Targeted Isolation of Anti-Trypanosomal Naphthofuran-Quinone Compounds from the Mangrove Plant Avicennia lanata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dereplication Study on A. lanata Total Crude Extract
2.1.1. Compound 1 (hydroxyavicenol C)
2.1.2. Compound 2 (glycosemiquinone)
2.2. Anti-Trypanosomal and Cytotoxic Activities
3. Materials and Methods
3.1. Plant Materials
3.2. General Experimental Procedures
3.3. Dereplication by Using HRESI-LCMS
3.4. Extraction, Fractionation and Isolation of Metabolites from A. Lanata
3.5. Isolation of Secondary Metabolites from A. lanata
3.6. Bioassays
3.6.1. Anti-Trypanosomal Assay
3.6.2. Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Endophytic and epiphytic microbes as “sources” of bioactive agents. Front. Chem. 2015, 3, 34. [Google Scholar] [CrossRef]
- Bandaranayake, W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl. Ecol. Manag. 2002, 10, 421–452. [Google Scholar] [CrossRef]
- Duke, N.; Ball, M.; Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 1998, 7, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Peter, K.L.N.; Sivasothi, N. A Guide to the Mangroves of Singapore 1: The Ecosystem & Plant. Diversity; revised edition (2002); Singapore Science Centre: Singapore, 1999. [Google Scholar]
- Bournot, K. Gewinnung von Lapachol aus dem Kernholz von Avicennia tomentosa. Arch. Pharm. 1913, 251, 351–354. [Google Scholar] [CrossRef]
- Han, L.; Huang, X.; Dahse, H.M.; Moellmann, U.; Fu, H.; Grabley, S.; Sattler, I.; Lin, W. Unusual naphthoquinone derivatives from the twigs of Avicennia marina. J. Nat. Prod. 2007, 70, 923–927. [Google Scholar] [CrossRef]
- Ito, C.; Kondo, Y.; Rao, K.S.; Tokuda, H.; Nishino, H.; Furukawa, H. Chemical constituents of Glycosmis pentaphylla. Isolation of a novel naphthoquinone and a new acridone alkaloid. Chem. Pharm. Bull. 1999, 47, 1579–1581. [Google Scholar] [CrossRef] [Green Version]
- Ito, C.; Katsuno, S.; Kondo, Y.; Tan, H.T.; Furukawa, H. Chemical constituents of Avicennia alba. Isolation and structural elucidation of new naphthoquinones and their analogues. Chem. Pharm. Bull. 2000, 48, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Ito, C.; Oda, M.; Itoigawa, M.; Yokoo, K.; Okada, T.; Furukawa, H. Lapachol suppresses cell proliferation and secretion of interleukin-6 and plasminogen activator inhibitor-1 of fibroblasts derived from hypertrophic scars. J. Pharm. Pharmacol. 2011, 63, 960–966. [Google Scholar] [CrossRef]
- Mohd Amir, M.I.H.; Khaw, T.T.; Bakar, K.; Mohd Radzi, S.A.; Mazlan, N.W. Antibacterial and antioxidant activity of naphthofuranquinones from the twigs of tropical mangrove Avicennia officinalis AU—Assaw, Suvik. Nat. Prod. Res. 2019, 1–4. [Google Scholar] [CrossRef]
- König, G.; Rimpler, H. Iridoid glucosides in Avicennia marina. Phytochemistry 1985, 24, 1245–1248. [Google Scholar] [CrossRef]
