COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs)
Abstract
1. Introduction
2. Results and Discussion
2.1. Capacity Values of ILs toward the ALA Molecules
2.1.1. Effect of Carbon Chain Length of Cation-Based ILs on the ALA Extraction Capacity
2.1.2. Effect of Anion-Based ILs on the ALA Extraction Capacity
2.2. Experimental Validation of COSMO-RS Prediction for the ALA Extraction
3. Methodology
3.1. COSMO-RS Computational Details and Calculations
3.2. Material and Methods of Experimental Validation
3.3. Microwave Assisted Extraction (MAE) of Lipid with ILs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duc, D.; Vigne, S.; Pot, C. Oxysterols in Autoimmunity. Int. J. Mol. Sci. 2019, 20, 4522. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Ianora, A. Marine organisms with anti-diabetes properties. Mar. Drugs 2016, 14, 220. [Google Scholar] [CrossRef] [PubMed]
- Ryckebosch, E.; Bruneel, C.; Muylaert, K.; Foubert, I. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol. 2012, 24, 128–130. [Google Scholar] [CrossRef]
- Sinn, N.; Milte, C.M.; Street, S.J.; Buckley, J.D.; Coates, A.M.; Petkov, J.; Howe, P.R.C. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: A 6-month randomised controlled trial. Br. J. Nutr. 2012, 107, 1682–1693. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011, 7, 17–26. [Google Scholar] [CrossRef]
- Kartikasari, L.R.; Hughes, R.J.; Geier, M.S.; Makrides, M.; Gibson, R.A. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. Prostaglandins, Leukot. Essent. Fat. Acids 2012, 87, 103–109. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.; Gerken, H. Recent Advances in Microalgal Biotechnology Omega-3 Polyunsaturated Fatty Acids from Algae. Biotechnol. Adv. 2015, 8, 709–727. [Google Scholar]
- Handayania, N.A.; Ariyantib, D. Potential Production of Polyunsaturated Fatty Acids from Microalgae. Int. J. Sci. Eng. 2012, 1, 13–16. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Arora, N.; Sartaj, K.; Pruthi, V.; Pruthi, P.A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew. Sustain. energy Rev. 2016, 62, 836–855. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H. Bin Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 20–31. [Google Scholar] [CrossRef]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Ahn, D.-G.; Cho, C.-G.; Jeong, S.-H.; Lee, D.-G. Design of photobioreactor for mass production of microalgae. J. Korean Soc. Precis. Eng. 2011, 28, 140–153. [Google Scholar]
- Schneider, W.F.; Brennecke, J.F.; Maginn, E.J.; Mindrup, E.; Gurkan, B.; Price, E.; Goodrich, B. Ionic Liquids Comprising Heteraromatic Anions. U.S. Patent US2019/0031608A1, 31 January 2019. [Google Scholar]
- Rezaei Motlagh, S.; Harun, R.; Biak, D.R.A.; Hussain, S.A.; Wilfreda, C.D.; Krishnan, S. Screening of Long Chain Imidazolium Base Ionic Liquids for EPA and DHA Extraction from Microalgae Using COSMO-RS Model. 2019. Available online: http://www.akademiabaru.com/doc/ARFMTSV58_N1_P23_29.pdf (accessed on 15 August 2019).
