LC-MS/MS Method Development for the Discovery and Identification of Amphidinols Produced by Amphidinium
Abstract
:1. Introduction
2. Results
2.1. Adduct Formation of Amphidinols
2.2. Fragmentation Patterns of Amphidinols
2.3. Deviating Fragmentation Patterns
2.4. Neutral Loss (NL) Method for the Detection of Unknown Amphidinols
2.5. New Amphidinol Candidates
2.6. Selected Reaction Monitoring (SRM) Method
2.7. Amphidinol Profiles
2.8. Hemolytic Activity
3. Discussion
3.1. Ionization and Fragmentation of Amphidinols
3.2. Liquid Chromatography-Tandem Mass Spectrometry LC-MS/MS Methods
3.3. Method Advantages and Limitations
3.4. Characteristics of New Amphidinols
3.5. Amphidinol Profiles
4. Materials and Methods
4.1. Amphidinium Strains
4.2. Culture Conditions and Culture System
4.3. Hemolytic Activity
4.4. Chemical Analysis
4.4.1. Harvest of Amphidinium Cells
4.4.2. Extraction of Amphidinols
AA39, AA40, AA60
ACRN02, ACRN03, CCMP1314 and DN241EHU
A01BR
4.4.3. LC-MS/MS Analysis
4.4.4. High-Resolution Mass Spectrometry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, S.; Patterson, D.J. The benthic dinoflagellate genus Amphidinium in south-eastern Australian waters, including three new species. Eur. J. Phycol. 2002, 37, 279–298. [Google Scholar] [CrossRef]
- Herdmann, E.C. Notes on dinoflagellates and other organisms causing discoloration of the sand of Port Erin II. Proc. Trans. Liverp. Biol. Soc. 1922, 36, 15–30. [Google Scholar]
- Murray, S.A.; Kohli, G.S.; Farrell, H.; Spiers, Z.B.; Place, A.R.; Dorantes-Aranda, J.J.; Ruszczyk, J. A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae 2015, 49, 19–28. [Google Scholar] [CrossRef]
- Jørgensen, M.F.; Murray, S.; Daugbjerg, N. Amphidinium Revisited. I.: Redefinition of Amphidinium (Dinophyceae) Based on Cladistic and Molecular Phylogenetic Analyses. J. Phycol. 2004, 40, 351–365. [Google Scholar] [CrossRef]
- Karafas, S.; Teng, S.T.; Leaw, C.P.; Alves-de-Souza, C. An evaluation of the genus Amphidinium (Dinophyceae) combining evidence from morphology, phylogenetics, and toxin production, with the introduction of six novel species. Harmful Algae 2017, 68, 128–151. [Google Scholar] [CrossRef] [PubMed]
- Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H. Amphidinol, a polyhydroxy-polyene antifungal agent with an unprecedented structure, from a marine dinoflagellate, Amphidinium klebsii. J. Am. Chem. Soc. 1991, 113, 9859–9861. [Google Scholar] [CrossRef]
- Nuzzo, G.; Cutignano, A.; Sardo, A.; Fontana, A. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. J. Nat. Prod. 2014, 77, 1524–1527. [Google Scholar] [CrossRef]
- Inuzuka, T.; Yamada, K.; Uemura, D. Amdigenols E and G, long carbon-chain polyol compounds, isolated from the marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2014, 55, 6319–6323. [Google Scholar] [CrossRef]