- König, G.; Rimpler, H.; Hunkler, D. Iridoid glucosides in Avicennia officinalis. Phytochemistry 1987, 26, 423–427. [Google Scholar] [CrossRef]
- Fauvel, M.-T.; Bousquet-Melou, A.; Moulis, C.; Gleye, J.; Jensen, S.R. Iridoid glucosides from Avicennia germinans. Phytochemistry 1995, 38, 893–894. [Google Scholar] [CrossRef]
- Fauvel, M.-T.; Moulis, C.; Bon, M.; Fourasté, I. A New Iridoid Glucoside from African Avicennia germinans. Nat. Prod. Lett. 1997, 10, 139–142. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.M.; Duan, X.J.; Wang, B.G. Iridoid glucosides and flavones from the aerial parts of Avicennia marina. Chem. Biodivers. 2006, 3, 799–806. [Google Scholar] [CrossRef]
- Gao, C.; Yi, X.; Xie, W.; Chen, Y.; Xu, M.; Su, Z.; Yu, L.; Huang, R. New Antioxidative Secondary Metabolites from the Fruits of a Beibu Gulf Mangrove, Avicennia marina. Marine Drugs 2014, 12, 4353–4360. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Misra, S.; Dutta, A.K.; Choudhury, A. Pentacyclic triterpenoids and sterols from seven species of mangrove. Phytochemistry 1985, 24, 1725–1727. [Google Scholar] [CrossRef]
- Mahera, S.A.; Ahmad, V.U.; Saifullah, S.M.; Mohammad, F.V.; Ambreen, K. Steroids and Triterpenoids from Grey Mangrove Avicennia marina. Pak. J. Bot 2011, 43, 1417–1422. [Google Scholar]
- Majumdar, S.G.; Ghosh, P.; Thakur, S. Velutin from Avicennia officinalis Linn.; Council of Scientific and Industrial Research: New Delhi, India, 1981. [Google Scholar]
- Subrahmanyam, C.; Kumar, S.; Reddy, G. Bioactive diterpenes from the mangrove Avicennia officinalis Linn. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 2006, 45, 2556–2557. [Google Scholar] [CrossRef]
- Bell, K.; Duewell, H. Triterpenoids from the bark of Avicennia marina. Aust. J. Chem. 1961, 14, 662–663. [Google Scholar] [CrossRef]
- Majumdar, S.G.; Ghosh, P. Chemical investigation on some mangroves species. I. Genus Avicennia. J. Indian Chem. Soc. 1979, 56, 111–113. [Google Scholar]
- Lazar, T.; Taiz, L.; Zeiger, E. Plant physiology. 3rd edn. Ann. Bot 2003, 91, 750–751. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, E. Plant metabolic diversity: A regulatory perspective. Trends Plant Sci. 2005, 10, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Control of neglected tropical diseases. N. Engl. J. Med. 2007, 357, 1018–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human african trypanosomiasis. Lancet 2010, 375, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Gurnani, N.; Mehta, D.; Gupta, M.; Mehta, B. Natural Products: Source of Potential Drugs. Afr. J. Basic Appl. Sci. 2014, 6, 171–186. [Google Scholar]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Rodrigues, R.; dos Santos, W.G.; Zani, C.L.; Oliveira, A.B.; Snieckus, V.; Romanha, A.J. Growth inhibitory effect of naphthofuran and naphthofuranquinone derivatives on Trypanosoma cruzi epimastigotes. Bioorganic Med. Chem. Lett. 1995, 5, 1509–1512. [Google Scholar] [CrossRef]
