Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers
Abstract
:1. Introduction
2. Materials and Methods
3. Accumulation of Minerals by Macroalgae
4. Mineral Content of Macroalgae
5. Consumption of Macroalgae
5.1. Contribution for the Dietary Mineral Intake
5.2. Applications as Food Ingredient
5.3. Bioaccessability and Bioavailability
6. Worries Related to Macroalgae Consumption
Contents of Toxic Metals and Potential Risks
7. Strengths and Limitations
8. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, Y.; Zhang, J.; Fan, J.; Clark, J.; Shen, P.; Li, Y.; Zhang, C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Res. Int. 2018, 113, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [PubMed]
- Pirian, K.; Moein, S.; Sohrabipour, J.; Rabiei, R.; Blomster, J. Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf. J. Appl. Phycol. 2017, 29, 3151–3159. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2008, 65, 535–543. [Google Scholar] [CrossRef]
- Bocanegra, A.; Bastida, S.; Benedí, J.; Ródenas, S.; Sánchez-Muniz, F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food 2009, 12, 236–258. [Google Scholar] [CrossRef] [PubMed]
- Ruperez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K. Sodium, potassium, blood pressure, and cardiovascular disease in humans. Curr. Hypertens. Rep. 2014, 16, 465. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Carvalho, L.; Silva, P.; Rodrigues, M.; Pereira, O.; Pereira, L. Bioproducts from seaweeds: A review with special focus on the iberian peninsula. Curr. Org. Chem. 2014, 18, 896–917. [Google Scholar] [CrossRef]
- Catarino, M.; Silva, A.; Cardoso, S. Phycochemical constituents and biological activities of Fucus spp. Mar. Drugs 2018, 16, 249. [Google Scholar] [CrossRef] [PubMed]
- Biancarosa, I.; Belghit, I.; Bruckner, C.G.; Liland, N.S.; Waagbø, R.; Amlund, H.; Heesch, S.; Lock, E.J. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: Benefits of and limitations to their potential use in food and feed. J. Sci. Food Agric. 2018, 98, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation WHO | Arsenic. Available online: http://www.who.int/mediacentre/factsheets/fs372/en/#.WV5hlWgAVaM.mendeley (accessed on 6 July 2017).
- Stévant, P.; Marfaing, H.; Duinker, A.; Fleurence, J.; Rustad, T.; Sandbakken, I.; Chapman, A. Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. J. Appl. Phycol. 2018, 30, 2047–2060. [Google Scholar] [CrossRef]
- Nunes, N.; Ferraz, S.; Valente, S.; Barreto, M.C.; Pinheiro de Carvalho, M.A.A. Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago. J. Appl. Phycol. 2017, 29, 2427–2437. [Google Scholar] [CrossRef]
- Gressler, V.; Yokoya, N.S.; Fujii, M.T.; Colepicolo, P.; Filho, J.M.; Torres, R.P.; Pinto, E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2010, 120, 585–590. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnamoorthy, E.; Devi, H.M.; Uchoi, D.; Tejpal, C.S.; Ninan, G.; Zynudheen, A.A. Influence of sea grapes (Caulerpa racemosa) supplementation on physical, functional, and anti-oxidant properties of semi-sweet biscuits. J. Appl. Phycol. 2018, 30, 1393–1403. [Google Scholar] [CrossRef]
- Marinho, G.S.; Holdt, S.L.; Angelidaki, I. Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. J. Appl. Phycol. 2015, 27, 1991–2000. [Google Scholar] [CrossRef]
- Tala, F.; Chow, F. Ecophysiological characteristics of Porphyra spp. (Bangiophyceae, Rhodophyta): Seasonal and latitudinal variations in northern-central Chile. J. Appl. Phycol. 2014, 26, 2159–2171. [Google Scholar] [CrossRef]
