Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Stock Solutions
4.2.2. Nanocomposite Preparation
4.2.3. Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schatz, C.; Domard, A.; Viton, C.; Pichot, C.; Delair, T. Versatile and Efficient Formation of Colloids of Biopolymer-Based Polyelectrolyte Complexes. Biomacromolecules 2004, 5, 1882–1892. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, P.; Chakraborty, S.; Bhattacharya, S.; Mishra, R.; Kundu, P.P. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int. J. Biol. Macromol. 2015, 72, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Sonia, T.A.; Sharma, C.P. An overview of natural polymers for oral insulin delivery. Drug Discov. Today 2012, 17, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Fonte, P.; Araújo, F.; Reis, S.; Sarmento, B. Oral insulin delivery: How far are we? J. Diabet. Sci. Technol. 2013, 7, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.; Simões, S.; Veiga, F.; Seiça, F.; Ribeiro, A. Why most oral insulin formulations do not reach clinical trials. Ther. Deliv. 2015, 6, 973–987. [Google Scholar] [CrossRef]
- Fonte, P.; Araújo, F.; Silva, C.; Pereira, C.; Reis, S.; Santos, H.A.; Sarmento, B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol. Adv. 2015, 33, 1342–1354. [Google Scholar] [CrossRef]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D.; Neufeld, R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 2007, 8, 3054–3060. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.C.; Sonaje, K.; Chen, K.J.; Sung, H.W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 2011, 32, 9826–9838. [Google Scholar] [CrossRef]
- Lopes, M.A.; Abrahim, B.A.; Seiça, R.; Veiga, F.; Rodrigues, C.R.; Ribeiro, A.J. Intestinal Uptake of Insulin Nanoparticles: Facts or Myths? Curr. Pharm. Biotechnol. 2014, 15, 629–638. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Mishra, R.; Rana, D.; Kundua, P.P. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Progress Polym. Sci. 2012, 37, 1457–1475. [Google Scholar] [CrossRef]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D. Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomed. Chromatogr. 2006, 20, 898–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar]
- Zhang, Y.; Wei, W.; Lv, P.; Wang, L.; Ma, G. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur. J. Pharm. Biopharm. 2011, 77, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Dai, Y.N.; Zhang, J.P.; Wang, A.Q.; Wei, Q. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J. Biomed. Sci. 2008, 4, 221–228. [Google Scholar] [PubMed]
- Chen, Y.; Mohanraj, V.J.; Parkin, J.E. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Lett. Pept. Sci. 2003, 10, 621–629. [Google Scholar] [CrossRef]
- Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Mucoadhesive chitosan-dextran sulfate nanoparticles for sustained drug delivery to the ocular surface. J. Ocul. Pharmacol. Ther. 2013, 29, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; Alonso, M.J. Novel hydrophillic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. [Google Scholar] [CrossRef]
- Vasconcelos Silva, E.L.; Oliveira, A.C.J.; Patriota, Y.B.G.; Ribeiro, A.J.; Veiga, F.; Hallwass, F.; Silva-Filho, E.C.; da Silva, D.A.; Soares, M.F.R.; Wanderley, A.G.; et al. Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydr. Polym. 2019, 207, 601–608. [Google Scholar] [CrossRef]
- Devasia, S.; Sukumaran, M.; Suresh Kumar, J.S. Development of chitosan-tri polyphosphate nanomaterials for oral delivery of insulin. J. Polym. Mater. 2017, 34, 75–89. [Google Scholar]
