Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Compositional Investigations
2.2. Structural Characterization
2.3. Film Bonding Strength Evaluation
2.4. In Vitro Biological Assay
2.4.1. Solubility of Coatings under Biomimetic Conditions
2.4.2. Cytocompatibility of Coatings
2.4.3. Antibacterial Activity of Coatings
3. Materials and Methods
3.1. Powders Preparation
3.2. Targets Fabrication
3.3. Coatings Deposition
3.4. Targets and Films Physical–Chemical Analyses
- (i)
- The surface and cross-sectional morphology of PLD films were examined by Scanning Electron Microscopy (SEM) with a FEI Inspect S50 electron microscope (FEI Company, Eindhoven, The Nederlands), operated at 20 kV, under secondary electrons mode. The root mean squared roughness (Rrms) of films was inferred on the basis of atomic force microscopy (AFM) analysis performed with a TT-Workshop apparatus, in non-contact mode. As the PLD samples were rough, the AFM scanning speed was limited to 0.1 Hz at (450–470) mV and to 0.2 Hz at (470–500) mV, when inspecting film surface of 15 × 15 µm2 and 5 × 5 µm2, respectively.
- (ii)
- The elemental composition of both PLD targets and films was evaluated by Energy Dispersive X-ray (EDX) spectroscopy, using an EDAX Inc. (Mahwah, NJ, USA) instrument attached to the SEM system and operated at 20 kV. The analysis was performed at least in four randomly chosen SEM (~150 × 150 µm2) locations of tested specimens. Collected data were calibrated against National Institute of Standards and Technology (NIST) 2910b HA standard material and presented as mean ± standard deviation (SD).
- (iii)
- The crystalline status of thin films was investigated by X-ray Diffraction (XRD) using a Bruker D8 Advance system (Bruker, Karlsruhe, Germany) with CuKα (λ = 1.5418 Å) radiation. The instrument is equipped with a high efficiency LynxEyeTM linear detector and a rotating sample holder (a speed of 30 rot/min was used) to average for compositional non-uniformities. The diffraction patterns were acquired in symmetric (Bragg-Brentano) geometry within the (9–70)° (2θ) angular range, with 0.02° step size and acquisition times of 1 and 8 s per step in the case of PLD targets and deposited films, respectively. The phase composition, average crystallite size, and lattice parameters of the PLD targets and films were inferred via structure refinement performed with the MAUD diffraction data processing program (v2.55), by applying the Rietveld whole powder pattern fitting [75]. The “composite crystallite” shape was inferred by applying the Popa approach [53,76] and plotted using the routine embedded in the MAUD software.
- (iv)
- The short-range structural order, bonding architecture and identification of functional groups were studied by Fourier Transform Infra-Red (FTIR) spectroscopy in attenuated total reflectance (ATR) mode. The FTIR-ATR spectra were acquired in the (1600–530) cm−1 wave numbers range using a Perkin Elmer Spectrum BX II apparatus (Waltham, MA, USA), equipped with a Pike MIRacle ATR attachment with diamond/zinc selenide crystal. The spectra were average over 32 individual scans performed with a resolution of 4 cm−1.
- (v)
- The bonding strength of the CaP-based films was quantified by the pull-off test method, employing a dedicated PAT handy adhesion tester (DFD® Instruments, Kristiansand, Norway), using a testing procedure complying to the ISO 4624:2016 and ASTM D4541—17:2017 standards, and detailed in References [77,78]. Average and SD values were calculated based on triplicate experiments.