- Zhou, A.Y.; Robertson, J.; Hamid, N.; Ma, Q.; Lu, J. Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts. Food Chem. 2015, 186, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Edding, M.; Fonck, E.; Acuña, R.; Tala, F. Cultivation of Chondrus canaliculatus (C. Agardh) Greville (Gigartinales, Rhodophyta) in controlled environments. Aquac. Int. 2008, 16, 283–295. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Lobban, C.S.; Harrison, P.J. Seaweed Ecology and Physiology; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Santos, S.C.R.; Ungureanu, G.; Volf, I.; Boaventura, R.A.R.; Botelho, C.M.S. Macroalgae Biomass as Sorbent for Metal Ions. In Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value; WoodHead Publishing: Cambridge, UK, 2018; pp. 69–112. ISBN 978-0-44-463797-0. [Google Scholar]
- Antunes, W.M.; Luna, A.S.; Henriques, C.A.; Da Costa, A.C.A. An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electron. J. Biotechnol. 2003, 6. [Google Scholar] [CrossRef]
- Tsui, M.T.K.; Cheung, K.C.; Tam, N.F.Y.; Wong, M.H. A comparative study on metal sorption by brown seaweed. Chemosphere 2006, 65, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, M.T.S.; Leal, M.F.C. Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar. Chem. 2001, 74, 65–85. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Robic, A.; Bertrand, D.; Sassi, J.F.; Lerat, Y.; Lahaye, M. Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J. Appl. Phycol. 2009, 21, 451–456. [Google Scholar] [CrossRef]
- Robic, A.; Gaillard, C.; Sassi, J.F.; Lerat, Y.; Lahaye, M. Ultrastructure of ulvan: A polysaccharide from green seaweeds. Biopolymers 2009, 91, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Paradossi, G.; Cavalieri, F.; Pizzoferrato, L.; Liquori, A.M. A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int. J. Biol. Macromol. 1999, 309–315. [Google Scholar] [CrossRef]
- Nitschke, U.; Stengel, D.B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem. 2015, 172, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Ometto, F.; Steinhovden, K.B.; Kuci, H.; Lunnbäck, J.; Berg, A.; Karlsson, A.; Handå, A.; Wollan, H.; Ejlertsson, J. Seasonal variation of elements composition and biomethane in brown macroalgae. Biomass Bioenergy 2018, 109, 31–38. [Google Scholar] [CrossRef]
- Hanjabam, M.D.; Zynudheen, A.A.; Ninan, G.; Panda, S. Seaweed as an Ingredient for Nutritional Improvement of Fish Jerky: Seaweed for Nutritional Improvement of Fish Jerky. J. Food Process. Preserv. 2017, 41, e12845. [Google Scholar] [CrossRef]
- Lorenzo, J.; Agregán, R.; Munekata, P.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F. Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, fucus vesiculosus and bifurcaria bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- García-Sartal, C.; del Carmen Barciela-Alonso, M.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem. J. 2013, 108, 92–99. [Google Scholar] [CrossRef]
- Afonso, C.; Cardoso, C.; Ripol, A.; Varela, J.; Quental-Ferreira, H.; Pousão-Ferreira, P.; Ventura, M.S.; Delgado, I.M.; Coelho, I.; Castanheira, I.; et al. Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture. Food Res. Int. 2018, 105, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Ródenas de la Rocha, S.; Sánchez-Muniz, F.J.; Gómez-Juaristi, M.; Marín, M.T.L. Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J. Food Compos. Anal. 2009, 22, 330–336. [Google Scholar] [CrossRef]
- Suzuki, N.; Iwata, Y. Determination of arsenic and other elemental abundances in marine macro-algae by photon activation analysis. Appl. Organomet. Chem. 1990, 4, 287–291. [Google Scholar] [CrossRef]
- Fukushima, M.; Chatt, A. Estimation of total as well as bioaccessible levels and average daily dietary intake of iodine from Japanese edible seaweeds by epithermal neutron activation analysis. J. Radioanal. Nucl. Chem. 2012, 294, 471–478. [Google Scholar] [CrossRef]
- Fukushima, M.; Suzuki, H.; Saito, K.; Chatt, A. Vanadium levels in marine organisms of Onagawa Bay in Japan. J. Radioanal. Nucl. Chem. 2009, 282, 85–89. [Google Scholar] [CrossRef]