- Doi, Y.; Ishibashi, M.; Nakamichi, H.; Kosaka, T.; Ishikawa, T.; Kobayashi, J. Luteophanol A, a New Polyhydroxyl Compound from Symbiotic Marine Dinoflagellate Amphidinium sp. J. Org. Chem. 1997, 62, 3820–3823. [Google Scholar] [CrossRef]
- Meng, Y.; van Wagoner, R.M.; Misner, I.; Tomas, C.; Wright, J.L.C. Structure and biosynthesis of amphidinol 17, a hemolytic compound from Amphidinium carterae. J. Nat. Prod. 2010, 73, 409–415. [Google Scholar] [CrossRef]
- Molina-Miras, A.; Morales-Amador, A.; de Vera, C.R.; López-Rosales, L.; Sánchez-Mirón, A.; Souto, M.L.; Fernández, J.J.; Norte, M.; García-Camacho, F.; Molina-Grima, E. A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: Isolation of a novel analogue. Algal Res. 2018, 31, 87–98. [Google Scholar] [CrossRef]
- Echigoya, R.; Rhodes, L.; Oshima, Y.; Satake, M. The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae 2005, 4, 383–389. [Google Scholar] [CrossRef]
- Morsy, N.; Matsuoka, S.; Houdai, T.; Matsumori, N.; Adachi, S.; Murata, M.; Iwashita, T.; Fujita, T. Isolation and structure elucidation of a new amphidinol with a truncated polyhydroxyl chain from Amphidinium klebsii. Tetrahedron 2005, 61, 8606–8610. [Google Scholar] [CrossRef]
- Satake, M.; Cornelio, K.; Hanashima, S.; Malabed, R.; Murata, M.; Matsumori, N.; Zhang, H.; Hayashi, F.; Mori, S.; Kim, J.S.; et al. Structures of the Largest Amphidinol Homologues from the Dinoflagellate Amphidinium carterae and Structure-Activity Relationships. J. Nat. Prod. 2017, 80, 2883–2888. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-C.; Zhao, D.; Guo, Y.-W.; Wu, H.-M.; Lin, L.-P.; Wang, Z.-H.; Ding, J.; Lin, Y.-S. Lingshuiol, a novel polyhydroxyl compound with strongly cytotoxic activity from the marine dinoflagellate Amphidinium sp. Bioorg. Med. Chem. Lett. 2004, 14, 3117–3120. [Google Scholar]
- Martínez, K.A.; Lauritano, C.; Druka, D.; Romano, G.; Grohmann, T.; Jaspars, M.; Martín, J.; Díaz, C.; Cautain, B.; La Cruz, M.; et al. Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Mar. Drugs 2019, 17, 385. [Google Scholar] [CrossRef] [Green Version]
- Place, A.R.; Bowers, H.A.; Bachvaroff, T.R.; Adolf, J.E.; Deeds, J.R.; Sheng, J. Karlodinium veneficum—The little dinoflagellate with a big bite. Harmful Algae 2012, 14, 179–195. [Google Scholar] [CrossRef]
- Adolf, J.E.; Bachvaroff, T.R.; Krupatkina, D.N.; Nonogaki, H.; Brown, P.J.P.; Lewitus, A.J.; Harvey, H.R.; Place, A.R. Species specificity and potential roles of Karlodinium micrum toxin. Afr. J. Mar. Sci. 2006, 28, 415–419. [Google Scholar] [CrossRef]
- Waggett, R.J.; Tester, P.A.; Place, A.R. Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator–prey interactions with the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 2008, 366, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Morsy, N.; Houdai, T.; Matsuoka, S.; Matsumori, N.; Adachi, S.; Oishi, T.; Murata, M.; Iwashita, T.; Fujita, T. Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities. Bioorg. Med. Chem. 2006, 14, 6548–6554. [Google Scholar] [CrossRef]