3.5. In Vitro Biological Assessments of Films
3.5.1. Solubility/Bioactivity Tests under Biomimetic Conditions
3.5.2. Cytocompatibility Tests
Cell Culture
Microscopic Evaluation of Actin Cytoskeleton
Lactate Dehydrogenase (LDH) Cytotoxicity Assay
3.5.3. Antibacterial Activity Assay
Microbial Strains and Growth Conditions
Biofilm Development Assay
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Socol, G.; Torricelli, P.; Bracci, B.; Iliescu, M.; Miroiu, F.; Bigi, A.; Werckmann, J.; Mihailescu, I.; Mihǎilescu, I. Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials 2004, 25, 2539–2545. [Google Scholar] [CrossRef]
- Best, S.M.; Porter, A.E.; Thian, E.S.; Huang, J. Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008, 28, 1319–1327. [Google Scholar] [CrossRef]
- Kobayashi, A.; Ikeda, K.; Hatayama, K.; Yanagisawa, S.; Kato, K.; Higuchi, H. Efficacy of β-Tricalcium Phosphate Graft into the Bone Defects after Bone-Patellar Tendon-Bone Anterior Cruciate Ligament Reconstruction. J. Knee Surg. 2016, 30, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Dorozhkin, S.V.; Pal, U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1504. [Google Scholar] [CrossRef] [PubMed]
- Duta, L.; Oktar, F.; Stan, G.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition. Appl. Surf. Sci. 2013, 265, 41–49. [Google Scholar] [CrossRef]
- Terzioğlu, P.; Öğüt, H.; Kalemtas, A. Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C 2018, 91, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Popescu-Pelin, G.; Ristoscu, C.; Duta, L.; Stan, G.E.; Pasuk, I.; Tite, T.; Stan, M.S.; Bleotu, C.; Popa, M.; Chifiriuc, M.C.; et al. Antimicrobial and Cytocompatible Bovine Hydroxyapatite-Alumina-Zeolite Composite Coatings Synthesized by Pulsed Laser Deposition from Low-Cost Sustainable Natural Resources. ACS Sustain. Chem. Eng. 2020, 8, 4026–4036. [Google Scholar] [CrossRef]
- Hench, L.L.; Jones, J.R. Bioactive Glasses: Frontiers and Challenges. Front. Bioeng. Biotechnol. 2015, 3, 194. [Google Scholar] [CrossRef] [Green Version]
- Popa, A.C.; Stan, G.E.; Besleaga, C.; Ion, L.; Maraloiu, V.-A.; Tulyaganov, D.U.; Ferreira, J.M.F. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications. ACS Appl. Mater. Interfaces 2016, 8, 4357–4367. [Google Scholar] [CrossRef]
- Dorozhkin, S. History of calcium phosphates in regenerative medicine advances. In Calcium Phosphate Biomaterials; Ben-Nissan, B., Ed.; Springer Series in Biomaterials Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2, pp. 435–483. [Google Scholar]
- Raucci, M.G.; Demitri, C.; Soriente, A.; Fasolino, I.; Sannino, A.; Ambrosio, L. Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects. J. Biomed. Mater. Res. Part A 2018, 106, 2007–2019. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, H.; Sun, H.; Xing, D.; Yao, F. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application. Front. Chem. Sci. Eng. 2013, 7, 388–400. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, J.; Niu, L. A one-step hydrothermal process to fabricate superhydrophobic hydroxyapatite coatings and determination of their properties. Surf. Coatings Technol. 2018, 334, 84–89. [Google Scholar] [CrossRef]
- Rey, C.; Combes, C.; Drouet, C.; Glimcher, M.J. Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 2009, 20, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutinguiza, M.; Pou, J.; Comesaña, R.; Lusquiños, F.; De Carlos, A.; León, B. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C 2012, 32, 478–486. [Google Scholar] [CrossRef]