- Brito, G.B.; Teixeira, L.S.G.; Korn, M.G.A. Direct analysis of marine macroalgae for determination of macro minerals by energy dispersive X-ray fluorescence. Microchem. J. 2017, 134, 35–40. [Google Scholar] [CrossRef]
- Salomone, V.N.; Riera, M.; Cerchietti, L.; Custo, G.; Muniain, C. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence. Spectrochim. Acta Part B At. Spectrosc. 2017, 131, 74–78. [Google Scholar] [CrossRef]
- Neto, R.; Marçal, C.; Queirós, A.; Abreu, H.; Silva, A.; Cardoso, S. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as functional ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [PubMed]
- Larrea-Marín, M.T.; Pomares-Alfonso, M.S.; Gómez-Juaristi, M.; Sánchez-Muniz, F.J.; de la Rocha, S.R. Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. J. Food Compos. Anal. 2010, 23, 814–820. [Google Scholar] [CrossRef]
- Desideri, D.; Cantaluppi, C.; Ceccotto, F.; Meli, M.A.; Roselli, C.; Feduzi, L. Essential and toxic elements in seaweeds for human consumption. J. Toxicol. Environ. Health Part A 2016, 79, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Flores, S.R.L.; Dobbs, J.; Dunn, M.A. Mineral nutrient content and iron bioavailability in common and Hawaiian seaweeds assessed by an in vitro digestion/Caco-2 cell model. J. Food Compos. Anal. 2015, 43, 185–193. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Neto, A.I.; Marcone, M.; Baptista, J. Health-promoting ingredients from four selected Azorean macroalgae. Food Res. Int. 2016, 89, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Moreda-Piñeiro, J.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed. Anal. Chim. Acta 2007, 598, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, M.P.; Leenen, F.H.H.; Chen, L.; Golovina, V.A.; Hamlyn, J.M.; Pallone, T.L.; Van Huysse, J.W.; Zhang, J.; Wier, W.G. How NaCl raises blood pressure: A new paradigm for the pathogenesis of salt-dependent hypertension. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1031–H1049. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Pisu, E. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr. Opin. Lipidol. 2008, 19, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Parjikolaei, B.R.; Bruhn, A.; Eybye, K.L.; Larsen, M.M.; Rasmussen, M.B.; Christensen, K.V.; Fretté, X.C. Valuable biomolecules from nine north atlantic red macroalgae: Amino acids, fatty acids, carotenoids, minerals and metals. Nat. Resour. 2016, 07, 157–183. [Google Scholar] [CrossRef]
- Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soci. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Kozakai, T.; Katoh, K.; Obara, Y. Magnesium increases calcium absorption mediated by transcellular transport in small intestine of goats and rats. J. Anim. Feed Sci. 2004, 13, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Deniaud-Bouët, E.; Kervarec, N.; Michel, G.; Tonon, T.; Kloareg, B.; Hervé, C. Chemical and enzymatic fractionation of cell walls from Fucales: Insights into the structure of the extracellular matrix of brown algae. Ann. Bot. 2014, 114, 1203–1216. [Google Scholar] [CrossRef] [PubMed]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Adams, J.M.M.; Ross, A.B.; Anastasakis, K.; Hodgson, E.M.; Gallagher, J.A.; Jones, J.M.; Donnison, I.S. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol. 2011, 102, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Mišurcová, L.; Machů, L.; Orsavová, J. Seaweed Minerals as Nutraceuticals. In Advances in Food and Nutrition Research; WoodHead Publishing: Cambridge, UK, 2011; Volume 64, pp. 371–390. [Google Scholar]
- Osredkar, J. Copper and Zinc, biological role and significance of Copper/Zinc imbalance. J. Clin. Toxicol. 2011. [Google Scholar] [CrossRef]