- Morello, A.; Pavani, M.; Garbarino, J.A.; Chamy, M.C.; Frey, C.; Mancilla, J.; Guerrero, A.; Repetto, Y.; Ferreira, J. Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comp. Biochem. Physiol. Part. C Pharmacol. Toxicol. Endocrinol. 1995, 112, 119–128. [Google Scholar] [CrossRef]
- Pérez-Castorena, A.L.; Arciniegas, A.; Villaseñor, J.L.; de Vivar, A.R. Furanoeremophilane derivatives from Psacalium beamanii. Rev. Soc. Quím. Méx. 2004, 48, 21–23. [Google Scholar]
- Mazlan, N.W.; Tate, R.; Yusoff, Y.M.; Clements, C.; Edrada-Ebel, R. Metabolomics-guided isolation of anti-trypanosomal compounds from endophytic fungi of the mangrove plant Avicennia lanata. Curr. Med. Chem. 2019, 27. [Google Scholar] [CrossRef] [PubMed]
- Anjaneyulu, A.; Murthy, Y.; Rao, V.; Sreedhar, K. Chemical examination of the mangrove plant Avicennia officinalis. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 2003, 42, 3117–3119. [Google Scholar] [CrossRef]
- Williams, R.B. Searching for Anticancer Natural Products from the Rainforest Plants of Suriname and Madagascar; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2005. [Google Scholar]
- Sugumaran, M.; Samy, J.; Lee, K.L.W. Herbs of Malaysia. An Introduction to the Medicinal, Culinary, Aromatic and Cosmetic Use of Herbs; Times Editions: London, UK, 2005. [Google Scholar]
- Zani, C.L.; De Oliveira, A.B.; De Oliviera, G.G. Furanonaphthoquinones from Tabebuia ochracea. Phytochemistry 1991, 30, 2379–2381. [Google Scholar] [CrossRef]
- Aso, M.; Ojida, A.; Yang, G.; Cha, O.J.; Osawa, E.; Kanematsu, K. Furannulation strategy for synthesis of the naturally occurring fused 3-methylfurans: Efficient synthesis of evodone and menthofuran and regioselective synthesis of maturone via a Lewis acid catalyzed Diels-Alder reactions. Some comments for its mechanistic aspects. J. Org. Chem. 1993, 58, 3960–3968. [Google Scholar]
- Hoet, S.; Pieters, L.; Muccioli, G.G.; Habib-Jiwan, J.-L.; Opperdoes, F.R.; Quetin-Leclercq, J. Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. J. Nat. Prod. 2007, 70, 1360–1363. [Google Scholar] [CrossRef]
- Gachet, M.S.; Kunert, O.; Kaiser, M.; Brun, R.; Zehl, M.; Keller, W.; Muñoz, R.A.; Bauer, R.; Schuehly, W. Antiparasitic Compounds from Cupania cinerea with Activities against Plasmodium falciparum and Trypanosoma bruceirhodesiense. J. Nat. Prod. 2011, 74, 559–566. [Google Scholar] [CrossRef]
- Hernández-Chávez, I.; Torres-Tapia, L.W.; Simá-Polanco, P.; Cedillo-Rivera, R.; Moo-Puc, R.; Peraza-Sánchez, S.R. Antigiardial activity of Cupania dentata bark and its constituents. J. Mex. Chem. Soc. 2012, 56, 105–108. [Google Scholar] [CrossRef]
