Suberitamides A–C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity
Abstract
:1. Introduction
2. Results and Discussion.
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. Calculation of Dihedral Bond Angles in MestReJ
3.5. NMR Measurements
3.6. Cbl-b Biochemical Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paolino, M.; Choidas, A.; Wallner, S.; Pranjic, B.; Uribesalgo, I.; Loeser, S.; Jamieson, A.M.; Langdon, W.Y.; Ikeda, F.; Fededa, J.P.; et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 2014, 507, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Lutz-Nicoladoni, C.; Wolf, D.; Sopper, S. Modulation of immune cell functions by the E3 ligase Cbl-b. Front. Oncol. 2015, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmaier, K.; Krawczyk, C.; Kozieradzki, I.; Kong, Y.-Y.; Sasaki, T.; Oliveira-Dos-Santos, A.; Mariathasan, S.; Bouchard, D.; Wakeham, A.; Itie, A.; et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 2000, 403, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.J.; Kole, H.K.; Brown, K.; Naramura, M.; Fukuhara, S.; Hu, R.-J.; Jang, I.K.; Gutkind, J.S.; Shevach, E.; Gu, H. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 2000, 403, 216–220. [Google Scholar] [CrossRef]
- Tang, R.; Langdon, W.Y.; Zhang, J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell. Immunol. 2019, 340, 103878. [Google Scholar] [CrossRef]
- Kales, S.C.; Ryan, P.E.; Nau, M.M.; Lipkowitz, S. Cbl and human myeloid neoplasms: The Cbl oncogene comes of age. Cancer. Res. 2010, 70, 4789–4794. [Google Scholar] [CrossRef] [Green Version]
- Wallner, S.; Gruber, T.; Baier, G.; Wolf, D. Releasing the brake: Targeting Cbl-b to enhance lymphocyte effector functions. Clin. Dev. Immunol. 2012, 692639. [Google Scholar] [CrossRef]
- Thornburg, C.C.; Britt, J.R.; Evans, J.R.; Akee, R.K.; Whitt, J.A.; Trinh, S.K.; Harris, M.J.; Thompson, J.R.; Ewing, T.L.; Shipley, S.M.; et al. NCI program for natural product discovery: A publicly-accessible library of natural product fractions for high-throughput screening. ACS Chem. Biol. 2018, 13, 2484–2497. [Google Scholar] [CrossRef]
- Grkovic, T.; Akee, R.K.; Thornburg, C.C.; Trinh, S.; Britt, J.R.; Harris, M.J.; Evans, J.; Kang, U.; Ensel, S.; Henrich, C.J.; et al. National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid isolation and identification of biologically active natural products from the NCI prefractionated library. ACS Chem. Biol. 2020, 15, 1104–1114. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.A.P.; Voeller, D.; Smith, E.A.; Wamiru, A.; Liu, G.; Lipkowitz, S.; O’Keefe, B.R. Methyl-ellipticiniums as inhibitors of the CBLB ubiquitin ligase. ACS Pharmacol. Transl. Sci. 2020. submitted. [Google Scholar]
- Castañar, L.; Saurí, J.; Williamson, R.T.; Virgili, A.; Parella, T. Pure in-phase heteronuclear correlation NMR experiments. Angew. Chem. Int. Ed. 2014, 53, 8379–8382. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.T.; Buevich, A.V.; Martin, G.E.; Parella, T. LR-HSQMBC: A sensitive NMR technique to probe very long-range heteronuclear coupling pathways. J. Org. Chem. 2014, 79, 3887–3894. [Google Scholar] [CrossRef] [PubMed]
- Costantino, V.; Fattorusso, E.; Imperatore, C.; Mangoni, A. Glycolipids from sponges. 20. J.-coupling analysis for stereochemical assignments in furanosides: Structure elucidation of vesparioside B, a glycosphingolipid from the marine sponge Spheciospongia vesparia. J. Org. Chem. 2008, 73, 6158–6165. [Google Scholar] [CrossRef]
