Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach
Abstract
:1. Introduction
2. Results
2.1. Characterisation of GPF
2.2. Method Validation
2.3. Pharmacokinetic and Tissue Distribution
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extraction Procedures
4.3. LC-MS/MS Analysis
4.4. Monosaccharide Analysis
4.5. Animals
4.6. Analysis of LDH Activity
4.7. Pharmacokinetic and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mishchenko, N.P.; Fedoreev, S.A.; Bagirova, V.L. Histochrome: A new original domestic drug. Pharm. Chem. J. 2003, 37, 48–52. [Google Scholar] [CrossRef]
- Jiao, H.; Shang, X.; Dong, Q.; Wang, S.; Liu, X.; Zheng, H.; Lu, X. Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Mar. Drugs 2015, 13, 5882–5900. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yi, M.; Pan, J.; Zhao, J.; Sun, L.; Lin, X.; Yu, C. Sea urchin (Strongylocentrotus intermedius) polysaccharide enhanced BMP-2 induced osteogenic differentiation and its structural analysis. J. Funct. Foods 2015, 14, 519–528. [Google Scholar] [CrossRef]
- Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A. Echinoderms: A Review of Bioactive Compounds with Potential Health Effects. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 1–54. [Google Scholar] [CrossRef]
- Brasseur, L.; Demeyer, M.; Decroo, C.; Caulier, G.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. Identification and quantification of spinochromes in body compartments of Echinometra mathaei’s colored types. R. Soc. Open Sci. 2018, 5, 171213. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Vasileva, E.A.; Carne, A.; McConnell, M.; Bekhit, A.E.D.A.; Mishchenko, N.P. Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications. RSC Adv. 2018, 8, 32637–32650. [Google Scholar] [CrossRef]
- Shikov, A.N.; Pozharitskaya, O.N.; Krishtopina, A.S.; Makarov, V.G. Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Phytochem. Rev. 2018, 17, 509–534. [Google Scholar] [CrossRef]
- Pettit, G.R.; Hasler, J.A.; Paull, K.D.; Herald, C.L. Antineoplastic agents. 76. The sea urchin Strongylocentrotus droebachiensis. J. Nat. Prod. 1981, 44, 701–704. [Google Scholar] [CrossRef]
- Scheibling, R.E.; Hatcher, B.G. Strongylocentrotus droebachiensis. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 381–412. [Google Scholar] [CrossRef]
- Shikov, A.N.; Laakso, I.; Pozharitskaya, O.N.; Seppänen-Laakso, T.; Krishtopina, A.S.; Makarova, M.N.; Vuorela, H.; Makarov, V. Chemical Profiling and Bioactivity of Body Wall Lipids from Strongylocentrotus droebachiensis. Mar. Drugs 2017, 15, 365. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Shikov, A.N.; Laakso, I.; Seppänen-Laakso, T.; Makarenko, I.E.; Faustova, N.M.; Makarov, V.G. Bioactivity and chemical characterization of gonads of green sea urchin Strongylocentrotus droebachiensis from Barents Sea. J. Funct. Foods 2015, 17, 227–234. [Google Scholar] [CrossRef]
- Haug, T.; Kjuul, A.K.; Styrvold, O.B.; Sandsdalen, E.; Olsen, Ø.M.; Stensvåg, K. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J. Invertebr. Pathol. 2002, 81, 94–102. [Google Scholar] [CrossRef]
- Li, C.; Haug, T.; Styrvold, O.B.; Jorgensen, T.O.; Stensvag, K. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol. 2008, 32, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Haug, T.; Moe, M.K.; Styrvold, O.B.; Stensvag, K. Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol. 2010, 34, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Haug, T.; Stensvåg, K. Antimicrobial peptides in Echinoderms. Invertebr. Surviv. J. 2010, 7, 132–140. [Google Scholar]
- Solstad, R.G.; Li, C.; Isaksson, J.; Johansen, J.; Svenson, J.; Stensvåg, K.; Haug, T. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications. PLoS ONE 2016, 11, e0151820. [Google Scholar] [CrossRef]
- Björn, C.; Håkansson, J.; Myhrman, E.; Sjöstrand, V.; Haug, T.; Lindgren, K.; Blencke, H.M.; Stensvåg, K.; Mahlapuu, M. Anti-infectious and anti-inflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis. AMB Express 2012, 2, 67. [Google Scholar] [CrossRef]
- Han, R.; Blencke, H.M.; Cheng, H.; Li, C. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris. Peptides 2018, 99, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Katelnikova, A.E.; Kryshen, K.L.; Makarova, M.N.; Makarov, V.G.; Shikov, A.N. Mechanisms of anti-inflammatory effect of glycosylated polypeptide complex extracted from sea urchin Strongylocentrotus droebachiensis. Rus. J. Immunol. 2018, 12, 73–79. Available online: https://elibrary.ru/item.asp?id=32775015 (accessed on 10 August 2019).