- Biswas, M.; Biswas, K.; Ghosh, A.; Haldar, P. A pentacyclic triterpenoid possessing analgesic activity from the fruits of Dregea volubilis. Pharmacogn. Mag. 2009, 5, 90. [Google Scholar]
- Biswas, M.; Biswas, K.; Ghosh, A.; Haldar, P. A pentacyclic triterpenoid possessing anti-inflammatory activity from the fruits of Dregea volubilis. Pharmacogn. Mag. 2009, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Macias-Rubalcava, M.L.; Hernandez-Bautista, B.E.; Jimenez-Estrada, M.; Cruz-Ortega, R.; Anaya, A.L. Pentacyclic triterpenes with selective bioactivity from Sebastiania adenophora leaves, Euphorbiaceae. J. Chem. Ecol. 2007, 33, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Magadula, J.J.; Erasto, P. Bioactive natural products derived from the East African flora. Nat. Prod. Rep. 2009, 26, 1535–1554. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivon, F.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability. Anal. Chem. 2017, 89, 7836–7840. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, L.; Zhang, T.; Viegelmann, C.; Martinez, I.; Cheng, C.; Dowdells, C.; Abdelmohsen, U.; Gernert, C.; Hentschel, U.; Edrada-Ebel, R. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts. Mar. Drugs 2014, 12, 3416–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmohsen, U.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.; Hentschel, U.; Edrada-Ebel, R. Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp EG49. Mar. Drugs 2014, 12, 1220–1244. [Google Scholar] [CrossRef] [Green Version]
- Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (Tb rhodesiense and Tb gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
Peak ID | ESI Modes/MZmineID * | Rt (min) | MS (m/z) | Molecular Weight | Chemical Formula | Name * | Tolerance (ppm) | Sources ∆ | Peak Area |
---|---|---|---|---|---|---|---|---|---|
1 | N_258 | 5.54 | 165.0196 | 166.0269 | C8H6O4 | 1,4-benzenedicarboxylic acid | 1.6197 | Cassia roxburghii and Tephrosia hamiltonii | 2.06 × 108 |
2 | P_7894 | 6.82 | 279.1230 | 278.1158 | C15H18O5 | avicennone G | 1.2674 | Avicennia marina | 9.23 × 105 |
3 | P_3680 | 7.84 | 337.1280 | 336.1207 | C17H20O7 | avicennone B | −0.4533 | Avicennia marina | 5.92 × 107 |
4 | N_2920 | 8.09 | 261.1131 | 262.1203 | C15H18O4 | avicennone F | −0.605 | Avicennia marina | 9.31 × 105 |
5 | P_9663 | 9.04 | 261.0676 | 260.0604 | C15H13ClO2 | 3-chlorodeoxylapachol | −0.2017 | Avicennia germinans | 3.93 × 105 |
6 | N_145 | 9.12 | 187.0976 | 188.1048 | C9H16O4 | aspinonene | −0.0654 | marine-derived Aspergillus ostianus | 2.24 × 108 |
7 | P_4743 | 9.31 | 215.0339 | 214.0266 | C12H6O4 | avicennone D or E | 0.0973 | Avicennia marina | 7.07 × 106 |
8 | P_3663 * | 9.74 | 257.0807 | 256.0735 | C15H12O4 | avicequinone C *(4) | −0.3213 | Avicennia alba | 7.90 × 107 |