- Gutiérrez-Cepeda, A.; Daranas, A.H.; Fernández, J.J.; Norte, M.; Souto, M.L. Stereochemical determination of five-membered cyclic ether acetogenins using a spin-spin coupling constant approach and DFT calculations. Mar. Drugs 2014, 12, 4031–4044. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, J.G.; Gavín, J.A.; García, C.; Norte, M.; Fernández, J.J.; Daranas, A.H. On the configuration of five-membered rings: A spin-spin coupling constant approach. Chem. Eur. J. 2011, 17, 6338–6347. [Google Scholar] [CrossRef]
- Navarro-Vazquez, A.; Cobas, J.C.; Sardina, F.J. A graphical tool for the prediction of vicinal proton-proton 3JHH coupling constants. J. Chem. Inf. Comput. Sci. 2004, 44, 1680–1685. [Google Scholar] [CrossRef]
- Kozminski, W.; Nanz, D. HECADE: HMQC-and HSQC-based 2D NMR experiments for accurate and sensitive determination of heteronuclear coupling constants from E.COSY-type cross peaks. J. Magn. Reson. 1997, 124, 383–392. [Google Scholar] [CrossRef]
- Kozminski, W.; Nanz, D. Sensitivity improvement and new acquisition scheme of heteronuclear active-coupling-pattern-tilting spectroscopy. J. Magn. Reson. 2000, 142, 294–299. [Google Scholar] [CrossRef]
- Saurí, J.; Nolis, P.; Parella, T. How to measure long-range proton-carbon coupling constants from 1H-selective HSQMBC experiments. Magn. Reson. Chem. 2020, 58, 363–375. [Google Scholar] [CrossRef]
- Palermo, J.A.; Brasco, M.F.R.; Seldes, A.M. Storniamides A-D: Alkaloids from a Patagonian sponge Cliona sp. Tetrahedron 1996, 52, 2727–2734. [Google Scholar] [CrossRef]
- McCloud, T.G. High throughput extraction of plant, marine and fungal specimens for preservation of biologically active molecules. Molecules 2010, 15, 4526–4563. [Google Scholar] [CrossRef] [Green Version]
- Lorick, K.L.; Jensen, J.P.; Fang, S.; Ong, A.M.; Hatakeyama, S.; Weissman, A.M. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 1999, 96, 11364–11369. [Google Scholar] [CrossRef] [Green Version]
- Ettenberg, S.A.; Magnifico, A.; Cuello, M.; Nau, M.M.; Rubinstein, Y.R.; Yarden, Y.; Weissman, A.M.; Lipkowitz, S. Cbl-b dependent coordinated degradation of the epidermal growth factor receptor signaling complex. J. Biol. Chem. 2001, 276, 27677–27684. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.C.; Ettenberg, S.A.; Coats, A.O.; Mussante, M.; Ravichandran, S.; Collins, J.; Nau, M.M.; Lipkowitz, S. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 2004, 23, 7104–7115. [Google Scholar] [CrossRef] [Green Version]
Position | δC (type) a | δH (J in Hz) a | δC (type) b | δH (J in Hz) b |
---|---|---|---|---|
2 | 109.1 C | 110.9 C | ||
2-OCH3 | 51.6, CH3 | 3.40, s | 52.6, CH3 | 3.52, s |
3 | 53.3, CH | 4.09, d (13.8) | 55.4, CH | 4.22, d (13.8) |
4 | 54.6, CH | 3.91, d (13.8) | 56.3, CH | 4.04, d (13.8) |
5 | 102.3 C | 103.8 C | ||
5-OH | 7.40, s | |||
6 | 169.4, s | 171.6, s | ||
7-NH | 10.52, d (10.2) | |||
8 | 120.2, CH | 7.29, dd (14.6, 10.2) | 120.7, CH | 7.37, d (14.6) |
9 | 114.8, CH | 6.43, d (14.6) | 117.2, CH | 6.40, d (14.6) |
10 | 126.9, C | 128.9, C | ||
11, 15 | 126.8, CH | 7.24, d (8.4) | 128.0, CH | 7.25, d (8.4) |
12, 14 | 115.6, CH | 6.72, d (8.4) | 116.6, CH | 6.75, d (8.4) |