- Katelnikova, A.E.; Kryshen, K.L.; Makarova, M.N.; Makarov, V.G.; Vorobieva, V.V.; Pozharitskaya, O.N.; Shikov, A.N. Specific pharmacological activity study of glycosylated polypeptide complex extracted from sea urchin Strongylocentrotus droebachiensis in the model of acute bronchitis induced by formalin in rats. Rus. J. Biopharm. 2016, 8, 50–57. Available online: https://submit.biopharmj.ru/ojs238/index.php/biopharmj/article/view/412 (accessed on 10 August 2019).
- Katelnikova, A.E.; Vorobieva, V.V.; Kryshen, K. LMakarov, V.G.; Shikov, A.N. Antiinflammatory and antioxidant activity of complex of glykosilated polypeptides isolated from sea urchins. Med. Acad. J. 2016, 16, 183–184. [Google Scholar]
- Bockus, A.T.; McEwen, C.M.; Lokey, R.S. Form and function in cyclic peptide natural products: A pharmacokinetic perspective. Cur. Top. Med. Chem. 2013, 13, 821–836. [Google Scholar] [CrossRef]
- Zakirova, A.N.; Ivanova, M.V.; Golubiatnikov, V.B.; Mishchenko, N.P.; Kol’tsova, E.A.; Fedoreev, S.A.; Krasnovid, N.J.; Lebedev, A.V. Pharmacokinetics and clinical efficacy of histochrome in patients with acute myocardial infarction. Eksp. Kiln. Farmakol. 1997, 60, 21–24. [Google Scholar]
- Van Kesteren, C.; Cvitkovic, E.; Taamma, A.; López-Lázaro, L.; Jimeno, J.M.; Guzman, C.; Hillebrand, M.J.; Mathôt, R.A.A.; Schellens, J.H.M.; Misset, J.-L.; et al. Pharmacokinetics and pharmacodynamics of the novel marine-derived anticancer agent ecteinascidin 743 in a phase I dose-finding study. Clin. Cancer Res. 2000, 6, 4725–4732. [Google Scholar] [PubMed]
- Li, S.; Wang, Y.; Jiang, T.; Wang, H.; Yang, S.; Lv, Z. Absorption and Transport of Sea Cucumber Saponins from Apostichopus japonicus. Mar. Drugs 2016, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Talalaeva, O.S.; Mishchenko, N.P.; Briukhanov, V.M.; Zverev, I.; Lampatov, V.V.; Dvornikova, L.G. Identification of histochrome metabolism products in urine for studying drug pharmacokinetics. Eksp. Kiln. Farmakol. 2014, 77, 29–32. [Google Scholar]
- Zhang, Y.; Wu, H.; Wen, H.; Fang, H.; Hong, Z.; Yi, R.; Liu, R. Simultaneous Determination of Fucoxanthin and Its Deacetylated Metabolite Fucoxanthinol in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Mar. Drugs 2015, 13, 6521–6536. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Guidance for Industry. Exposure-Response Relationships—Study Design, Data Analysis, and Regulatory; US Department of Health and Human Services: Washington, DC, USA, 2003.