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef]
- Saki, K.; Bahmani, M.; Rafieian-Kopaei, M. The effect of most important medicinal plants on two importnt psychiatric disorders (anxiety and depression)-a review. Asian Pac. J. Trop. Med. 2014, 7, S34–S42. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, S.; Kim, M.H.; Choi, Y.K.; Yang, Y.H.; Kim, H.J.; Kim, H.; Kim, H.S.; Song, K.G.; Lee, S.H. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenergy 2013, 56, 99–103. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, Y.K.; Park, J.; Lee, S.; Yang, Y.H.; Kim, H.J.; Park, T.J.; Hwan Kim, Y.; Lee, S.H. Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour. Technol. 2012, 109, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-A.; Oh, Y.-K.; Jeong, M.-J.; Kim, S.W.; Lee, J.-S.; Park, J.-Y. Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew. Energy 2014, 65, 169–174. [Google Scholar] [CrossRef]
- Durga, G.; Mishra, A. Ionic liquids: Industrial applications. Encycl. Inorg. Bioinorg. Chem. 2011, 1–13. [Google Scholar]
- Gonfa, G.; Bustam, M.a; Murugesan, T.; Man, Z.; Mutalib, M.I.A. Thiocyanate Based Task-specific Ionic Liquids for Separation of Benzene and Cyclohexane. Chem. Eng. Trans. 2012, 3, 1939–1944. [Google Scholar]
- Scheffczyk, J.; Fleitmann, L.; Schwarz, A.; Lampe, M.; Bardow, A.; Leonhard, K. COSMO-CAMD: A framework for optimization-based computer-aided molecular design using COSMO-RS. Chem. Eng. Sci. 2017, 159, 84–92. [Google Scholar] [CrossRef]
- Weis, D.C.; MacFarlane, D.R. Computer-aided molecular design of ionic liquids: An overview. Aust. J. Chem. 2012, 65, 1478–1486. [Google Scholar] [CrossRef]
- Xue, Z.; Mu, T.; Gmehling, J. Comparison of the a priori COSMO-RS models and group contribution methods: Original UNIFAC, modified UNIFAC (Do), and modified UNIFAC (Do) consortium. Ind. Eng. Chem. Res. 2012, 51, 11809–11817. [Google Scholar] [CrossRef]
- Klamt, A. The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Deive, F.J.; Esperança, J.; Rodríguez, A. Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilib. 2010, 291, 13–17. [Google Scholar] [CrossRef]
- Kumar, L.; Banerjee, T.; Mohanty, K. Prediction of selective extraction of cresols from aqueous solutions by ionic liquids using theoretical approach. Sep. Sci. Technol. 2011, 46, 2075–2087. [Google Scholar] [CrossRef]
- Meindersma, G.W.; De Haan, A.B. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture. Sci. China Chem. 2012, 55, 1488–1499. [Google Scholar] [CrossRef]
- Paduszyński, K. An overview of the performance of the COSMO-RS approach in predicting the activity coefficients of molecular solutes in ionic liquids and derived properties at infinite dilution. Phys. Chem. Chem. Phys. 2017, 19, 11835–11850. [Google Scholar] [CrossRef] [PubMed]
- Domańska, U.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis (trifluoromethylsulfonyl)-imide. J. Chem. Thermodyn. 2009, 41, 1350–1355. [Google Scholar] [CrossRef]
- Rezaei Motlagh, S.; Harun, R.; Biak, A.; Radiah, D.; Hussain, S.A.; Wan Ab Karim Ghani, W.A.; Khezri, R.; Wilfred, C.D.; Elgharbawy, A.A.M. Screening of Suitable Ionic Liquids as Green Solvents for Extraction of Eicosapentaenoic Acid (EPA) from Microalgae Biomass Using COSMO-RS Model. Molecules 2019, 24, 713. [Google Scholar] [CrossRef]
