Next Article in Journal
5-O-Acetyl-Renieramycin T from Blue Sponge Xestospongia sp. Induces Lung Cancer Stem Cell Apoptosis
Previous Article in Journal
Biomolecular Composition and Revenue Explained by Interactions between Extrinsic Factors and Endogenous Rhythms of Saccharina latissima
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle

Eckol as a Potential Therapeutic against Neurodegenerative Diseases Targeting Dopamine D3/D4 Receptors

Department of Food and Life Science, Pukyong National University, Busan 48513, Korea
Department of Physics, Pukyong National University, Busan 48513, Korea
Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea
Authors to whom correspondence should be addressed.
Mar. Drugs 2019, 17(2), 108;
Received: 29 December 2018 / Revised: 28 January 2019 / Accepted: 7 February 2019 / Published: 10 February 2019
PDF [3672 KB, uploaded 22 February 2019]
  |     |  


The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as neuronal drugs, we evaluated the modulatory effect of eckol on various GPCRs via cell-based functional assays. In addition, we conducted in silico predictions to obtain molecular insights into the functional effects of eckol. Functional assays revealed that eckol had a concentration-dependent agonist effect on dopamine D3 and D4 receptors. The half maximal effective concentration (EC50) of eckol for the dopamine D3 and D4 receptors was 48.62 ± 3.21 and 42.55 ± 2.54 µM, respectively, while the EC50 values of dopamine as a reference agonist for these two receptors were 2.9 and 3.3 nM, respectively. In silico studies revealed that a low binding energy in addition to hydrophilic, hydrophobic, π–alkyl, and π–π T-shaped interactions are potential mechanisms by which eckol binds to the dopamine receptors to exert its agonist effects. Molecular dynamics (MD) simulation revealed that Phe346 of the dopamine receptors is important for binding of eckol, similar to eticlopride and dopamine. Our results collectively suggest that eckol is a potential D3/D4 agonist for the management of neurodegenerative diseases, such as Parkinson’s disease. View Full-Text
Keywords: eckol; GPCR-targeting; dopamine agonist; Parkinson’s disease eckol; GPCR-targeting; dopamine agonist; Parkinson’s disease

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Paudel, P.; Seong, S.H.; Wu, S.; Park, S.; Jung, H.A.; Choi, J.S. Eckol as a Potential Therapeutic against Neurodegenerative Diseases Targeting Dopamine D3/D4 Receptors. Mar. Drugs 2019, 17, 108.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top