- Paul, G.K.; Matsumori, N.; Murata, M.; Tachibana, K. Isolation and chemical structure of amphidinol 2, a potent hemolytic compound from marine dinoflagellate Amphidinium klebsii. Tetrahedron Lett. 1995, 36, 6279–6282. [Google Scholar] [CrossRef]
- Krock, B.; Busch, J.A.; Tillmann, U.; García-Camacho, F.; Sánchez-Mirón, A.; Gallardo-Rodríguez, J.J.; López-Rosales, L.; Andree, K.B.; Fernández-Tejedor, M.; Witt, M.; et al. LC-MS/MS Detection of Karlotoxins Reveals New Variants in Strains of the Marine Dinoflagellate Karlodinium veneficum from the Ebro Delta (NW Mediterranean). Mar. Drugs 2017, 15, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutignano, A.; Nuzzo, G.; Sardo, A.; Fontana, A. The Missing Piece in Biosynthesis of Amphidinols: First Evidence of Glycolate as a Starter Unit in New Polyketides from Amphidinium carterae. Mar. Drugs 2017, 15, 157. [Google Scholar] [CrossRef] [Green Version]
- Orlando, R.; Allen Bush, C.; Fenselau, C. Structural analysis of oligosaccharides by tandem mass spectrometry: Collisional activation of sodium adduct ions. Biol. Mass Spectrom. 1990, 19, 747–754. [Google Scholar] [CrossRef]
- Deeds, J.; Landsberg, J.; Etheridge, S.; Pitcher, G.; Longan, S. Non-Traditional Vectors for Paralytic Shellfish Poisoning. Mar. Drugs 2008, 6, 308–348. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Matsuoka, S.; Matsumori, N.; Paul, G.K.; Tachibana, K. Absolute Configuration of Amphidinol 3, the First Complete Structure Determination from Amphidinol Homologues: Application of a New Configuration Analysis Based on Carbon−Hydrogen Spin-Coupling Constants. J. Am. Chem. Soc. 1999, 121, 870–871. [Google Scholar] [CrossRef]
- Houdai, T.; Matsuoka, S.; Murata, M.; Satake, M.; Ota, S.; Oshima, Y.; Rhodes, L.L. Acetate labeling patterns of dinoflagellate polyketides, amphidinols 2, 3 and 4. Tetrahedron 2001, 57, 5551–5555. [Google Scholar] [CrossRef]
- Abreu, A.C.; Molina-Miras, A.; Aguilera-Sáez, L.M.; López-Rosales, L.; Cerón-García, M.D.C.; Sánchez-Mirón, A.; Olmo-García, L.; Carrasco-Pancorbo, A.; García-Camacho, F.; Molina-Grima, E.; et al. Production of Amphidinols and Other Bioproducts of Interest by the Marine Microalga Amphidinium carterae Unraveled by Nuclear Magnetic Resonance Metabolomics Approach Coupled to Multivariate Data Analysis. J. Agric. Food Chem. 2019, 67, 9667–9682. [Google Scholar] [CrossRef]
- Keller, M.D.; Selvin, R.C.; Claus, W.; Guillard, R.R.L. Media for the culture of oceanic ultraphytoplankton. J. Phycol. 1987, 23, 633–638. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertrebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- López-Rosales, L.; García-Camacho, F.; Sánchez-Mirón, A.; Contreras-Gómez, A.; Molina-Grima, E. An optimisation approach for culturing shear-sensitive dinoflagellate microalgae in bench-scale bubble column photobioreactors. Bioresour. Technol. 2015, 197, 375–382. [Google Scholar] [CrossRef]