- Drent, M.; Cobben, N.A.; Henderson, R.F.; Wouters, E.F.; van Dieijen-Visser, M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur. Respir. J. 1996, 9, 1736–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokopov, I.A.; Kovaleva, E.L.; Minaeva, E.D.; Pryakhina, E.A.; Savin, E.V.; Gamayunova, A.V.; Pozharitskaya, O.N.; Makarov, V.G.; Shikov, A.N. Animal-derived medicinal products in Russia: Current nomenclature and specific aspects of quality control. J. Ethnopharmacol. 2019, 240, 111933. [Google Scholar] [CrossRef]
- Lu, Z.; Sheng, J.; Zhang, W. Pharmacokinetics of Therapeutic Proteins. In Protein Therapeutics; Vaughan, T., Osbourn, J., Jallal, B., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; Volume 1, pp. 313–340. [Google Scholar] [CrossRef]
- Mire-Sluis, A.R. Progress in the use of biological assays during the development of biotechnology products. Pharm. Res. 2001, 18, 1239–1246. [Google Scholar] [CrossRef]
- Tang, L.; Persky, A.M.; Hochhaus, G.; Meibohm, B. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci. 2004, 93, 2184–2204. [Google Scholar] [CrossRef]
- Bara, L.; Billaud, E.; Gramond, G.; Kher, A.; Samama, M. Comparative pharmacokinetics of a low molecular weight heparin (PK 10 169) and unfractionated heparin after intravenous and subcutaneous administration. Thromb. Res. 1985, 39, 631–636. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Singh, A.P.; Wiczling, P.; Krzyzanski, W. Dynamics of Erythropoietic Biomarkers in Response to Treatment with Erythropoietin in Belgrade Rats. Front. Pharmacol. 2018, 9, 316. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and Tissue Distribution of Fucoidan from Fucus vesiculosus after Oral Administration to Rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef] [PubMed]
- Katelnikova, A.E.; Makarov, V.G.; Vorobieva, V.V.; Pozharitskaya, O.N.; Shikov, A.N.; Shabanov, P.D. Progress in using the drugs based on hydrobionts in treatment of respiratory viral infections and their complications. Rev. Clin. Pharmacol. Drug Ther. 2017, 15, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Morita, T.; Yamahara, H. Nasal Delivery Systems. In Biodrug Delivery Systems. Fundamentals, Applications and Clinical Development; Morishita, M., Park, K., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 120–134. [Google Scholar]
- Samaridou, E.; Alonso, M.J. Nose-to-brain peptide delivery–The potential of nanotechnology. Bioorg. Med. Chem. 2018, 26, 2888–2905. [Google Scholar] [CrossRef] [PubMed]