- Trefalt, G.; Ruiz-Cabello, F.J.; Borkovec, M. Interaction forces, heteroaggregation, and deposition involving charged colloidal particles. J. Phys. Chem. B 2014, 118, 6346–6355. [Google Scholar] [CrossRef] [PubMed]
- La Mesa, C.; Risuleo, G. Stabilisation of Food Colloids: The Role of Electrostatic and Steric Forces, in Some New Aspects of Colloidal Systems in Foods; IntechOpen: London, UK, 2019. [Google Scholar]
- Benichou, A.; Aserin, A.; Garti, N. Protein-Polysaccharide Interactions for Stabilisation of Food Emulsions. J. Dispers. Sci. Technol. 2002, 23, 93–123. [Google Scholar] [CrossRef]
- De Celis Alonso, B.; Rayment, P.; Ciampi, E.; Ablett, S.; Marcianic, L.; Spiller, R.C.; Norton, I.T.; Gowlanda, P.A. NMR relaxometry and rheology of ionic and acid alginate gels. Carbohydr. Polym. 2010, 82, 663–669. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; Lollo, G.; Remuñán-López, C.; Quaglia, F.; Alonso, M.J. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules 2009, 10, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Goliaei, A.; Tsereteli, L.; Berkowitz, M.L. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations. J. Phys. Chem. B 2016, 120, 5823–5830. [Google Scholar] [CrossRef]
- Reeve, L.E. The Poloxamers: Their Chemistry and Medical Applications. In Handbook of Biodegradable Polymers; Domb, A.J., Kost, J., Wiseman, D.M., Eds.; Overseas Publishers Association: Amsterdam, The Netherlands, 1997; pp. 231–250. [Google Scholar]
- Ramya Devi, D.; Sandhya, P.; Vedha, H.B.N. Poloxamer: A novel functional molecule for drug delivery and gene therapy. J. Pharm. Sci. Res. 2013, 5, 159–165. [Google Scholar]
- Woitiski, C.B.; Veiga, F.; Ribeiro, A.; Neufeld, R. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur. J. Pharm. Biopharm. 2009, 73, 25–33. [Google Scholar] [CrossRef]
- Woitiski, C.B.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Colloidal carrier integrating biomaterials for oral insulin delivery: Influence of component formulation on physicochemical and biological parameters. Acta Biomater. 2009, 5, 2475–2484. [Google Scholar] [CrossRef]
- Pan, G.; Zhang, G.; Shi, Q.; Chen, W. The Effect of Sodium Alginate on Chlorite and Serpentine in Chalcopyrite Flotation. Minerals 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Quiñones, J.P.; Peniche, H.; Peniche, C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers 2018, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Radacsi, N.; Ambrus, R.; Szabó-Révész, P.; van der Heijden, A.; ter Horst, J.H. Atmospheric Pressure Cold Plasma Synthesis of Submicrometer-Sized Pharmaceuticals with Improved Physicochemical Properties. Cryst. Growth Des. 2012, 12, 5090–5095. [Google Scholar] [CrossRef]
- Zia, F.; Anjum, M.N.; Saif, M.J.; Jamil, T.; Malik, K.; Anjum, S.; BiBi, I.; Zia, M.A. Alginate-Poly(Ethylene) Glycol and Poly(Ethylene) Oxide Blend Materials. In Algae Based Polymers, Blends, and Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 581–601. [Google Scholar]
- Carneiro-da-Cunha, M.G.; Cerqueira, M.A.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr. Polym. 2011, 85, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Detloff, T.; Sobisch, T.; Lerche, D. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technol. 2007, 174, 50–55. [Google Scholar] [CrossRef]