9 | N_251 | 9.56 | 305.0668 | 306.0741 | C15H14O7 | fusarubin | 0.525 | marine-derived Fusarium | 2.78 × 108 |
coniochaetone G | marine-derived Penicillium oxalicum | ||||||||
10 | N_3128 | 10.16 | 531.1874 | 532.1947 | C27H32O11 | 2′-O-(5-phenyl-2E,4E-pentadienoyl)mussaenosidic acid | 0.3802 | Avicennia marina | 5.60 × 105 |
11 | P_9206 | 10.19 | 245.0445 | 244.0372 | C13H8O5 | marinnone A or B | 0.252 | Avicennia marina | 1.43 × 106 |
12 | N_4676 | 10.27 | 227.0715 | 228.0787 | C14H12O3 | avicenol B | 0.4426 | Avicennia alba | 3.73 × 105 |
13 | P_3635 | 11.12 | 215.0339 | 214.0266 | C12H6O4 | avicennone D or E | −0.1166 | Avicennia marina | 1.13 × 108 |
14 | N_1496 | 11.26 | 389.1250 | 390.1323 | C20H22O8 | 4′,7′,9′-trihydroxy-3,3′-dimethoxy-4,8′-oxylign-7-en-9-oic acid | 2.051 | Avicennia marina | 4.29 × 106 |
15 | P_8572 | 11.40 | 245.0445 | 244.0373 | C13H8O5 | marinnone A or B | 0.377 | Avicennia marina | 7.48 × 105 |
16 | N_920 | 11.42 | 543.1862 | 544.1935 | C28H32O11 | geniposidic acid | 1.5797 | Avicennia marina | 2.24 × 106 |
17 | P_10291 * | 11.62 | 289.1070 | 288.1362 | C17H20O4 | avicenol C * (3) | 0.1199 | Avicennia alba and Avicennia officinalis | 1.15 × 106 |
18 | P_3575 | 11.66 | 321.1329 | 320.1257 | C17H20O6 | avicennone A | −1.0122 | Avicennia marina | 1.55 ×109 |
19 | P_4500 | 11.83 | 391.1380 | 390.1307 | C20H22O8 | 4′,7′,9′-trihydroxy-3,3′-dimethoxy-4,8′-oxylign-7-en-9-oic acid | −1.8508 | Avicennia marina | 9.08 × 106 |
20 | P_4152 | 12.09 | 378.1909 | 377.1836 | C20H27NO6 | carpatamide D | −0.6572 | marine-derived Streptomyces | 1.48 × 107 |
21 | P_6066 | 12.10 | 199.0389 | 198.0316 | C12H6O3 | naphtho[1,2-β]furan-4,5-dione avicequinone B | −0.3764 | Avicennia marina Avicennia alba | 2.41 × 106 |
22 | P_3962 | 12.38 | 349.2007 | 348.1934 | C20H28O5 | (6ξ,15S)-6,11-epoxy-6,12,16-trihydroxy-6,7-seco-8,11,13-abietatrien-7-al | −0.8252 | Avicennia marina | 1.31 × 107 |
23 | P_3589 | 12.54 | 321.1332 | 320.0896 | C16H16O7 | 6-(1-acetoxyethyl)-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone phomopsichin A or chaetochromone C rhytidchromone A | −0.1341 | mangrove-derived Botryosphaeria australis mangrove-derived Phomopsis mangrove-derived Rhytidhysteron rufulum | 2.35 × 108 |
24 | N_246 | 13.01 | 329.2336 | 330.2409 | C18H34O5 | penicitide B | 0.8396 | marine-derived Penicillium chrysogenum | 2.95 × 108 |
25 | P_3702 * | 13.36 | 329.1747 | 328.1673 | C20H24O4 | glycoquinone | −0.5072 | Glycosmis pentaphylla | 4.10 × 107 |
26 | P_3627 | 13.47 | 185.0597 | 184.0524 | C12H8O2 | 4-hydroxydibenzofuran | 0.1889 | Huperzia serrata | 9.19 × 107 |
27 | P_5879 | 13.70 | 245.1174 | 244.1101 | C15H16O3 | avicennone C | 0.6366 | Avicennia marina | 1.90 × 106 |
28 | P_3603 | 14.04 | 370.1859 | 369.1787 | C18H27NO7 | axillarine | −0.2064 | Crotalaria sp. | 1.16 × 108 |