- Mohanty, S.; Banerjee, T.; Mohanty, K. Quantum chemical based screening of ionic liquids for the extraction of phenol from aqueous solution. Ind. Eng. Chem. Res. 2010, 49, 2916–2925. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Zou, L.; Chi, R. Imidazolium-based ionic liquids with inorganic anions in the extraction of salidroside and tyrosol from Rhodiola: The role of cations and anions on the extraction mechanism. J. Mol. Liq. 2019, 275, 136–145. [Google Scholar] [CrossRef]
- Hawker, R.R.; Haines, R.S.; Harper, J.B. Variation of the Cation of Ionic Liquids: The Effects on Their Physicochemical Properties and Reaction Outcome. Targets Heterocycl. Syst. Prop. 2015, 141–213. [Google Scholar] [CrossRef]
- Du, F.-Y.; Xiao, X.-H.; Luo, X.-J.; Li, G.-K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef]
- Xu, W.; Chu, K.; Li, H.; Zhang, Y.; Zheng, H.; Chen, R.; Chen, L. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth. Molecules 2012, 17, 14323–14335. [Google Scholar] [CrossRef] [PubMed]
- Kilulya, K.F.; Msagati, T.A.M.; Mamba, B.B. Ionic liquid-based extraction of fatty acids from blue-green algal cells enhanced by direct transesterification and determination using GC× GC-TOFMS. Chromatographia 2014, 77, 479–486. [Google Scholar] [CrossRef]
- Severa, G.; Kumar, G.; Troung, M.; Young, G.; Cooney, M.J. Simultaneous extraction and separation of phorbol esters and bio-oil from Jatropha biomass using ionic liquid-methanol co-solvents. Sep. Purif. Technol. 2013, 116, 265–270. [Google Scholar] [CrossRef]
- Praveenkumar, R.; Lee, K.; Lee, J.; Oh, Y.-K. Breaking dormancy: An energy-efficient means of recovering astaxanthin from microalgae. Green Chem. 2015, 17, 1226–1234. [Google Scholar] [CrossRef]
- Cheong, L.-Z.; Guo, Z.; Yang, Z.; Chua, S.-C.; Xu, X. Extraction and enrichment of n-3 polyunsaturated fatty acids and ethyl esters through reversible π–π complexation with aromatic rings containing ionic liquids. J. Agric. Food Chem. 2011, 59, 8961–8967. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Wang, N.N.; Yu, Z.W. The hydrogen bonding interactions between the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate and water. J. Phys. Chem. B 2010, 114, 4747–4754. [Google Scholar] [CrossRef]
- Mu, X.; Jiang, N.; Liu, C.; Zhang, D. New Insight into the Formation Mechanism of Imidazolium-Based Ionic Liquids from N-Alkyl Imidazoles and Halogenated Hydrocarbons: A Polar Microenvironment Induced and Autopromoted Process. J. Phys. Chem. A 2017, 121, 1133–1139. [Google Scholar] [CrossRef]
- Zhang, Y.; Ward, V.; Dennis, D.; Plechkova, N.; Armenta, R.; Rehmann, L. Efficient Extraction of a Docosahexaenoic Acid (DHA)-Rich Lipid Fraction from Thraustochytrium sp. Using Ionic Liquids. Materials (Basel) 2018, 11, 1986. [Google Scholar] [CrossRef]
- Olkiewicz, M.; Plechkova, N.V.; Earle, M.J.; Fabregat, A.; Stüber, F.; Fortuny, A.; Font, J.; Bengoa, C. Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids. Appl. Catal. B Environ. 2016, 181, 738–746. [Google Scholar] [CrossRef]
- Miazek, K.; Kratky, L.; Sulc, R.; Jirout, T.; Aguedo, M.; Richel, A.; Goffin, D. Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review. Int. J. Mol. Sci. 2017, 18, 1429. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Alam, M.; Xu, J.; Zhu, S.; Yuan, Z.; Huo, S.; Guo, Y.; Qin, L.; Ma, L. Repeated Utilization of Ionic Liquid to Extract Lipid from Algal Biomass. Int. J. Polym. Sci. 2019, 2019. [Google Scholar] [CrossRef]
