New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material and Identifiation
3.3. Fermentation, Extraction, and Isolation
3.4. BV-2 Cell Culture and Treatment
3.5. Nitrite Quantification
3.6. Computational Details
3.6.1. 13C NMR Calculation of 2
3.6.2. ECD Calculation of 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zain Ul Arifeen, M.; Ma, Y.N.; Xue, Y.R.; Liu, C.H. Deep-sea fungi could be the new arsenal for bioactive molecules. Mar. Drugs 2019, 18, 9. [Google Scholar] [CrossRef]
- Daletos, G.; Ebrahim, W.; Ancheeva, E.; El-Neketi, M.; Song, W.; Lin, W.; Proksch, P. Natural products from deep-sea-derived fungi−a new source of novel bioactive compounds? Curr. Med. Chem. 2018, 25, 186–207. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Chen, Y.; Tan, H.; Li, H.; Li, S.; Guo, H.; Huang, Z.; Gao, X.; Liu, H.; et al. Lithocarols A–F, six tenellone derivatives from the deep-sea derived fungus Phomopsis lithocarpus FS508. Bioorg. Chem. 2019, 87, 728–735. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Wu, G.; Liu, C.; Lu, C.; Gu, Q.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Aniline-tetramic acids from the deep-sea-derived fungus Cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA. J. Nat. Prod. 2018, 81, 1651–1657. [Google Scholar] [CrossRef]
- Liang, X.; Nong, X.; Huang, Z.; Qi, S. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. J. Agric. Food Chem. 2017, 65, 5114–5121. [Google Scholar] [CrossRef]
- Huang, Z.; Nong, X.; Ren, Z.; Wang, J.; Zhang, X.; Qi, S. Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg. Med. Chem. Lett. 2017, 27, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Sun, Z.; Peng, J.; Zhu, M.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Secondary metabolites produced by combined culture of Penicillium crustosum and a Xylaria sp. J. Nat. Prod. 2019, 82, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Lin, X.; Zhou, X.; Yang, B.; Tian, X.; Wang, J.; Xu, S.; Liu, Y. New quinoline alkaloid and bisabolane-type sesquiterpenoid derivatives from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Fitoterapia 2020, 140, 104406. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, Z.; Zhong, Y.; Huang, J.; Li, X.; Jiang, J.; Deng, Y.; Zhang, L.; He, F. Sumalactones A−D, four new curvularin-type macrolides from a marine deep sea fungus Penicillium sumatrense. RSC Adv. 2017, 7, 40015–40019. [Google Scholar] [CrossRef]
- Niu, S.; Xie, C.; Zhong, T.; Xu, W.; Luo, Z.; Shao, Z.; Yang, X. Sesquiterpenes from a deep-sea-derived fungus Graphostroma sp. MCCC 3A00421. Tetrahedron 2017, 73, 7267–7273. [Google Scholar] [CrossRef]
- Niu, S.; Xie, C.; Xia, J.; Liu, Q.; Peng, G.; Liu, G.; Yang, X. Botryotins A–H, tetracyclic diterpenoids representing three carbon skeletons from a deep-sea-derived Botryotinia fuckeliana. Org. Lett. 2020, 22, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Xia, M.; Chen, M.; Liu, X.; Li, Z.; Xie, Y.; Shao, Z.; Zhang, G. Cytotoxic polyketides isolated from the deep-sea-derived fungus Penicillium chrysogenum MCCC 3A00292. Mar. Drugs 2019, 17, 686. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Liu, Q.; Xia, J.; Xie, C.; Luo, Z.; Shao, Z.; Liu, G.; Yang, X. Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent antifood allergic activities. J. Agric. Food Chem. 2018, 66, 1369–1376. [Google Scholar] [CrossRef]
- Niu, S.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron 2018, 74, 7310–7325. [Google Scholar] [CrossRef]