- Turbitt, C.; O’Hagan, P.; Hasapidis, K.; Pokrajac, G. A Multi-tool Approach to Colloid Stability: SPOS and Separation Analysis. J. Dispers. Sci. Technol. 2002, 23, 711–719. [Google Scholar] [CrossRef]
- Baños, F.G.; Díez Peña, A.I.; Hernánez Cifre, J.G.; López Martínez, M.C.; Ortega, A.; García de la Torre, J. Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. Carbohydr. Polym. 2014, 102, 223–230. [Google Scholar] [CrossRef]
- Valle-Delgado, J.J.; Molina-Bolívar, J.A.; Galisteo-González, F.; Gálvez-Ruiz, M.J.; Feiler, A.; Rutland, M.W. Interactions between bovine serum albumin layers adsorbed on different substrates measured with an atomic force microscope. Phys. Chem. Chem. Phys. 2004, 6, 1482–1486. [Google Scholar] [CrossRef]
- Collado-González, M.; Espín, V.F.; Montalbán, M.G.; Pamies, R.; Cifre, J.G.H.; Baños, F.G.D.; Víllora, G.; de la Torre, J.G. Aggregation behaviour of gold nanoparticles in presence of chitosan. J. Nanopart. Res. 2015, 17, 268. [Google Scholar] [CrossRef]
- Pamies, R.; Cifre, J.G.H.; Espín, V.F.; Collado-González, M.; BañosJosé, F.G.D.; de la Torre, G. Aggregation behaviour of gold nanoparticles in saline aqueous media. J. Nanopart. Res. 2014, 16, 2376. [Google Scholar] [CrossRef]
- Collado-Gonzalez, M.; Montalbán, M.G.; Peña-García, J.; Pérez-Sánchez, H.; Víllora, G.; Díaz Baños, F.G. Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydr. Polym. 2017, 161, 63–70. [Google Scholar] [CrossRef]
- Peula, J.M.; de las Nieves, F.J. Adsorption of monomeric bovine serum albumin on sulfonated polystyrene model colloids. 3. Colloidal stability of latex-protein complexes. Colloids Surf. A Physicochem. Eng. Asp. 1994, 90, 55–62. [Google Scholar] [CrossRef]
- Thomas, M.B.; Vaidyanathan, M.; Radhakrishnan, K.; Raichur, A.M. Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan–dextran sulfate polyelectrolytes. J. Food Eng. 2014, 136, 1–8. [Google Scholar] [CrossRef]
- Gurikov, P.; Smirnova, I. Non-Conventional Methods for Gelation of Alginate. Gels 2018, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, J.-J.; Huang, Y.-Y.; Lo, S.-H.; Hsu, T.-F.; Huang, W.-Y.; Huang, S.-L.; Lin, Y.-S. Effects of pH on the Shape of Alginate Particles and Its Release Behavior. Int. J. Polym. Sci. 2017, 2017, 3902704. [Google Scholar] [CrossRef]
- Phan, H.T.; Bartelt-Hunt, S.; Rodenhausen, K.B.; Schubert, M.; Bartz, J.C. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE). PLoS ONE 2015, 10, e0141282. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Osuna, I.; Vauthier, C.; Chacun, H.; Ponchel, G. Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur. J. Pharm. Biopharm. 2008, 69, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Canali, M.M.; Pedrotti, L.P.; Balsinde, J.; Ibarra, C.; Correa, S.G. Chitosan enhances transcellular permeability in human and rat intestine epithelium. Eur. J. Pharm. Biopharm. 2012, 80, 418–425. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Xiong, X.Y.; Tian, Y.; Li, Z.L.; Gong, Y.C.; Li, Y.P. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv. 2016, 23, 1882–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Polymeric Species | pH | ζ Potential (mV) | Relative Abundance (%) | Size Distribution (nm) | Relative Abundance (%) |
---|---|---|---|---|---|
Alginate | 4.9 | −52 ± 6 +3 ± 4 −11 ± 3 | 89.7 7.2 3 | 385 ± 165 113 ± 33 | 76.1 23.2 |
Dextran sulfate | 4.9 | −54 ± 8 −119 ± 5 −100 ± 4 | 81.2 5.4 5.2 | 1220 ± 888 4844 ± 578 | 90.4 5.8 |
Poloxamer 188 | 4.9 | −41 ± 6 −22 ± 5 | 69.9 30.1 | 638 ± 377 5036 ± 683 | 95.7 4.3 |
