Sci. 2019, 20, 3220. [Google Scholar] [CrossRef] [Green Version]
- Chuang, C.C.; Tsai, M.H.; Yen, H.; Shyu, H.F.; Cheng, K.; Chen, X.; Chen, C.; Young, J.; Kau, J.H. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr. Polym. 2020, 229, 115403. [Google Scholar] [CrossRef]
- Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs 2016, 14, 42. [Google Scholar] [CrossRef]
- Citkowska, A.; Szekalska, M.; Winnicka, K. Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Mar. Drugs 2019, 17, 458. [Google Scholar] [CrossRef] [Green Version]
- Cunha, L.; Rodrigues, S.; da Costa, A.M.R.; Faleiro, M.L.; Buttini, F.; Grenha, A. Inhalable fucoidan microparticles combining two antitubercular drugs with potential application in pulmonary tuberculosis therapy. Polymers 2018, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Cunha, L.; Rosa da Costa, A.M.; Lourenço, J.P.; Buttini, F.; Grenha, A. Spray-dried fucoidan microparticles for pulmonary delivery of antitubercular drugs. J. Microencapsul. 2018, 35, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Leal, D.; Matsuhiro, B.; Rossi, M.; Caruso, F. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res. 2008, 343, 308–316. [Google Scholar] [CrossRef]
- Sakugawa, K.; Ikeda, A.; Takemura, A.; Ono, H. Simplified method for estimation of composition of alginates by FTIR. J. Appl. Polym. Sci. 2004, 93, 1372–1377. [Google Scholar] [CrossRef]
- González-López, N.; Moure, A.; Domínguez, H. Hydrothermal fractionation of Sargassum muticum biomass. J. Appl. Phycol. 2012, 24, 1569–1578. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Lee, B.B.; Bhandari, B.R.; Howes, T. Gelation of an alginate film via spraying of calcium chloride droplets. Chem. Eng. Sci. 2018, 183, 1–12. [Google Scholar] [CrossRef]
- Vauchel, P.; Kaas, R.; Arhaliass, A.; Baron, R.; Legrand, J. A new process for extracting alginates from Laminaria digitata: Reactive extrusion. Food Bioprocess Technol. 2008, 1, 297–300. [Google Scholar] [CrossRef]
- Pérez-Larrán, P.; Torres, M.D.; Flórez-Fernández, N.; Balboa, E.M.; Moure, A.; Domínguez, H. Green technologies for cascade extraction of Sargassum muticum bioactives. J. Appl. Phycol. 2019, 31, 2481–2495. [Google Scholar] [CrossRef]
- Costa, L.S.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Camara, R.B.; Nobre, L.T.D.B.; Costa, M.S.S.P.; Almeida-Lima, J.; Farias, E.H.C.; et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 2010, 64, 21–28. [Google Scholar] [CrossRef]
- Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Li, B.; Wei, X.-J.-J.; Sun, J.-L.-L.; Xu, S.-Y.-Y. Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydr. Res. 2006, 341, 1135–1146. [Google Scholar] [CrossRef]
- Wang, H.-M.D.; Li, X.-C.; Lee, D.-J.; Chang, J.-S. Potential biomedical applications of marine algae. SI Algal Biorefinery 2017, 244, 1407–1415. [Google Scholar] [CrossRef]
- Etman, S.M.; Abdallah, O.Y.; Elnaggar, Y.S.R. Novel fucoidan based bioactive targeted nanoparticles from Undaria pinnatifida for treatment of pancreatic cancer. Int. J. Biol. Macromol. 2020, 145, 390–401. [Google Scholar] [CrossRef]
- Gupta, D.; Silva, M.; Radziun, K.; Martinez, D.C.; Hill, C.J.; Marshall, J.; Hearnden, V.; Puertas-Mejia, M.A.; Reilly, G.C. Fucoidan inhibition of osteosarcoma cells is species and molecular weight dependent. Mar. Drugs 2020, 18, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ale, M.T.; Maruyama, H.; Tamauchi, H.; Mikkelsen, J.D.; Meyer, A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int. J. Biol. Macromol. 2011, 49, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef]
- Scherließ, R. The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells. Int. J. Pharm. 2011, 411, 98–105. [Google Scholar] [CrossRef] [PubMed]