- Gancheva, S.; Koliaki, C.; Bierwagen, A.; Nowotny, P.; Heni, M.; Fritsche, A.; Häring, H.U.; Szendroedi, J.; Roden, M. Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans. Diabetes 2015, 64, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Smith, A.; Chen, J.; Li., P. Intranasal Delivery of Therapeutic Peptides for Treatment of Ischemic Brain Injury. In Therapeutic Intranasal Delivery for Stroke and Neurological Disorders; Chen, J., Wang, J., Wei, L., Zhang, J., Eds.; Springer Series in Translational Stroke Research; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Pearson, R.G.; Masud, T.; Blackshaw, E.; Naylor, A.; Hinchcliffe, M.; Jeffery, K.; Jordan, F.; Shabir-Ahmed, A.; King, G.; Lewis, A.L.; et al. Nasal Administration and Plasma Pharmacokinetics of Parathyroid Hormone Peptide PTH 1-34 for the Treatment of Osteoporosis. Pharmaceutics 2019, 11, 265. [Google Scholar] [CrossRef]
- Gao, D.M.; Kobayashi, T.; Adachi, S. Production of keto-disaccharides from aldo-disaccharides in subcritical aqueous ethanol. Biosci. Biotechnol. Biochem. 2016, 80, 998–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katelnikova, A.E.; Makarova, M.N.; Avdeeva, O.I.; Vorobyeva, V.V.; Pozharitskaya, O.N.; Shikov, A.N. Evaluation of the safety of medicines based on a complex of sea urchin polypeptides. Farmatsiya 2016, 8, 48–52. [Google Scholar]
- IFPMA. ICH, Q2A, Harmonized Tripartite Guideline, Text on Validation of Analytical Procedures. In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 1–5 March 1994. [Google Scholar]
- IFPMA. ICH, Q2B, Harmonized Tripartite Guideline, Validation of Analytical Procedure: Methodology, IFPMA. In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 1–8 March 1996. [Google Scholar]
Protein Name (Accession Number) | SC [%] | # Peptides | MW [kDa] |
---|---|---|---|
Major yolk protein (P19615) | 39 | 132 | 153.9 |
* Filamin-B (W4YPA7) | 19 | 79 | 279.1 |
* Transforming growth factor-beta-induced protein ig-h3 (W4Y3B7) | 53 | 65 | 38.5 |
* Ubiquitin-40S ribosomal protein S27a (W4XMU0) | 49 | 30 | 17.8 |
Actin, cytoskeletal 1A (A0A0C3SG04) | 51 | 40 | 41.8 |
* Apolipoprotein B-100 (W4ZKG2) | 5 | 43 | 614.6 |
Actin, muscle OS = Strongylocentrotus purpuratus (W4XTP5) | 40 | 37 | 41.7 |
Major yolk protein (Fragment) (A0A1B4XK6) | 42 | 32 | 44.8 |
* Apolipoprotein B-100 (W4ZKG3) | 9 | 29 | 202.8 |
* Myosin heavy chain, striated muscle (W4Y2X0) | 4 | 23 | 225.1 |
* Transforming growth factor-beta-induced protein ig-h3 (W4XSF0) | 37 | 21 | 37.7 |
Parameter | Range |
---|---|
Accuracy, % | |
ULOQ (7.05 μg/mL) | 1.7–1.8 |
Middle-quality control (2.35 μg/mL) | 3.1–11.1 |
Low-quality control (0.024 μg/mL) | 0.3–13.6 |
LLOQ (0.01 μg/mL) | 3.3–13.4 |
Intraday//Interday precision (RSD), % | |
ULOQ (7.05 μg/mL) | 5.0//3.7 |
Middle-quality control (2.35 μg/mL) | 6.6//2.6 |
Low-quality control (0.024 μg/mL) | 2.8//1.6 |
LLOQ (0.01 μg/mL) | 0.7//1.6 |
Parameter | Kidney | Liver | Nose Mucosa |
---|---|---|---|
Linearity (μg/mL homogenates) | 0.007–2.64 | 0.005–0.076 | 0.1–51.6 |
Regression equation | y = −72.45·lgx + 24.73 | y = 27.25 x + 72.01 | y = 61.59 x + 110.97 |
Correlation coefficient r | 0.9993 | 0.9951 | 0.9958 |
Accuracy (kidney/liver/nose mucosa), % | |||
ULOQ (1.60/0.076/4.7 μg/mL) | 2.9–10.1 | 1.0–8.2 | 1.3–3.1 |