29 | P_3632 * | 14.12 | 261.1120 | 260.1048 | C15H16O4 | pergillin pseudodeflectusin aspergione F | −0.2678 | marine-derived Aspergillus | 1.16 × 108 |
30 | P_3611 | 14.47 | 319.2267 | 318.2194 | C20H30O3 | conidiogenone J or K or spirograterpene A phomactin E or F or G | −0.2358 | marine-derived Penicillium marine-derived Phoma | 1.30 × 108 |
31 | P_5955 | 14.91 | 199.0390 | 198.0317 | C12H6O3 | naphtho[1,2-β]furan-4,5-dione avicequinone B | 0.0859 | Avicennia marina Avicennia alba | 5.83 × 106 |
32 | N_256 | 15.72 | 343.2130 | 344.2203 | C18H32O6 | gliomasolide C or D | −0.3879 | marine-derived Gliomastix | 4.58 ×108 |
33 | P_4414 | 15.83 | 257.0808 | 256.0739 | C15H12O4 | avicequinone C | 1.3625 | Avicennia alba | 6.59 × 105 |
34 | P_3684 * | 16.06 | 329.1746 | 328.1674 | C20H24O4 | glycoquinone*(5) | −0.2747 | Glycosmis pentaphylla | 5.05 × 107 |
35 | N_253 | 17.97 | 311.2231 | 312.2303 | C18H32O4 | gliomasolide A | −0.4263 | marine-derived Gliomastix | 5.05 × 108 |
36 | N_241 | 18.51 | 501.3226 | 502.3298 | C30H46O6 | 3,12,15-trihydroxy-11-oxolanosta-8,24-dien-26-oic acid | 0.8476 | fungus Ganoderma applanatum | 4.69 × 108 |
37 | P_39 | 18.89 | 465.1775 | 464.1848 | C23H30O10 | 7,9-dimethylether-(4-O-methyl-β-D-glucopyranoside)-3,4-dihydro-4,7,9,10-tetrahydroxy-3-methyl-1H-naphtho [2,3-c]pyran | 1.8852 | fungus Conoideocrella luteorostrata | 5.86 × 105 |
38 | N_244 | 20.01 | 343.2129 | 344.2202 | C18H32O6 | gliomasolide C or D | 0.8426 | marine-derived Gliomastix | 4.58 × 108 |
39 | N_273 | 20.98 | 291.1970 | 292.2042 | C18H28O3 | 2-deoxy-5-O-methylembelin | 1.1711 | mangrove Aegiceras corniculatum | 1.88 × 107 |
40 | P_5326 | 21.60 | 301.0706 | 300.0634 | C16H12O6 | luteolin-7-methyl ether | −0.0453 | Avicennia marina | 2.85 × 106 |
41 | P_3592 | 21.97 | 279.2318 | 278.2245 | C18H30O2 | farnesylacetone epoxide 6,10,14-trimethyl-5,10-pentadecadiene-2,12-dione monotriajaponide A | −0.2834 | alga Cystophora moniliformis alga Sargassum sp. sponge Monotria (Plakortis) japonica | 2.85 × 108 |
42 | N_240 | 22.48 | 293.2125 | 294.2198 | C18H30O3 | pseudopyronine B 5,8-dihydroxy-9,12-octadecadienoic acid δ lactone plakortoxide B or plakortone E 11-oxolinoleic acid 11-oxo-9,12-octadecadienoic acid | 1.0809 | marine-derived Pseudomonas sp. Aspergillus nidulans sponge Plakortis simplex alga Lithothamnion plant symbiont Trichoderma | 9.57 × 108 |
43 | P_8752 | 22.82 | 435.2729 | 434.2656 | C25H38O6 | 12-O-D-xylopyranoside-8,11,13-abietatriene-11,12-diol | −2.7234 | Avicennia marina | 2.74 × 106 |
44 | N_238 | 24.18 | 313.2385 | 314.2457 | C18H34O4 | 5,8-dihydroxy-9-octadecenoic acid woodylide A, dihydroplakortin, plakortether B, 9,10-dihydro-3-epiplakortin, 3,6-epidioxy-4,6,8-triethyl dodecanoic acid | 0.1418 | Aspergillus nidulans sponge Plakortis | 1.40 × 109 |