- Eschbach, E.; Scharsack, J.P.; John, U.; Medlin, L.K. Improved erythrocyte lysis assay in microtitre plates for sensitive detection and efficient measurement of haemolytic compounds from ichthyotoxic algae. J. Appl. Toxicol. JAT 2001, 21, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Molina-Miras, A.; López-Rosales, L.; Cerón-García, M.C.; Sánchez-Mirón, A.; García-Camacho, F.; Contreras-Gómez, A.; Molina-Grima, E. A new approach to finding optimal centrifugation conditions for shear-sensitive microalgae. Algal Res. 2019, 44, 101677. [Google Scholar] [CrossRef]
- Miles, C.O.; Samdal, I.A.; Aasen, J.A.G.; Jensen, D.J.; Quilliam, M.A.; Petersen, D.; Briggs, L.M.; Wilkins, A.L.; Rise, F.; Cooney, J.M.; et al. Evidence for numerous analogs of yessotoxin in Protoceratium reticulatum. Harmful Algae 2005, 4, 1075–1091. [Google Scholar] [CrossRef]
- Binzer, S.B.; Svenssen, D.K.; Daugbjerg, N.; Alves-de-Souza, C.; Pinto, E.; Hansen, P.J.; Larsen, T.O.; Varga, E. A-, B- and C-type prymnesins are clade specific compounds and chemotaxonomic markers in Prymnesium parvum. Harmful Algae 2019, 81, 10–17. [Google Scholar] [CrossRef] [PubMed]
m/z Observed | Elemental Composition | Calculated Exact Mass [Da] | ±Da | ±ppm |
---|---|---|---|---|
1329.7548 | C66H114NaO25 | 1329.7549 | 0.0001 | 0.08 |
1311.7440 | C66H112NaO24 | 1311.7441 | 0.0001 | 0.09 |
1125.6196 | C56H94NaO21 | 1125.6207 | 0.0011 | 0.95 |
1055.5768 | C52H88NaO20 | 1055.5769 | 0.0001 | 0.13 |
1037.5656 | C52H86NaO19 | 1037.5661 | 0.0005 | 0.48 |
999.5144 | C48H80NaO20 | 999.5147 | 0.0003 | 0.34 |
911.4613 | C44H72NaO18 | 911.4616 | 0.0003 | 0.33 |
903.5291 | C44H80NaO17 | 903.5293 | 0.0002 | 0.22 |
885.5189 | C44H78NaO16 | 885.5190 | 0.0001 | 0.16 |
837.4247 | C41H66NaO16 | 837.4249 | 0.0002 | 0.19 |
699.3930 | C34H60NaO13 | 699.3932 | 0.0002 | 0.23 |
681.3824 | C34H58NaO12 | 681.3826 | 0.0002 | 0.29 |
629.3509 | C30H54NaO12 | 629.3513 | 0.0004 | 0.63 |
611.3403 | C30H52NaO11 | 611.3407 | 0.0004 | 0.71 |
573.2885 | C26H46NaO12 | 573.2887 | 0.0002 | 0.34 |
485.2361 | C22H38NaO10 | 485.2363 | 0.0002 | 0.34 |
449.2148 | C22H34NaO8 | 449.2151 | 0.0003 | 0.75 |
411.1987 | C19H32NaO8 | 411.1995 | 0.0008 | 1.91 |
# | Neutral Loss [Da] | Observed Frequency | Neutral Loss of Sulfated Forms [Da] |
---|---|---|---|
1 | 392.13 | 14/37 | 512.12 |
2 | 426.23 | 7/37 | 546.23 |
3 | 418.24 | 7/37 | 538.24 |
4 | 398.28 | 5/37 | 518.28 |
5 | 440.25 | 2/37 | 560.25 |
6 | 442.23 | 1/37 | 562.23 |
7 | 338.18 | 1/37 | 458.18 |
Toxin | m/z Observed | Elemental Composition | Calculated Exact Mass [Da] | ±Da | ±ppm |
---|---|---|---|---|---|
N1 | 1267.7164 | C64H108Na+O23 | 1267.7174 | 0.0010 | 0.789 |
N2 | 1429.7694 | C70H118Na+O28 | 1429.7702 | 0.0008 | 0.560 |
LS-A | 1295.7481 | C66H112Na+O23 | 1295.7487 | 0.0006 | 0.463 |
N3 | 1457.8007 | C72H122Na+O28 | 1457.8015 | 0.0008 | 0.549 |