- Niu, S.; Liu, D.; Hu, X.; Proksch, P.; Shao, Z.; Lin, W. Spiromastixones A−O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J. Nat. Prod. 2014, 77, 1021–1030. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, C.; Mu, X.; Liu, X.; Wang, L.; Zhao, Y.; Zhang, P.; Li, X.; Zhang, X. Antimicrobial secondary metabolites from the seawater-derived fungus Aspergillus sydowii SW9. Molecules 2019, 24, 4596. [Google Scholar] [CrossRef]
- Liu, N.; Peng, S.; Yang, J.; Cong, Z.; Lin, X.; Liao, S.; Yang, B.; Zhou, X.; Zhou, X.; Liu, Y.; et al. Structurally diverse sesquiterpenoids and polyketides from a sponge-associated fungus Aspergillus sydowii SCSIO41301. Fitoterapia 2019, 135, 27–32. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, S.; Yin, L.; Yu, Y.; Chen, Z.; Shen, H.; Zhou, L. A new sydonic acid derivative from a marine derived-fungus Aspergillus sydowii. Chem. Nat. Compd. 2017, 53, 1056–1058. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Su, M.; Hwang, G.J.; Hong, J.; Jung, J.H. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat. Prod. Res. 2017, 31, 1682–1686. [Google Scholar] [CrossRef]
- Wang, J.; Lin, X.; Qin, C.; Liao, S.; Wan, J.; Zhang, T.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; et al. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J. Antibiot. 2014, 67, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Wei, C.; Chuang, D.; El-Shazly, M.; Hsieh, C.; Asai, T.; Oshima, Y.; Hsieh, T.; Hwang, T.; Wu, Y.; et al. An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii. Bioorg. Med. Chem. 2013, 21, 3866–3872. [Google Scholar] [CrossRef] [PubMed]
- Trisuwan, K.; Rukachaisirikul, V.; Kaewpet, M.; Phongpaichit, S.; Hutadilok-Towatana, N.; Preedanon, S.; Sakayaroj, J. Sesquiterpene and xanthone derivatives from the sea fan-derived fungus Aspergillus sydowii PSU-F154. J. Nat. Prod. 2011, 74, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, T.; Nagayama, K.; Hatsuda, Y. Two new metabolites, sydonic acid and hydroxysydonic acid, from Aspergillus sydowi. Agric. Biol. Chem. 1978, 42, 37–40. [Google Scholar] [CrossRef]
- Amin, M.; Liang, X.; Ma, X.; Dong, J.; Qi, S.; Amin, M.; Liang, X. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305. Nat. Prod. Res. 2019, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Y.; Wu, Y.; Liu, B.; Bai, J.; Yan, D.; Zhang, L.; Hu, Y.; Mou, Y.; Dong, Y.; et al. Diphenyl ethers from a marine-derived Aspergillus sydowii. Mar. Drugs 2018, 16, 451. [Google Scholar] [CrossRef]
- Liu, X.; Song, F.; Ma, L.; Chen, C.; Xiao, X.; Ren, B.; Liu, X.; Dai, H.; Piggott, A.M.; Av-Gay, Y.; et al. Sydowiols A–C: Mycobacterium tuberculosis protein tyrosine phosphatase inhibitors from an East China Sea marine-derived fungus, Aspergillus sydowii. Tetrahedron Lett. 2013, 54, 6081–6083. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kaneda, N.; Shibata, K.; Kamikawa, T. Isolation and biological activity of aspermutarubrol, a self-growth inhibitor from Aspergillus sydowii. Agric. Biol. Chem. 1978, 42, 1629–1630. [Google Scholar]
- Kaur, A.; Raja, H.A.; Darveaux, B.A.; Chen, W.-L.; Swanson, S.M.; Pearce, C.J.; Oberlies, N.H. New diketopiperazine dimer from a filamentous fungal isolate of Aspergillus sydowii. Magn. Reson. Chem. 2015, 53, 616–619. [Google Scholar] [CrossRef]