45 | N_239 | 24.54 | 295.2279 | 296.2352 | C18H32O3 | 3-hydroxy-4,6-octadecadienoic acid 7-methoxy-9-methyl-4,8-hexa decadienoic acid | 0.2707 | alga Tydemania expeditionis blue-green alga Lyngbya variegata and the brown seaweed Ishige okamurae | 1.14 × 109 |
46 | N_243 | 26.74 | 455.3533 | 456.3606 | C30H48O3 | ursolic acid or oleanolic acid aegicornin | 0.6208 | widely distributed in plants mangrove Aegiceras corniculatum | 4.22 × 108 |
47 | N-252 | 26.79 | 933.6944 | 934.7016 | C59H86N10 | No hits | 2.12 × 108 | ||
48 | P_3590 | 26.82 | 439.3579 | 438.3506 | C30H46O2 | No hits | 3.55 × 108 | ||
49 | N_1704 | 28.04 | 261.1132 | 262.1205 | C15H18O4 | avicennone F | −0.1393 | Avicennia marina | 9.98 × 105 |
50 | P_3576 | 28.78 | 311.2582 | 310.2509 | C19H34O3 | 8-hydroxy-9,12- octadecadienoic methyl ester lobophopyranone B annulofuranone 5,9-diethyl-5-hydroxy-10-tridecen-3-one acetate | 0.4874 | fungus Penicillium, Aspergillus nudilans, Laetisaria arvalis alga Lobophora variegata fungus Annulohypoxylon sponge Plakortis | 2.58 × 109 |
51 | P_6110 | 29.10 | 475.3061 | 474.2989 | C29H38N4O2 | isoverbamethine; incasine C | 1.2335 | Verbascum pseudonobile | 7.54 × 106 |
52 | P_9148 | 29.12 | 810.6008 | 809.6673 | C57H83N3 | No hits | 8.12 × 105 |
Fractions | Yield (g) | T. b. bruceia (% D Control) | ||
---|---|---|---|---|
20 μg/mL | 10 μg/mL | 5 μg/mL | ||
A. lanata extract | 14.4115 | 35.0 | 73.7 | 107.1 |
F1 | 6.3254 | 114.0 | 139.1 | 142.1 |
F2 | 5.2059 | 131.0 | 151.6 | 151.4 |
F3 | 1.7074 | 40.6 | 51.7 | 92.8 |
F4 | 0.7330 | 42.9 | 49.0 | 61.3 |
F5 | 0.7130 | −12.3 | −10.5 | 3.8 |
F6 | 0.3380 | 0.2 | −13.3 | −5.1 |
F7 | 0.1343 | −5.8 | −4.9 | 48.3 |
F8 | 0.1200 | −4.3 | −3.8 | 32.8 |
F9 | 0.1570 | 33.3 | 19.6 | 85.8 |
No. | 1H NMR, δH (ppm, multi. J in Hz) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 | - | - | - | - | - |
2 | - | - | - | - | - |
3 | - | - | - | - | 3.39 (dd, J = 9.6, 10.5 Hz, 1H) |
4 | - | - | - | - | - |
5 | 8.07 (dd, J = 7.4 Hz, 1H) | 7.72 (d, J = 7.8 Hz, 1H) | 8.02 (d, J = 7.5 Hz, 1H) | 8.18 (m, 1H) | 8.07 (m, 1H) |
6 | 7.68 (dt J = 7.4, 2.1 Hz, 1H) | 7.44 (t, J = 7.6 Hz, 1H) | 7.32 (br t, J = 7.6 Hz, 1H) | 7.74 (m, 1H) | 7.75 (m, 1H) |
7 | 7.68 (dt, J = 7.4, 2.1 Hz, 1H) | 7.58 (t, J = 7.6 Hz, 1H) | 7.42 (br t, J = 7.5 Hz, 1H) | 7.74 (m, 1H) | 7.75 (m, 1H) |
8 | 8.07 (dd, J = 7.4 Hz, 1H) | 8.12 (d, J = 7.9 Hz, 1H) | 8.00 (d, J = 7.5 Hz, 1H) | 8.20 (m, 1H) | 8.07 (m, 1H) |
1′ | 3.15 (d, J = 10.0 Hz, 2H) | 3.00 (m, 2H) | 3.39 (d, J = 8.5 Hz, 2H) | 6.81 (s, 1H) | 2.43 (ddd, J = 4.5, 9.7, 13.7 Hz, 1H), |
- | - | - | - | 1.97 (ddd, J = 9.1 10.5, 13.7 Hz, 1H) | |
2′ | 4.83 (t, J = 10.0 Hz, 1H) | 3.93 (dd, J = 9.0, 4.3 Hz, 1H) | 4.71 (t, J = 8.5 Hz, 1H) | - | 3.90 (dd, J = 9.1, 4.4 Hz, 1H) |
4′-CH3 | 1.24 (s, 3H) | 1.21 (s, 3H) | 1.26 (s, 3H) | 1.70 (s, 3H) | 1.48 (s, 3H) |