LMW CS 7 × 10−4 g/mL | 4.6 | +42 ± 8 | * | 477 ± 256 41 ± 28 4888 ± 769 | 80.9 16.0 3.2 |
LMW CS 1 × 10−5 g/mL | 4.6 | +35 ± 6 +8 ± 6 | 76.8 23.2 | 298 ± 101 37 ± 14 5463 ± 253 | 87.5 12.1 0.4 |
MMW CS 1 × 10−5 g/mL | 4.6 | +35 ± 8 +58 ± 2 +69 ± 8 | 70.6 11.0 3.1 | 493 ± 305 4453 ± 1049 46 ± 18 | 75.6 12.7 11.7 |
PEG 4000 | 4.6 | +29 ± 7 +5 ± 4 | 83. 16.7 | 517 ± 267 4 ± 1 5038 ± 613 | 80.9 16.0 3.2 |
BSA | 5.1 | +2 ± 5 | * | 25 ± 5 1113 ± 137 8 ± 2 | 82.5 10.2 5.0 |
BSA | 4.6 | +10 ± 3 | * | 13 ± 2 9 ± 1 | 72.0 28.0 |
Concentration of CS (g/mL) | Moles of Amine Groups per MW in LMW | Moles of Amine Groups per MW in MMW |
---|---|---|
1 × 10−7 | 1.2 × 10−8 | Not used |
1 × 10−5 | 1.2 × 10−6 | 1.2 × 10−6 |
7 × 10−4 | 5.7 × 10−4 | 5.7 × 10−4 |
Formulation | Concentration (g/mL) | ζ Potential (mV) |
---|---|---|
LMW CS | 7 × 10−4 | −28 ± 9 |
1 × 10−5 | −28 ± 5 | |
1 × 10−7 | −30 ± 11 | |
MMW CS | 1 × 10−5 | −31 ± 5 |
1 × 10−7 | −33 ± 10 |
Nanocomposites Prepared with | Instability Index | Median (nm) | Span (×90 to ×10)/×50 |
---|---|---|---|
LMW CS solution at 10−5 g/mL | 0.155 | 485.4 | 0.7741 |
LMW CS solution at 10−7 g/mL | 0.560 | 857.3 | 0.7879 |
MMW CS solution at 10−5 g/mL | 0.125 | 465.4 | 0.7004 |
MMW CS solution at 10−7 g/mL | 0.625 | 924.1 | 0.7980 |
CS used in the Formulation | Size (d. nm) | |||
---|---|---|---|---|
T0 | T1 | T2 | T24 | |
LMW CS 10−5 g/mL | 478 ± 132 | 374 ± 60 | 236 ± 44 | 271 ± 53 |
LMW CS 10−7 g/mL | 896 ± 225 | 534 ± 137 | 388 ± 92 | 311 ± 75 |
MMW CS 10−5 g/mL | 600 ± 179 | 271 ± 52 | 246 ± 61 | 269 ± 49 |
MMW CS 10−7 g/mL | 1181 ± 335 | 512 ± 163 | 341 ± 77 | 278 ± 57 |
CS Used in the Formulation | Size (d. nm), pH 1 | Size (d. nm), pH 7.4 | |||
---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T2 | |
LMW CS solution at 10−5 g/mL | 509 ± 121 | 2 ± 0 | 520 ± 119 | 1223 ± 17 | 1535 ± 93 |
MMW CS solution at 10−5 g/mL | 389 ± 73 | 5404 ± 0 | 486 ± 141 | 46 ± 5 | 48 ± 5 |
CS used in the Formulation | Concentration of Insulin Released | Release (%) |
---|---|---|
LMW CS solution at 10−5 g/mL | 73.7 ± 19.0 | 94.3 |
LMW CS solution at 10−7 g/mL | 73.2 ± 17.2 | 93.6 |
MMW CS solution at 10−5 g/mL | 63.9 ± 2.7 | 81.7 |
MMW CS solution at 10−7 g/mL | 63.1 ± 3.8 | 80.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collado-González, M.; Ferreri, M.C.; Freitas, A.R.; Santos, A.C.; Ferreira, N.R.; Carissimi, G.; Sequeira, J.A.D.; Díaz Baños, F.G.; Villora, G.; Veiga, F.; et al. Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery. Mar. Drugs 2020, 18, 55. https://doi.org/10.3390/md18010055
Collado-González M, Ferreri MC, Freitas AR, Santos AC, Ferreira NR, Carissimi G, Sequeira JAD, Díaz Baños FG, Villora G, Veiga F, et al. Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery. Marine Drugs. 2020; 18(1):55. https://doi.org/10.3390/md18010055
Chicago/Turabian StyleCollado-González, Mar, Maria Cristina Ferreri, Alessandra R. Freitas, Ana Cláudia Santos, Nuno R. Ferreira, Guzmán Carissimi, Joana A. D. Sequeira, F. Guillermo Díaz Baños, Gloria Villora, Francisco Veiga, and et al. 2020. "Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery" Marine Drugs 18, no. 1: 55. https://doi.org/10.3390/md18010055
APA StyleCollado-González, M., Ferreri, M. C., Freitas, A. R., Santos, A. C., Ferreira, N. R., Carissimi, G., Sequeira, J. A. D., Díaz Baños, F. G., Villora, G., Veiga, F., & Ribeiro, A. (2020). Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery. Marine Drugs, 18(1), 55. https://doi.org/10.3390/md18010055