- Suneelkumar, C.; Datta, K.; Srinivasan, M.R.; Kumar, S.T. Biphasic calcium phosphate in periapical surgery. J. Conserv. Dent. 2008, 11, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Ye, F.; Yang, R.; Lu, X.; Shi, Y.; Li, L.; Fan, H.; Bu, H. Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010, 6, 1569. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Botelho, M.G.; Dorozhkin, S.V. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C 2017, 71, 1293–1312. [Google Scholar] [CrossRef]
- De Oliveira, R.S.; Brigato, R.; Madureira, J.F.G.; Cruz, A.A.V.; Filho, F.V.D.M.; Alonso, N.; Machado, H.R. Reconstruction of a large complex skull defect in a child: A case report and literature review. Child’s Nerv. Syst. 2007, 23, 1097–1102. [Google Scholar] [CrossRef]
- Elliot, J. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier: New York, NY, USA, 1994. [Google Scholar]
- Pietak, A.M.; Reid, J.W.; Stott, M.J.; Sayer, M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007, 28, 4023–4032. [Google Scholar] [CrossRef]
- Kannan, S.; Goetz-Neunhoeffer, F.; Neubauer, J.; Ferreira, J.M.F. Ionic Substitutions in Biphasic Hydroxyapatite and b-Tricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement. J. Am. Ceram. Soc. 2008, 91, 1–12. [Google Scholar] [CrossRef]
- Ginty, F.; Flynn, A.; Cashman, K.D. The effect of dietary sodium intake on biochemical markers of bone metabolism in young women. Br. J. Nutr. 1998, 79, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprio, S.; Tampieri, A.; Landi, E.; Sandri, M.; Martorana, S.; Celotti, G.; Logroscino, G. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater. Sci. Eng. C 2008, 28, 179–187. [Google Scholar] [CrossRef]
- Kim, S. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 2003, 24, 1389–1398. [Google Scholar] [CrossRef]
- Herliansyah, M.K.; Hamdi, M.; Ide-Ektessabi, A.; Wildan, M.; Toque, J. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 1674–1680. [Google Scholar] [CrossRef]
- Miculescu, F.; Stan, G.E.; Ciocan, L.T.; Miculescu, M.; Berbecaru, A.; Antoniac, I. Cortical bone as resource for producing biomimetic materials for clinical use. Dig. J. Nanomater. Biostruct. 2012, 7, 1667–1677. [Google Scholar]
- Niakan, A.; Singhbe, R.; Ganesan, P.; Tan, C.; Purbolaksono, J.; Chandran, H.; Teng, W. Sintering behaviour of natural porous hydroxyapatite derived from bovine bone. Ceram. Int. 2015, 41, 3024–3029. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Sierra, I.; Zudaire, L.; Ayastuy, J.L. Conversion of waste animal bones into porous hydroxyapatite by alkaline treatment: Effect of the impregnation ratio and investigation of the activation mechanism. J. Mater. Sci. 2015, 50, 7568–7582. [Google Scholar] [CrossRef]
- Ramirez-Gutierrez, C.F.; Palechor-Ocampo, A.F.; Londoño-Restrepo, S.M.; Millán-Malo, B.M.; Rodriguez-García, M.E. Cooling rate effects on thermal, structural, and microstructural properties of bio-hydroxyapatite obtained from bovine bone. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 104, 339–344. [Google Scholar] [CrossRef]
- Sun, R.; Lv, Y.; Niu, Y.-R.; Zhao, X.-H.; Cao, D.-S.; Tang, J.; Sun, X.-C.; Chen, K. Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders. Ceram. Int. 2017, 43, 16792–16798. [Google Scholar] [CrossRef]
- Ummartyotin, S.; Manuspiya, H. A critical review of eggshell waste: An effective source of hydroxyapatite as photocatalyst. Int. J. Min. Met. Mater. 2018, 28, 124–135. [Google Scholar]