13 | 156.4, C | 157.8, C | ||
13-OH | 9.47, s | |||
16 | 166.0, C | 168.6, C | ||
17-NH | 10.50, d (10.2) | |||
18 | 120.1, CH | 7.04, dd (14.6, 10.2) | 120.5, CH | 7.10, d (14.6) |
19 | 114.3, CH | 6.29, d (14.6) | 117.1, CH | 6.35, d (14.6) |
20 | 126.9, C | 128.8, C | ||
21, 25 | 126.7, CH | 7.18, d (8.4) | 128.0, CH | 7.20, d (8.4) |
22, 24 | 115.6, CH | 6.70, d (8.4) | 116.5, CH | 6.73, d (8.4) |
156.3, C | 157.7, C | |||
23-OH | 9.44, s | |||
26 | 124.8, C | 126.5, C | ||
27 | 115.8, CH | 6.52, d (1.8) | 116.7, CH | 6.66, d (1.8) |
28 | 144.4, C | 146.1, C | ||
28-OH | 8.71, s | |||
29 | 144.5, C | 145.8, C | ||
29-OH | 8.74, s | |||
30 | 115.0, CH | 6.50, d (8.4) | 115.9, CH | 6.60, d (8.4) |
31 | 119.2, CH | 6.36, dd (8.4, 1.8) | 121.2, CH | 6.54, dd (8.4, 1.8) |
32 | 125.0, C | 126.6, C | ||
33 | 116.6, CH | 6.55, d (1.8) | 117.5, CH | 6.69, d (1.8) |
34 | 144.7, C | 145.7, C | ||
34-OH | 8.68, s | |||
35 | 144.6, C | 145.9, C | ||
35-OH | 8.69, s | |||
36 | 115.2, CH | 6.51, d (8.4) | 116.2, CH | 6.61, d (8.4) |
37 | 120.1, CH | 6.38, dd (8.4, 1.8) | 122.1, CH | 6.52, dd (8.4, 1.8) |
2 | 3 | |||
---|---|---|---|---|
Position | δC (type) | δH (J in Hz) | δC (type) | δH (J in Hz) |
2, 5 | 127.9, C | 197.2, C | ||
3, 4 | 127.8, C | 55.5, CH | 5.15, s | |
6, 16 | 161.1, C | 159.3, C | ||
8, 18 | 120.5, CH | 7.27, d (14.6) | 120.0, CH | 7.14, d (14.6) |
9, 19 | 115.6, CH | 5.71, d (14.6) | 118.6, CH | 6.42, d (14.6) |
10, 20 | 128.8, C | 128.7, C | ||
11,15,21,25 | 127.8, CH | 7.11, d (8.4) | 128.1, CH | 7.18, d (8.4) |
12,14,22,24 | 116.5, CH | 6.69, d (8.4) | 116.5, CH | 6.70, d (8.4) |
13, 23 | 157.7, C | 158.1, C | ||
26, 32 | 126.3, C | 125.8, C | ||
27, 33 | 118.6, CH | 6.61, d (1.8) | 117.7, CH | 6.53, d (1.6) |
28, 34 | 146.3, C | 146.5, C | ||
29, 35 | 145.9, C | 146.1, C | ||
30, 36 | 116.4, CH | 6.74, d (8.4) | 116.5, CH | 6.60, d (8.4) |
31, 37 | 123.2, CH | 6.53, dd (8.4, 1.8) | 122.1, CH | 6.42, dd (8.4, 1.6) |
38 | 49.3, CH2 | 4.69, br t (7.6) | ||
39 | 38.7, CH2 | 2.99, br t (7.6) | ||
40 | 130.5, C | |||
41, 45 | 131.2, CH | 6.99, d (8.4) | ||
42, 44 | 116.2, CH | 6.68, d (8.4) | ||
43 | 157.2, C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-K.; Wang, D.; Wilson, B.A.P.; Saurí, J.; Voeller, D.; Lipkowitz, S.; O’Keefe, B.R.; Gustafson, K.R. Suberitamides A–C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity. Mar. Drugs 2020, 18, 536. https://doi.org/10.3390/md18110536
Kim C-K, Wang D, Wilson BAP, Saurí J, Voeller D, Lipkowitz S, O’Keefe BR, Gustafson KR. Suberitamides A–C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity. Marine Drugs. 2020; 18(11):536. https://doi.org/10.3390/md18110536
Chicago/Turabian StyleKim, Chang-Kwon, Dongdong Wang, Brice A. P. Wilson, Josep Saurí, Donna Voeller, Stanley Lipkowitz, Barry R. O’Keefe, and Kirk R. Gustafson. 2020. "Suberitamides A–C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity" Marine Drugs 18, no. 11: 536. https://doi.org/10.3390/md18110536
APA StyleKim, C. -K., Wang, D., Wilson, B. A. P., Saurí, J., Voeller, D., Lipkowitz, S., O’Keefe, B. R., & Gustafson, K. R. (2020). Suberitamides A–C, Aryl Alkaloids from a Pseudosuberites sp. Marine Sponge that Inhibit Cbl-b Ubiquitin Ligase Activity. Marine Drugs, 18(11), 536. https://doi.org/10.3390/md18110536