5′-CH3 | 1.39 (s, 3H) | 1.35 (s, 3H) | 1.39 (s, 3H) | 1.70 (s, 3H) | 1.53 (s, 3H) |
6′-OCH3 | - | - | 4.02 (s, 3H) | - | - |
7′-OCH3 | - | - | 3.97 (s, 3H) | - | - |
1″ | - | 2.98 (m, 2H) | - | - | 2.54 (m, 2H) |
2″ | - | 4.77 (dd, J = 8.6, 6.3 Hz, 1H) | - | - | 5.00 (t, J = 7.7 Hz, 1H) |
4″-CH3 | - | 1.49 (s, 3H) | - | - | 1.48 (s, 3H) |
5″-CH3 | - | 1.54 (s, 3H) | - | - | 1.53 (s, 3H) |
8″-OCH3 | - | - | - | - | - |
9″-OCH3 | - | - | - | - | - |
Atom C | 13C NMR, δc (ppm) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 | 153.7 | 173.5 | 147.3 | 173.5 | 173.3 |
2 | 139.3 | 151.7 | 147.7 | 151.7 | 151.6 |
3 | 125.1 | 131.4 | 118.7 | 131.4 | 131.2 |
4 | 159.3 | 180.9 | 132.3 | 180.9 | 180.7 |
4a | 129.6 | 132.7 | 129.4 | 132.7 | 132.9 |
5 | 126.1 | 126.9 | 121.8 | 126.9 | 126.8 |
6 | 133.1 | 133.9 | 125.9 | 133.9 | 133.9 |
7 | 134.2 | 133.9 | 123.4 | 133.9 | 133.7 |
8 | 126.4 | 127.2 | 121.1 | 127.2 | 126.8 |
8a | 132.5 | 133.3 | 124.2 | 133.3 | 132.3 |
1′ | 29.2 | 102.7 | 28.8 | 102.7 | 102.6 |
2′ | 92.4 | 168.1 | 90.4 | 168.1 | 168.1 |
3′ | 71.8 | 69.5 | 71.8 | 69.5 | 69.3 |
4′-CH3 | 24.1 | 28.8 | 24.5 | 28.8 | 28.7 |
5′-CH3 | 25.8 | 28.8 | 26.2 | 28.8 | 28.7 |
O-CH3 | - | - | 60.4 | - | - |
O-CH3 | - | - | 60.7 | - | - |
1″ | - | 29.6 | - | - | 34.7 |
2″ | - | 117.4 | - | - | 116.6 |
3″ | - | 138.6 | - | - | 138.1 |
4″-CH3 | - | 18.7 | - | - | 18.1 |
5″-CH3 | - | 26.3 | - | - | 25.8 |
6″ | - | - | - | - | - |
7″ | - | - | - | - | - |
8″-OCH3 | - | - | - | - | - |
9″-OCH3 | - | - | - | - | - |
Compounds | MICs a (μM) | Cytotoxicity b, % D of Control (100 μg/mL) |
---|---|---|
1 | 12.50 | 86.1 |
2 | 12.50 | 86.1 |
3 | 6.25 | 78.3 |
4 | 3.12 | 68.6 |
5 | 12.50 | 80.3 |
6 | 154.20 | 88.8 |
7 | 145.30 | 92.8 |
8 | 142.30 | 96.2 |
9 | 126.40 | 98.7 |
suramin | 0.11 | n.d. |
triton X | n.d. | 0.082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazlan, N.W.; Clements, C.; Edrada-Ebel, R. Targeted Isolation of Anti-Trypanosomal Naphthofuran-Quinone Compounds from the Mangrove Plant Avicennia lanata. Mar. Drugs 2020, 18, 661. https://doi.org/10.3390/md18120661
Mazlan NW, Clements C, Edrada-Ebel R. Targeted Isolation of Anti-Trypanosomal Naphthofuran-Quinone Compounds from the Mangrove Plant Avicennia lanata. Marine Drugs. 2020; 18(12):661. https://doi.org/10.3390/md18120661
Chicago/Turabian StyleMazlan, Noor Wini, Carol Clements, and RuAngelie Edrada-Ebel. 2020. "Targeted Isolation of Anti-Trypanosomal Naphthofuran-Quinone Compounds from the Mangrove Plant Avicennia lanata" Marine Drugs 18, no. 12: 661. https://doi.org/10.3390/md18120661
APA StyleMazlan, N. W., Clements, C., & Edrada-Ebel, R. (2020). Targeted Isolation of Anti-Trypanosomal Naphthofuran-Quinone Compounds from the Mangrove Plant Avicennia lanata. Marine Drugs, 18(12), 661. https://doi.org/10.3390/md18120661