- He, F.; Sun, Y.; Liu, K.-S.; Zhang, X.; Qian, P.; Wang, Y.; Qi, S. Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305. J. Antibiot. 2012, 65, 109–111. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J. Nat. Prod. 2008, 71, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Wiese, J.; Schmaljohann, R.; Imhoff, J.F.; Aldemir, H.; Gulder, T.A.M. Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Mar. Drugs 2017, 15, 191. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cai, S.; Tian, L.; Lin, Z.; Zhu, T.; Fang, Y.; Liu, P.; Gu, Q.; Zhu, W. Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowi YH11-2. Arch. Pharmacal Res. 2007, 30, 1051–1054. [Google Scholar]
- Niu, S.; Yang, L.; Zhang, G.; Chen, T.; Hong, B.; Pei, S.; Shao, Z. Phenolic bisabolane and cuparene sesquiterpenoids with anti-inflammatory activities from the deep-sea-derived Aspergillus sydowii MCCC 3A00324 fungus. Bioorg. Chem. 2020, 105, 104420. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, W.; Shen, L.; Hao, X.; Al Anbari, W.H.; Lin, S.; Li, H.; Gao, W.; Wang, J.; Hu, Z.; et al. Bipolaricins A–I, ophiobolin-type tetracyclic sesterterpenes from a phytopathogenic Bipolaris sp. Fungus. J. Nat. Prod. 2019, 82, 2897–2906. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Tang, W.; Guo, Y.; Li, X. Klyflaccilides A and B, diterpenoids with 6/5/8/3 fused tetracyclic carbon skeleton from the Hainan soft coral Klyxum flaccidum. Org. Lett. 2019, 21, 5660–5664. [Google Scholar] [CrossRef]
- Liu, M.; Wang, W.; Sun, H.; Pu, J. Diterpenoids from Isodon species: An update. Nat. Prod. Rep. 2017, 34, 1090–1140. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision. D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Leete, E.; Wemple, J.N. Biosynthesis of the cinchona alkaloids. The incorporation of geraniol-3-14C into quinine. J. Am. Chem. Soc. 1966, 88, 4743–4744. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Z.; Oyawaluja, B.O.; Coker, H.A.B.; Odukoya, O.A.; Yao, G.; Che, C.-T. Protein tyrosine phosphatase 1B inhibitory iridoids from Psydrax subcordata. J. Nat. Prod. 2019, 82, 2916–2924. [Google Scholar] [CrossRef]
- Yan, Z.; Wen, S.; Ding, M.; Guo, H.; Huang, C.; Zhu, X.; Huang, J.; She, Z.; Long, Y. The purification, characterization, and biological activity of new polyketides from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. Mar. Drugs 2019, 17, 414. [Google Scholar] [CrossRef]
- Liu, S.; Dai, H.; Heering, C.; Janiak, C.; Lin, W.; Liu, Z.; Proksch, P. Inducing new secondary metabolites through co-cultivation of the fungus Pestalotiopsis sp. with the bacterium Bacillus subtilis. Tetrahedron Lett. 2017, 58, 257–261. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Yin, X.; Li, X.; Wang, B. Antimicrobial sesquiterpenoid derivatives and monoterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Mar. Drugs 2019, 17, 563. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, T.; Takenaka, Y.; Nagakura, N.; Hamada, N. Dibenzofurans from the cultured lichen mycobionts of Lecanora cinereocarnea. Phytochemistry 2001, 58, 1129–1134. [Google Scholar] [CrossRef]
- Fremlin, L.J.; Piggott, A.M.; Lacey, E.; Capon, R.J. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J. Nat. Prod. 2009, 72, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Bunyapaiboonsri, T.; Yoiprommarat, S.; Intereya, K.; Kocharin, K. New diphenyl ethers from the insect pathogenic fungus Cordyceps sp. BCC 1861. Chem. Pharm. Bull. 2007, 55, 304–307. [Google Scholar] [CrossRef]