- Zamani, S.; Salahi, E.; Mobasherpour, I. Sorption of Bi3+ from acidic solutions using nano-hydroxyapatite extracted from Persian corals. Res. Chem. Intermed. 2013, 40, 1753–1770. [Google Scholar] [CrossRef]
- Trinkunaite-Felsen, J.; Birkedal, H.; Zarkov, A.; Tautkus, S.; Stankeviciute, Z.; Kareiva, A. Environmentally benign fabrication of calcium hydroxyapatite using seashells collected in Baltic Sea countries: A comparative study. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 919–925. [Google Scholar] [CrossRef]
- Inan, A.; Komur, B.; Ekren, N.; Aydogdu, M.; Gokce, H.; Ficai, A.; Salman, S.; Oktar, F.; Gunduz, O. Physical Characterization of Turbot (Psetta Maxima) Originated Natural Hydroxyapatite. Acta Phys. Pol. A 2017, 131, 397–400. [Google Scholar] [CrossRef]
- Venkatesan, J.; Lowe, B.; Manivasagan, P.; Kang, K.-H.; Chalisserry, E.P.; Anil, S.; Kim, D.; Kim, S.-K. Isolation and Characterization of Nano-Hydroxyapatite from Salmon Fish Bone. Materials 2015, 8, 5426–5439. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.M.; Nogueira, E.S.; Weinand, W.R.; Lima, W.M.; Steimacher, A.; Neto, A.M.; Baesso, M.; Bento, A.C. Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste. J. Appl. Phys. 2007, 101, 84701. [Google Scholar] [CrossRef]
- Tavangarian, F.; Emadi, R.; Esfahani, S.I.R. A novel method to synthesis of β-tcp/ha biphasic nanocrystalline powder by using bovine bone. Int. J. Mod. Phys. B 2010, 24, 3365–3372. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Yahya, M.Y.; Shirazi, H.A.; Abu Hassan, S. Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceram. Int. 2015, 41, 10818–10827. [Google Scholar] [CrossRef]
- Heidari, F.; Razavi, M.; Ghaedi, M.; Forooghi, M.; Tahriri, M.; Tayebi, L. Investigation of mechanical properties of natural hydroxyapatite samples prepared by cold isostatic pressing method. J. Alloys Compd. 2017, 693, 1150–1156. [Google Scholar] [CrossRef]
- Alagarsamy, K.; Vishwakarma, V.; Kaliaraj, G.S.; Viswanathan, K.; Chavali, M. Implant application of bioactive nano-hydroxyapatite powders—A comparative study. Mater. Res. Express 2018, 5, 015405. [Google Scholar] [CrossRef]
- Janus, A.M.; Faryna, M.; Haberko, K.; Rakowska, A.; Panz, T. Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchim. Acta 2008, 161, 349–353. [Google Scholar] [CrossRef]
- Hoyer, B.; Bernhardt, A.; Heinemann, S.; Stachel, I.; Meyer, M.; Gelinsky, M. Biomimetically Mineralized Salmon Collagen Scaffolds for Application in Bone Tissue Engineering. Biomacromolecules 2012, 13, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Popescu-Pelin, G.; Sima, F.; Sima, L.E.; Mihailescu, C.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study. Appl. Surf. Sci. 2017, 418, 580–588. [Google Scholar] [CrossRef]
- Nelea, V.; Jelinek, M.; Mihailescu, I.N. Biomaterials: New issues and breakthroughs for biomedical applications. In Pulsed Laser Deposition of Thin Films: Applications-Lead Growth of Functional Materials; Eason, R., Ed.; Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 421–459. [Google Scholar]
- Curcio, M.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Rau, J.V. Pulsed laser deposited bioactive RKKP-Mn glass-ceramic coatings on titanium. Surf. Coat. Technol. 2019, 357, 122–128. [Google Scholar] [CrossRef]
- Miculescu, F.; Miculescu, M.; Ciocan, L.T.; Ernuteanu, A.; Antoniac, I.; Pencea, I.; Matei, E. Comparative studies regarding heavy elements concentration in human cortical bone. Dig. J. Nanomater. Biostruct. 2011, 6, 1117–1127. [Google Scholar]