Middle-quality control (0.53/0.035/2.35 μg/mL) | 5.8–11.6 | 3.8–11.8 | 1.0–3.2 |
Low-quality control (0.013/0.014/0.19 μg/mL) | 0.7–14.7 | 2.8–11.7 | 4.6–12.3 |
LLOQ (0.004/0.005/0.06 μg/mL) | 1.5–18.5 | 4.7–17.8 | 3.5–8.5 |
Intraday//Interday precision (RSD), % (kidney/liver/nose mucosa) | |||
ULOQ (1.60/0.076/4.7 μg/mL) | 1.4//3.5 | 2.2//4.2 | 1.7//5.1 |
Middle-quality control (0.53/0.035/2.35 μg/mL) | 1.4//5.6 | 0.7//5.8 | 0.7//4.2 |
Low-quality control (0.013/0.014/0.19 μg/mL) | 0.9//6.8 | 2.3//6.7 | 2.4//10.3 |
LLOQ (0.004/0.005/0.06 μg/mL) | 2.9//10.9 | 2.9//9.8 | 2.4//7.5 |
LOD (μg/mL homogenates) | 0.007 | 0.005 | 0.1 |
Sample | Dose | Parameter | ||||
---|---|---|---|---|---|---|
(µg/kg) | AUC0–24 (µg·h/g) | MRT (h) | T1/2 (h) | Cmax (μg/g) | Tmax (h) | |
Single dose | ||||||
Plasma *, i/v | 100 | 8.00 ± 1.73 | 1.11 ± 0.26 | 0.80 ± 0.17 | 6.15 ± 1.29 | - |
Plasma *, i/n | 50 | 3.93 ± 1.78 | 1.54 ± 0.35 | 0.77 ± 0.33 | 2.90 ± 0.85 | 0.67 ± 0.20 |
Plasma *, i/n | 100 | 7.14 ± 5.50 | 5.58 ± 5.50 | 3.53 ± 3.27 | 4.15 ± 1.63 | 0.75 ± 0.05 |
Plasma *, i/n | 200 | 12.64 ± 5.98 | 4.62 ± 4.61 | 4.03 ± 3.89 | 6.22 ± 1.51 | 0.70 ± 0.10 |
Nose mucosa, i/n | 100 | 248.75 ± 24.45 | 8.00 ± 4.53 | 4.46 ± 3.03 | 53.66 ± 8.01 | 0.85 ± 0.14 |
Liver, i/n | 100 | 2.40 ± 0.71 | 7.40 ± 7.46 | 4.48 ± 5.26 | 0.73 ± 0.20 | 1.60 ± 0.55 |
Kidneys, i/n | 100 | 3.50 ± 1.85 | 8.07 ± 3.38 | 6.42 ± 2.91 | 0.98 ± 0.37 | 3.60 ± 0.89 |
Spleen, i/n | 100 | 28.90 ± 7.24 | 10.20 ± 2.88 | 6.48 ± 2.09 | 2.53 ± 0.70 | 2.40 ± 0.89 |
Striated muscle, i/n | 100 | 12.98 ± 9.05 | 8.18 ± 5.42 | 4.98 ± 3.38 | 1.74 ± 1.28 | 1.85 ± 2.33 |
Adrenal glands, i/n | 100 | 27.06 ± 6.73 | 21.42 ± 8.30 | 14.69 ± 5.89 | 2.67 ± 1.17 | 2.40 ± 0.89 |
Repeated dose | ||||||
Plasma *, i/n | 3*100 | 22.98 ± 12.68 | 60.04 ± 21.90 | 3.70 ± 1.63 | 6.99 ± 1.32 | 1.00 ± 0.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikov, A.N.; Pozharitskaya, O.N.; Faustova, N.M.; Kosman, V.M.; Makarov, V.G.; Razzazi-Fazeli, E.; Novak, J. Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Mar. Drugs 2019, 17, 577. https://doi.org/10.3390/md17100577
Shikov AN, Pozharitskaya ON, Faustova NM, Kosman VM, Makarov VG, Razzazi-Fazeli E, Novak J. Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Marine Drugs. 2019; 17(10):577. https://doi.org/10.3390/md17100577
Chicago/Turabian StyleShikov, Alexander N., Olga N. Pozharitskaya, Natalia M. Faustova, Vera M. Kosman, Valery G. Makarov, Ebrahim Razzazi-Fazeli, and Johannes Novak. 2019. "Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach" Marine Drugs 17, no. 10: 577. https://doi.org/10.3390/md17100577
APA StyleShikov, A. N., Pozharitskaya, O. N., Faustova, N. M., Kosman, V. M., Makarov, V. G., Razzazi-Fazeli, E., & Novak, J. (2019). Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Marine Drugs, 17(10), 577. https://doi.org/10.3390/md17100577