- ISO. Part 5: Tests for in Vitro Cytotoxicity. In ISO 10993-1 Biological Evaluation of Medical Devices; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Wang, C.-Y.; Wu, T.-C.; Hsieh, S.-L.; Tsai, Y.-H.; Yeh, C.-W.; Huang, C.-Y. Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium. J. Food Drug Anal. 2015, 23, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Racher, A.J.; Looby, D.; Griffiths, J.B. Use of lactate dehydrogenase release to assess changes in culture viability. Cytotechnology 1990, 3, 301–307. [Google Scholar] [CrossRef]
- Rodrigues, S.; Cardoso, L.; da Costa, A.M.R.; Grenha, A. Biocompatibility and stability of polysaccharide polyelectrolyte complexes aimed at respiratory delivery. Materials 2015, 8, 5647–5670. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.; da Costa, A.M.R.D.R.; Grenha, A. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr. Polym. 2012, 89, 282–289. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of solubre, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dodgson, K.S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem. J. 1961, 78, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Azevedo, G.; Torres, M.D.; Sousa-Pinto, I.; Hilliou, L. Effect of pre-extraction alkali treatment on the chemical structure and gelling properties of extracted hybrid carrageenan from Chondrus crispus and Ahnfeltiopsis devoniensis. Food Hydrocoll. 2015, 50, 150–158. [Google Scholar] [CrossRef]
Tmax (°C) | Severity | pH | 1 Extraction Yield (g/100 g Lo) | Alginate Yield (%) | Solid Content (%) | Protein Content (%) | PGE Content (%) | TEAC Value (%) |
---|---|---|---|---|---|---|---|---|
70 | 0.04 | 6.02 ± 0.05 b | 49.46 | 7.2 ± 0.8 c | 1.84 ± 0.01 c | 0.12 ± 0.01 a | 0.41 ± 0.02 b | 0.74 ± 0.02 c |
80 | 0.08 | 5.91 ± 0.01 a | 53.83 | 10.2 ± 0.6 b | 1.85 ± 0.01 c | 0.10 ± 0.01 a | 0.41 ± 0.11 b | 0.97 ± 0.03 a |
90 | 0.25 | 6.26 ± 0.01 a | 50.78 | 17.3 ± 1.2 a | 2.43 ± 0.05 a | 0.09 ± 0.02 a | 0.39 ± 0.04 b | 0.70 ± 0.04 c |
100 | 0.56 | 6.32 ± 0.01 a | 51.49 | 15.9 ± 0.9 a | 1.96 ± 0.01 b | 0.12 ± 0.01 a | 0.56 ± 0.16 a | 0.88 ± 0.01 b |
Tmax (°C) | Sulphate Content (%) | Glu (%) | Xyl+Gal+ Man (%) | Rha (%) | Fuc (%) | Mannitol (%) | Acetyl Groups (%) |
---|---|---|---|---|---|---|---|
70 | 3.71 ± 0.08 a | 16.69 ± 0.88 a | 15.31 ± 0.21 b | 2.29 ± 0.01 d | 6.00 ± 0.14 c | - | 2.52 ± 0.21 c |
80 | 1.95 ± 0.03 c | 7.15 ± 0.25 c | 9.39 ± 0.55 c | 3.17 ± 0.39 c | 3.91 ± 0.20 d | - | 2.60 ± 0.59 c |
90 | 1.26 ± 0.02 d | 5.71 ± 0.48 d | 10.43 ± 0.48 c | 4.49 ± 0.23 b | 8.54 ± 0.20 b | 4.02 ± 0.20 | 3.90 ± 0.24 b |
100 | 2.23 ± 0.07 b | 10.70 ± 0.98 b | 20.61 ± 0.77 a | 6.86 ± 0.20 a | 18.01 ± 0.02 a | - | 6.30 ± 0.29 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flórez-Fernández, N.; Álvarez-Viñas, M.; Guerreiro, F.; Torres, M.D.; Grenha, A.; Domínguez, H. Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles. Mar. Drugs 2020, 18, 336. https://doi.org/10.3390/md18070336
Flórez-Fernández N, Álvarez-Viñas M, Guerreiro F, Torres MD, Grenha A, Domínguez H. Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles. Marine Drugs. 2020; 18(7):336. https://doi.org/10.3390/md18070336
Chicago/Turabian StyleFlórez-Fernández, Noelia, Milena Álvarez-Viñas, Filipa Guerreiro, María Dolores Torres, Ana Grenha, and Herminia Domínguez. 2020. "Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles" Marine Drugs 18, no. 7: 336. https://doi.org/10.3390/md18070336
APA StyleFlórez-Fernández, N., Álvarez-Viñas, M., Guerreiro, F., Torres, M. D., Grenha, A., & Domínguez, H. (2020). Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles. Marine Drugs, 18(7), 336. https://doi.org/10.3390/md18070336