- Von Euw, S.; Wang, Y.; Laurent, G.; Drouet, C.; Babonneau, F.; Nassif, N.; Azaïs, T. Bone mineral: New insights into its chemical composition. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sponer, P.; Strnadova, M.; Urban, K. In vivo behavior of low-temperature calcium-deficient hydroxyapatite: Comparison with deproteinised bovine bone. Int. Orthop. 2011, 35, 1553–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieniek, L.; Kąc, S. Influence of Ca Content on the Structure and Properties οf (Co, Ca)O Thin Films Deposited by PLD Technique. Acta Phys. Pol. A 2010, 117, 803–807. [Google Scholar] [CrossRef]
- Mihailescu, I.; Ristoscu, C.; Bigi, A.; Mayer, I. Advanced Biomimetic Implants Based on Nanostructured Coatings Synthesized by Pulsed Laser Technologies. In Superconductivity; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2009; Volume 130, pp. 235–260. [Google Scholar]
- Popa, A.-C.; Stan, G.; Husanu, M.-A.; Mercioniu, I.; Santos, L.; Fernandes, H.; Ferreira, J. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Int. J. Nanomed. 2017, 12, 683–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jillavenkatesa, A.; Condrate, R.A. The Infrared and Raman Spectra of β-and α-Tricalcium Phosphate (Ca3(PO4)2). Spectrosc. Lett. 1998, 31, 1619–1634. [Google Scholar] [CrossRef]
- Berzina-Cimdina, L.; Borodajenko, N. Research of calcium phosphates using Fourier transform infrared spectroscopy, In Infrared Spectroscopy—Materials Science, Engineering and Technology; Theophile, T., Ed.; InTech: Rijeka, Croatia, 2012; pp. 123–148. [Google Scholar]
- Popa, N.C. The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement. J. Appl. Crystallogr. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Markovic, M.; Fowler, B.O.; Tung, M.S. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 553–568. [Google Scholar] [CrossRef] [PubMed]
- Stan, G.E.; Popa, A.C.; Bojin, D. Bioreactivity evaluation in simulated body fluid of magnetron sputtered glass and glass-ceramic coatings: A FTIR spectroscopy study. Dig. J. Nanomater. Biostruct. 2010, 5, 557–566. [Google Scholar]
- Mocanu, A.-C.; Miculescu, M.; Machedon-Pisu, T.; Maidaniuc, A.; Ciocoiu, R.C.; Ioniță, M.; Pasuk, I.; Stan, G.; Miculescu, F. Internal and external surface features of newly developed porous ceramics with random interconnected 3D channels by a fibrous sacrificial porogen method. Appl. Surf. Sci. 2019, 489, 226–238. [Google Scholar] [CrossRef]
- Spence, G.; Phillips, S.; Campion, C.; Brooks, R.; Rushton, N. Bone formation in a carbonate-substituted hydroxyapatite implant is inhibited by zoledronate: The importance of bioresorption to osteoconduction. J. Bone Joint Surg. Br. 2008, 90, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Sima, L.E.; Stan, G.E.; Morosanu, C.O.; Melinescu, A.; Ianculescu, A.; Melinte, R.; Neamtu, J.; Petrescu, S.M. Differentiation of mesenchymal stem cells onto highly adherent radio frequency-sputtered carbonated hydroxylapatite thin films. J. Biomed. Mater. Res. Part A 2010, 95, 1203–1214. [Google Scholar] [CrossRef]