Toxin | Q1 Mass (m/z) | Q3 Mass (m/z) | Retention Time (min) | Type | Toxin | Q1 Mass (m/z) | Q3 Mass (m/z) | Retention Time (min) | Type |
---|---|---|---|---|---|---|---|---|---|
AM-1 * | 1511.8 | 973.6 | - | A1 | KAR-B * | 1461.9 | 1063.6 | - | B0 |
AM-2 * | 1397.8 | 1005.6 | - | C0 | LP-A * | 1277.5 | 753.5 | - | A1 |
AM-3 * | 1349.8 | 931.6 | - | A0 | LP-B | 1343.8 | 903.5 | 2.23 | A0 |
AM-4 | 1323.8 | 931.6 | 2.62 | A0 | LP-C | 1343.8 | 903.5 | 2.23 | A0 |
AM-5 * | 1393.8 | 975.6 | - | A0 | LP-D | 1329.7 | 903.5 | 2.00 | A0 |
AM-6 * | 1367.8 | 975.6 | - | A0 | LS * | 1373.8 | 975.6 | - | B0 |
AM-7 * | 1253.6 | 741.5 | - | A1 | LS-A | 1295.8 | 903.5 | 2.58 | A0 |
AM-9 * | 1349.8 | 931.6 | - | A0 | LS-B * | 1265.6 | 753.5 | - | A1 |
AM-10 * | 1295.8 | 903.5 | - | A0 | SP * | 1265.6 | 753.5 | - | A1 |
AM-11 * | 1499.8 | 987.6 | - | C1 | N1 | 1267.7 | 875.5 | 2.56 | A0 |
AM-12 * | 1425.7 | 913.6 | - | A1 | N2 | 1429.8 | 1037.6 | 2.52 | A2 |
AM-13 * | 1451.7 | 913.6 | - | A1 | N3 | 1457.8 | 1065.6 | 2.53 | A2 |
AM-14 * | 1287.6 | 741.5 | - | A1 | N4 | 1315.8 | 875.5 | 2.16 | C0 |
AM-15 * | 1185.7 | 759.5 | - | A0 | N5 | 1345.8 | 945.6 | 2.17 | B0 |
AM-17 * | 1305.7 | 815.5 | - | A1 | N6 | 1345.8 | 945.6 | 2.72 | B0 |
AM-18 | 1381.8 | 963.6 | 2.71 | B0 | N7 | 1345.8 | 927.5 | 3.02 | A0 |
AM-19 | 1483.8 | 945.6 | 2.20 | B1 | N8 | 1363.8 | 945.6 | 2.19 | B0 |
AM-20 (M) * | 1345.8 | 903.5 | - | A0 | N9 | 1363.8 | 945.6 | 2.78 | B0 |
AM-20 (S) * | 1652.5 | 1259.8 | - | A0 | N10 | 1363.8 | 945.6 | 2.84 | B0 |
AM-21 | 1798.1 | 1405.9 | - | A0 | N11 | 1363.8 | 945.6 | 2.91 | B0 |
AM-22 * | 1667.9 | 1329.8 | 2.60 | A0 | N12 | 1325.9 | 945.6 | 2.21 | B0 |
AM-A | 1361.9 | 963.6 | 2.76 | B0 | N13 | 1325.9 | 927.5 | 3.08 | A0 |
AM-B | 1463.8 | 945.6 | 2.27 | B1 | N14 | 1343.9 | 945.6 | 2.23 | B0 |
AMD-G * | 1299.6 | 767.5 | - | A1 | N15 | 1343.9 | 945.6 | 2.83 | B0 |
CAR-E | 1421.9 | 1029.6 | 2.52 | C0 | N16 | 1343.9 | 945.6 | 2.97 | B0 |
KAR-A * | 1479.9 | 1081.6 | - | B0 |
Toxin | ACRN02 | ACRN03 | CCMP1314 | DN241EHU | A01BR | AA39 | AA40 | AA60 |
---|---|---|---|---|---|---|---|---|
AM-A | - | - | - | 121 | - | - | - | - |
AM-B | - | - | - | 28 | - | - | - | - |
AM-4 (*) | 4 | - | - | - | - | - | - | - |
AM-18 | - | - | 601 | - | - | - | - | - |
AM-19 | - | - | 266 | - | - | - | - | - |
AM-22 | - | - | 49 | 11 | - | - | - | - |
CAR-E (*) | 2 | - | - | - | - | - | - | - |
LS-A | 1876 | 3 | - | - | - | - | - | - |
LP-B/C | 53 | - | - | - | - | - | - | - |
LP-D | 131 | <1 | - | - | - | - | - | - |
N1 | 1412 | - | - | - | - | - | - | - |
N2 | 39 | - | - | - | - | - | - | - |
N3 | 149 | - | - | - | - | - | - | - |
N4 | 14 | - | - | - | - | - | - | - |
N5 | - | - | 12 | - | - | - | - | - |
N6 | - | - | 3 | - | - | - | - | - |
N7 | - | - | 14 | - | - | - | - | - |
N8 | - | - | 29 | - | - | - | - | - |
N9 | - | - | 53 | - | - | - | - | - |
N10 | - | - | 9 | - | - | - | - | - |