- Ullah, H.; Wilfred, C.D.; Shaharun, M.S. Comparative assessment of various extraction approaches for the isolation of essential oil from polygonum minus using ionic liquids. J. King Saud Univ. 2017, 31, 230–239. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Dreizler, R.M.; Gross, E.K.U. Density Functional Theory: An Approach to the Quantum Many-Body Problem; Springer Science & Business Media: New York, NY, USA, 2012; ISBN 3642861059. [Google Scholar]
- Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Muppaneni, T.; Sun, Y.; Reddy, H.K.; Fu, J.; Lu, X.; Deng, S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 2016, 178, 49–55. [Google Scholar] [CrossRef]
- Lewis, T.; Nichols, P.D.; McMeekin, T.A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods 2000, 43, 107–116. [Google Scholar] [CrossRef]
No. | Name of Anions | Acronym | Chemical Structures |
---|---|---|---|
1 | 1-ethyl-3-methyl imidazolium | [EMIM] | |
2 | 1-butyl-3-methyl imidazolium | [BMIM] | |
3 | 1-hexyl-3-methyl imidazolium | [HMIM] | |
4 | 1-octyl-3-methyl imidazolium | [OMIM] | |
5 | 1-ethyl-3-methyl pyridinium | [EMPyr] | |
6 | 1-butyl-3-methyl pyridinium | [BMPyr] | |
7 | 1-hexyl-3-methyl pyridinium | [HMPyr] | |
8 | 1-octhyl-3-methyl pyridinium | [OMPyr] | |
9 | 1-ethyl-1-methyl pyrrolidinium | [EMPyrro] | |
10 | 1-butyl-1-methyl pyrrolidinium | [BMPyrro] | |
11 | 1-hexyl-1-methyl pyrrolidinium | [HMPyrro] | |
12 | 1-methyl-1-octyl pyrrolidinium | [MOPyrro] | |
13 | 1-methyl-1-propyl piperidinium | [MPPipe] | |
14 | 1-butyl-1-methyl piperidinium | [BMPipe] | |
15 | 1-hexyl-1-methyl piperidinium | [HMPipe] | |
16 | Tetramethyl ammonium | [TMAm] |
No. | Name of Anions | Acronym/Chemical Structure Formula | Chemical Structures |
---|---|---|---|
1 | Chloride | Cl− | - |
2 | Bromide | Br− | - |
3 | Tetrafluoroborate | [BF4]− | |
4 | Hexafluorophosphate | [PF6]− | |
5 | Nitrate | [NO3]− | |
6 | Dicyanamide | [DCN]/[C2N3]− | |
7 | Tetrachloro aluminate | [AlCl4]− | |
8 | Thiocyanate | [SCN]− | |
9 | Dimethylphosphate | [C2H6PO4]− | |
10 | Diethylphosphate | [C4H10PO4]− | |
11 | Benzoate | [C7H5O2]− | |
12 | Methanesulfonate | [CH3SO3]− | |
13 | Toluene-4-sulfonate | [C7H7SO3]− | |
14 | Trifluoro methane sulfonate | [CF3SO3]− | |
15 | Sulfate | [SO4]2− | |
16 | Hydrogen sulfate | [HSO4]− | |
17 | Ethyl sulfate | [C2H5SO4]− | |
18 | Methyl sulfate | [CH3SO4]− | |
19 | Propanoate | [C3H5O2]− | |
20 | Bis(trifluoromethylsulfonyl)methane | [C3H2F6O4S2]− | |
21 | Trifluoro acetate | [CF3CO2]− | |
22 | Bis(trifluoromethylsulfonyl)amide | [Tf2N]]/[C2F6NO4S2]− |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei Motlagh, S.; Harun, R.; Awang Biak, D.R.; Hussain, S.A.; Omar, R.; Elgharbawy, A.A. COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs). Mar. Drugs 2020, 18, 108. https://doi.org/10.3390/md18020108
Rezaei Motlagh S, Harun R, Awang Biak DR, Hussain SA, Omar R, Elgharbawy AA. COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs). Marine Drugs. 2020; 18(2):108. https://doi.org/10.3390/md18020108
Chicago/Turabian StyleRezaei Motlagh, Shiva, Razif Harun, Dayang Radiah Awang Biak, Siti Aslina Hussain, Rozita Omar, and Amal A. Elgharbawy. 2020. "COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs)" Marine Drugs 18, no. 2: 108. https://doi.org/10.3390/md18020108
APA StyleRezaei Motlagh, S., Harun, R., Awang Biak, D. R., Hussain, S. A., Omar, R., & Elgharbawy, A. A. (2020). COSMO-RS Based Prediction for Alpha-Linolenic Acid (ALA) Extraction from Microalgae Biomass Using Room Temperature Ionic Liquids (RTILs). Marine Drugs, 18(2), 108. https://doi.org/10.3390/md18020108