- Germaini, M.-M.; Detsch, R.; Grünewald, A.; Magnaudeix, A.; Lalloue, F.; Boccaccini, A.R.; Champion, E. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomed. Mater. 2017, 12, 035008. [Google Scholar] [CrossRef]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Bohner, M.; Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009, 30, 2175–2179. [Google Scholar] [CrossRef] [Green Version]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Popescu, A.; Florian, P.; Stan, G.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F.; Trusca, R.; Sima, L.E.; Roseanu, A.; et al. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants. Appl. Surf. Sci. 2018, 439, 724–735. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kishida, T.; Sato, Y.; Nishioka, K.; Ejima, A.; Fujiwara, H.; Kubo, T.; Yamamoto, T.; Kanamura, N.; Mazda, O. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc. Natl. Acad. Sci. USA 2015, 112, 6152–6157. [Google Scholar] [CrossRef] [Green Version]
- Griffith, M.; Islam, M.M.; Edin, J.; Papapavlou, G.; Buznyk, O.; Patra, H.K. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation. Front. Bioeng. Biotechnol. 2016, 4, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.; Ingle, A.P.; Gaikwad, S.; Gupta, I.; Gade, A.; Silva, S.S. Nanotechnology based anti-infectives to fight microbial intrusions. J. Appl. Microbiol. 2016, 120, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Cremet, L.; Broquet, A.; Brulin, B.; Jacqueline, C.; Dauvergne, S.; Brion, R.; Asehnoune, K.; Corvec, S.; Heymann, D.; Caroff, N. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog. Dis. 2015, 73, ftv065. [Google Scholar] [CrossRef] [Green Version]
- Predoi, D.; Iconaru, S.L.; Predoi, D.; Stan, G.E.; Buton, N. Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. Nanomaterials 2019, 9, 1295. [Google Scholar] [CrossRef] [Green Version]
- Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316L stainless steel implants. Mater. Sci. Eng. C 2013, 33, 4046–4054. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Paralikar, P. Sulfur and sulfur nanoparticles as potential antimicrobials: From traditional medicine to nanomedicine. Expert Rev. Anti Infect. Ther. 2016, 14, 969–978. [Google Scholar] [CrossRef]
- Florian, P.E.; Duta, L.; Grumezescu, V.; Popescu-Pelin, G.; Popescu, A.C.; Oktar, F.N.; Evans, R.W.; Constantinescu, A.R. Lithium-Doped Biological-Derived Hydroxyapatite Coatings Sustain In Vitro Differentiation of Human Primary Mesenchymal Stem Cells to Osteoblasts. Coatings 2019, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instr. Meth. Phys. Res. B 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Stan, G.E. Adherent functional graded hydroxylapatite coatings produced by sputtering deposition techniques. J. Optoel. Adv. Mater. 2009, 11, 1132–1138. [Google Scholar]
- Galca, A.C.; Stan, G.E.; Trinca, L.M.; Negrila, C.C.; Nistor, L.C. Structural and optical properties of c-axis oriented aluminum nitride thin films prepared at low temperature by reactive radio-frequency magnetron sputtering. Thin Solid Films 2012, 524, 328–333. [Google Scholar] [CrossRef]
- Chioibasu, D.; Duta, L.; Popescu-Pelin, G.; Popa, N.; Milodin, N.; Iosub, S.; Balescu, L.M.; Galca, A.C.; Popa, A.C.; Oktar, F.N.; et al. Animal Origin Bioactive Hydroxyapatite Thin Films Synthesized by RF-Magnetron Sputtering on 3D Printed Cranial Implants. Metals 2019, 9, 1332. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Sample Description |
---|---|
HAsyn | Commercial HA (Acros Organics B.V.B.A.) |
β-TCPsyn | Commercial beta-tricalcium phosphate (Sigma-Aldrich) |
Spa-BCP | Bi-phasic calcium phosphate derived from Sparus aurata (sea-bream) fish bones |
Sal-BCP | Bi-phasic calcium phosphate derived from Salmo salar (salmon) fish bones |
Sample Code | Elemental Composition (at. %) | ||||||