N11 | - | - | 177 | - | - | - | - | - |
N12 | - | - | - | 16 | - | - | - | - |
N13 | - | - | - | 78 | - | - | - | - |
N14 | - | - | - | 29 | - | - | - | - |
N15 | - | - | - | 43 | - | - | - | - |
N16 | - | - | - | 149 | - | - | - | - |
∑ | 3680 | 3 | 1213 | 475 | 0 | 0 | 0 | 0 |
m/z Observed | Elemental Composition | Calculated Exact Mass [Da] | ±Da | ±ppm | |
---|---|---|---|---|---|
(a) | 1381.7755 | C71H122Na+O24 | 1381.8218 | 0.0463 | 33.506 |
1163.6303 | C60H100Na+O20 | 1163.6700 | 0.0397 | 34.116 | |
1105.5908 | C57H94Na+O19 | 1105.6282 | 0.0374 | 33.827 | |
963.5534 | C47H88Na+O18 | 963.5863 | 0.0329 | 34.143 | |
745.4083 | C37H70Na+O13 | 745.4709 | 0.0626 | 83.973 | |
687.3693 | C35H68Na+O11 | 687.4654 | 0.0961 | 139.789 | |
(b) | 745.4083 | C36H66Na+O14 | 745.4345 | 0.0262 | 35.147 |
687.3693 | C33H60Na+O13 | 687.3693 | 0.0233 | 33.896 |
Amphidinium | Provider | Origin | Harvested Cells | |
---|---|---|---|---|
ACRN02 | carterae (n.s.) | Harmful Microalgae Culture Collection at IEO (Vigo, Spain) | La Réunion, Ind. Ocean | 10 × 106 |
ACRN03 | 10 × 106 | |||
A01BR | Brazil | 2.5 × 109 | ||
CCMP1314 | carterae (m + g) | Bigelow Laboratory (Maine, USA) | Falmouth Great Pond, USA | 10 × 106 |
DN241EHU | carterae (m + g) | Culture Collection of the Basque Country (Leioa, Spain) | Punta des Gas, Spain | 10.3 × 106 |
AA39 | massartii (m + g) | Benthic dinoflagellate collection at UNAM, and CICESE (Mexico City, Mexico) | Baja California Sur, Mexico | 9 × 106 |
AA40 | sp. | 3 × 106 | ||
AA60 | operculatum (m + g) | Veracruz Reef System, Mexico | 0.54 × 106 |
Ion-Source | |
---|---|
Capillary Voltage [kV] | 2.00 |
Cone Voltage [kV] | 45 |
Desolvation Temperature [°C] | 600 |
Gas Flow | |
Desolvation [L/h] | 1000 |
Cone [L/h] | 150 |
Nebulizer [bar] | 7.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wellkamp, M.; García-Camacho, F.; Durán-Riveroll, L.M.; Tebben, J.; Tillmann, U.; Krock, B. LC-MS/MS Method Development for the Discovery and Identification of Amphidinols Produced by Amphidinium. Mar. Drugs 2020, 18, 497. https://doi.org/10.3390/md18100497
Wellkamp M, García-Camacho F, Durán-Riveroll LM, Tebben J, Tillmann U, Krock B. LC-MS/MS Method Development for the Discovery and Identification of Amphidinols Produced by Amphidinium. Marine Drugs. 2020; 18(10):497. https://doi.org/10.3390/md18100497
Chicago/Turabian StyleWellkamp, Marvin, Francisco García-Camacho, Lorena M. Durán-Riveroll, Jan Tebben, Urban Tillmann, and Bernd Krock. 2020. "LC-MS/MS Method Development for the Discovery and Identification of Amphidinols Produced by Amphidinium" Marine Drugs 18, no. 10: 497. https://doi.org/10.3390/md18100497
APA StyleWellkamp, M., García-Camacho, F., Durán-Riveroll, L. M., Tebben, J., Tillmann, U., & Krock, B. (2020). LC-MS/MS Method Development for the Discovery and Identification of Amphidinols Produced by Amphidinium. Marine Drugs, 18(10), 497. https://doi.org/10.3390/md18100497