- Ayer, W.A.; Singer, P.P. Metabolites of bird’s nest fungi. Part 14. Phenolic metabolites of the bird’s nest fungus Nidula niveo-tomentosa. Phytochemistry 1980, 19, 2717–2721. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chang, F.R.; Wu, Y.C. The constituents of Lindera glauca. J. Chin. Chem. Soc. (Taipei) 2000, 47, 373–380. [Google Scholar] [CrossRef]
- Sivakumar, S.; Reddy, M.L.P.; Cowley, A.H.; Vasudevan, K.V. Synthesis and crystal structures of lanthanide 4-benzyloxy benzoates: Influence of electron-withdrawing and electron-donating groups on luminescent properties. Dalton Trans. 2010, 39, 776–786. [Google Scholar] [CrossRef]
No. | 1 | 2 | ||
---|---|---|---|---|
δC | δH | δC | δH | |
1 | 170.4, C | 211.6, C | ||
2 | 117.0, CH | 5.77, s | 130.1, CH | 5.89, brs |
3 | 162.0, C | 184.4, C | ||
4 | 43.8, CH | 3.36, m | 44.8, CH | 2.76, m |
5 | 144.5, CH | 6.66, d (9.0) | 58.4, CH | 2.21, dd (4.9, 2.5) |
6 | 130.2, C | 41.2, CH | 2.94, m | |
7 | 171.5, C | 178.5, C | ||
8 | 12.8, CH3 | 1.88, d (0.6) | 15.3, CH3 | 1.29, d (7.2) |
9 | 19.0, CH3 | 1.24, d (6.8) | 18.9, CH3 | 1.28, d (7.1) |
10 | 17.0, CH3 | 2.14, s | 17.1, CH3 | 2.13, s |
No. | 3 a | No. | 4 b | ||
---|---|---|---|---|---|
δC | δH | δC | δH | ||
2 | 166.2 c, C | 2 | 156.6, C | ||
3 | 107.1, CH | 3 | 144.8, C | ||
4 | 167.1 c, C | 4 | 113.4, CH | 7.49, s | |
5 | 120.4, C | 4a | 120.4, C | ||
6 | 149.5, CH | 7.59, s | 5 | 128.9, CH | 8.23, d (1.8) |
1′ | 131.9, CH | 7.29, d (8.5) | 6 | 127.8, C | |
2′ | 116.3, CH | 6.85, d (8.5) | 7 | 129.5, CH | 7.95, dd (8.6, 1.8) |
3′ | 158.9, C | 8 | 116.5, CH | 7.45, d (8.6) | |
4′ | 116.3, CH | 6.85, d (8.5) | 8a | 152.2, C | |
5′ | 131.9, CH | 7.29, d (8.5) | 9 | 166.9, C | |
6′ | 123.5, C | OMe | 56.8, CH3 | 3.86, s | |
1″ | 133.2, CH | 7.33, d (8.6) | |||
2″ | 115.1, CH | 7.01, d (8.6) | |||
3″ | 160.9, C | ||||
4″ | 115.1, CH | 7.01, d (8.6) | |||
5″ | 133.2, CH | 7.33, d (8.6) | |||
6″ | 124.6, C | ||||
OMe | 55.7, CH3 | 3.85, s |
Compounds | Anti-NO (%) | Cell Viability Inhibition (%) | ||
---|---|---|---|---|
20 µM | 10 µM | 20 µM | 10 µM | |
1 | 33.5 ± 1.5 | 10.2 ± 2.0 | 0.7 ± 0.1 | 0.3 ± 1.2 |
2 | 34.0 ± 1.4 | 22.7 ± 1.4 | 4.6 ± 2.6 | −1.1 ± 0.4 |
3 | 22.7 ± 1.5 | 13.2 ± 1.3 | 4.1 ± 7.6 | 3.3 ± 3.1 |
4 | 28.3 ± 0.7 | 18.0 ± 2.0 | 3.5 ± 3.7 | 2.01 ± 1.4 |
5 | 39.1 ± 1.6 | 25.1 ± 0.8 | 10.0 ± 0.2 | 3.2 ± 1.7 |
6 | 101.4 ± 2.4 | 94.4 ± 0.0 | −1.6 ± 5.1 | −0.8 ± 3.6 |
7 | 55.0 ± 1.4 | 35.4 ± 2.4 | 4.1 ± 3.8 | −1.5 ± 3.5 |
8 | 30.7 ± 0.8 | 18.0 ± 0.8 | 1.8 ± 4.7 | −0.1 ± 8.2 |
9 | 39.3 ± 0.7 | 30.4 ± 1.9 | 2.3 ± 0.1 | −1.1 ± 3.7 |
10 | 44.8 ± 0.7 | 33.0 ± 0.7 | 0.4 ± 1.3 | 0.2 ± 1.8 |
11 | 42.7 ± 1.3 | 30.8 ± 2.6 | 1.9 ± 2.4 | −0.5 ± 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Yang, L.; Chen, T.; Hong, B.; Pei, S.; Shao, Z.; Zhang, G. New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324. Mar. Drugs 2020, 18, 561. https://doi.org/10.3390/md18110561
Niu S, Yang L, Chen T, Hong B, Pei S, Shao Z, Zhang G. New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324. Marine Drugs. 2020; 18(11):561. https://doi.org/10.3390/md18110561
Chicago/Turabian StyleNiu, Siwen, Longhe Yang, Tingting Chen, Bihong Hong, Shengxiang Pei, Zongze Shao, and Gaiyun Zhang. 2020. "New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324" Marine Drugs 18, no. 11: 561. https://doi.org/10.3390/md18110561
APA StyleNiu, S., Yang, L., Chen, T., Hong, B., Pei, S., Shao, Z., & Zhang, G. (2020). New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324. Marine Drugs, 18(11), 561. https://doi.org/10.3390/md18110561