---|---|---|---|---|---|---|---|
Ca | P | Na | Mg | Si | S | Ca/P Ratio | |
HAsyn target | 62.5 ± 0.9 | 37.5 ± 0.8 | – | – | – | – | 1.67 ± 0.06 |
HAsyn film | 61.4 ± 0.2 | 38.6 ± 0.3 | – | – | – | – | 1.59 ± 0.02 |
Spa-BCP target | 58.9 ±3.1 | 36.2 ± 1.6 | 2.9 ± 1.1 | 1.5 ± 0.6 | 0.2 ± 0.06 | 0.3 ± 0.07 | 1.63 ± 0.16 |
Spa-BCP film | 57.7 ± 1.2 | 38.4 ± 0.7 | 2.1 ± 0.2 | 1.1 ± 0.04 | 0.2 ± 0.03 | 0.5 ± 0.1 | 1.50 ± 0.01 |
Sal-BCP target | 60.0 ± 0.7 | 38.1 ± 0.6 | 1.0 ± 0.1 | 0.8 ± 0.1 | 0.1 ± 0.02 | – | 1.57 ± 0.04 |
Sal-BCP film | 58.2 ± 0.5 | 39.5 ± 0.5 | 1.2 ± 0.2 | 0.9 ± 0.1 | 0.2 ± 0.02 | – | 1.47 ± 0.03 |
Wave Number Position (cm−1) | IR Band Association | ||||||
---|---|---|---|---|---|---|---|
HAsyn | Spa-BCP | Sal-BCP | β-TCP | ||||
Target | Film | Target | Film | Target | Film | ||
– | – | 562 | 570 | 565 | 572 | 542 | asym. bending (ν4) of (PO4)3− groups in β-TCP [54,55,56] |
561 | 566 | – | asym. bending (ν4) of (PO4)3− groups in HA [5,57,58,59] | ||||
– | – | 599 | 600 | 599 | 600 | 600 | asym. bending (ν4) of (PO4)3− groups in β-TCP |
599 | 600 | – | asym. bending (ν4) of (PO4)3− groups in HA [5,57,58,59] | ||||
629 | 630 | 631 | 629 | 631 | 627 | – | librational mode of (OH)- structural groups in HA [57,58,59] |
– | 875 | – | – | – | – | – | out-of-plane (ν2) of (CO3)2− groups [54,55,56] |
– | – | 946 | 942 | 946 | 942 | 944 | sym. stretching (ν1) of (PO4)3− groups in β-TCP [54,55,56] |
963 | 961 | 963 | 963 | 963 | 963 | – | sym. stretching (ν1) of (PO4)3− groups in HA [5,57,58,59] |
– | – | 983 | – | 983 | – | 967 | asym. stretching (ν3) of (PO4)3− groups in β-TCP [54,55,56] |
– | – | 1022 | 1024 | 1015 | – | 1002 | asym. stretching (ν3) of (PO4)3− groups in β-TCP [54,55,56] |
– | – | – | 1015 | asym. stretching (ν3) of (PO4)3− groups in β-TCP [5,54,55,56] | |||
1022 | 1013 | 1023 | 1021 | – | asym. stretching (ν3) of (PO4)3− groups in HA [5,57,58,59] | ||
1087 | 1087 | 1087 | 1087 | 1086 | 1087 | asym. stretching (ν3) of (PO4)3− groups in HA [5,57,58,59] | |
– | – | 1122 | – | 1123 | – | 1115 | asym. stretching (ν3) of (PO4)3− groups in β-TCP [54,55,56] |
– | 1417 | – | – | – | – | – | asym. stretching (ν3) of (CO3)2− groups [57,58,59] |
– | 1462 | – | – | – | – | – | asym. stretching (ν3) of (CO3)2− groups [57,58,59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu-Pelin, G.; Ristoscu, C.; Duta, L.; Pasuk, I.; Stan, G.E.; Stan, M.S.; Popa, M.; Chifiriuc, M.C.; Hapenciuc, C.; Oktar, F.N.; et al. Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications. Mar. Drugs 2020, 18, 623. https://doi.org/10.3390/md18120623
Popescu-Pelin G, Ristoscu C, Duta L, Pasuk I, Stan GE, Stan MS, Popa M, Chifiriuc MC, Hapenciuc C, Oktar FN, et al. Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications. Marine Drugs. 2020; 18(12):623. https://doi.org/10.3390/md18120623
Chicago/Turabian StylePopescu-Pelin, Gianina, Carmen Ristoscu, Liviu Duta, Iuliana Pasuk, George E. Stan, Miruna Silvia Stan, Marcela Popa, Mariana C. Chifiriuc, Claudiu Hapenciuc, Faik N. Oktar, and et al. 2020. "Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications" Marine Drugs 18, no. 12: 623. https://doi.org/10.3390/md18120623
APA StylePopescu-Pelin, G., Ristoscu, C., Duta, L., Pasuk, I., Stan, G. E., Stan, M. S., Popa, M., Chifiriuc, M. C., Hapenciuc, C., Oktar, F. N., Nicarel, A., & Mihailescu, I. N. (2020). Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications. Marine Drugs, 18(12), 623. https://doi.org/10.3390/md18120623