- Wallenstein, F.M.; Couto, R.P.; Amaral, A.S.; Wilkinson, M.; Neto, A.I.; Rodrigues, A.S. Baseline metal concentrations in marine algae from São Miguel (Azores) under different ecological conditions—Urban proximity and shallow water hydrothermal activity. Mar. Pollut. Bull. 2009, 58, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.H.S.; Lyons, G.; McRoberts, C.; McCall, D.; Carmichael, E.; Andrews, F.; Swan, R.; McCormack, R.; Mellon, R. Biostimulant activity of brown seaweed species from Strangford Lough: Compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol. 2012, 24, 1081–1091. [Google Scholar] [CrossRef]
- Astorga-España, M.S.; Rodríguez Galdón, B.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion of Magallanes (Chile). J. Food Compos. Anal. 2015, 39, 69–76. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schäfer, U.; Leiterer, M.; Jahreis, G. Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J. Agric. Food Chem. 2007, 55, 10470–10475. [Google Scholar] [CrossRef] [PubMed]
- Van Netten, C. Elemental and radioactive analysis of commercially available seaweed. Sci. Total Environ. 2000, 255, 169–175. [Google Scholar] [CrossRef]
- Romarís-Hortas, V.; García-Sartal, C.; del Carmen Barciela-Alonso, M.; Domínguez-González, R.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Bioavailability study using an in-vitro method of iodine and bromine in edible seaweed. Food Chem. 2011, 124, 1747–1752. [Google Scholar] [CrossRef]
- Villares, R.; Puente, X.; Carballeira, A. Seasonal variation and background levels of heavy metals in two green seaweeds. Environ. Pollut. 2002, 119, 79–90. [Google Scholar] [CrossRef]
- Taboada, C.; Millán, R.; Míguez, I. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J. Sci. Food Agric. 2009, 90, 445–449. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Domínguez-González, R.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Bermejo-Barrera, P. Trace metals in marine foodstuff: Bioavailability estimation and effect of major food constituents. Food Chem. 2012, 134, 339–345. [Google Scholar] [CrossRef]
- Caliceti, M.; Argese, E.; Sfriso, A.; Pavoni, B. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 2002, 47, 443–454. [Google Scholar] [CrossRef]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef] [PubMed]
- Maehre, H.K.; Malde, M.K.; Eilertsen, K.-E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed: Biochemical composition of marine macroalgae. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Besada, V.; Andrade, J.M.; Schultze, F.; González, J.J. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 2009, 75, 305–313. [Google Scholar] [CrossRef]
- Rubio, C.; Napoleone, G.; Luis-González, G.; Gutiérrez, A.J.; González-Weller, D.; Hardisson, A.; Revert, C. Metals in edible seaweed. Chemosphere 2017, 173, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Malea, P.; Haritonidis, S. Seasonal accumulation of metals by red alga Gracilaria verrucosa (Huds.) Papens. from Thermaikos Gulf, Greece. J. Appl. Phycol. 1999, 11, 503. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Patarra, R.F.; Neto, A.I.; Baptista, J. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem. 2014, 164, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.A.; Gonçalves, J.; Abreu, H.; Pereira, R.; Benoit, M.; O’Mahony, F.; Connellan, I.; Maguire, J.; Ozório, R. Seaweed Alaria esculenta as a biomonitor species of metal contamination in Aughinish Bay (Ireland). Ecol. Indic. 2016, 69, 19–25. [Google Scholar] [CrossRef]
- Ahn, I.Y.; Choi, H.S.; Ji, J.Y.; Chung, H.S.; Kim, J.H. Metal Concentrations in some Brown Seaweeds from Kongsfjorden on Spitsbergen, Svalbard Islands. Ocean Polar Res. 2004, 26, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Villares, R.; Fernández-Lema, E.; López-Mosquera, E. Seasonal variations in concentrations of macro- and micronutrients in three species of brown seaweed. Bot. Mar. 2013, 56, 49–61. [Google Scholar] [CrossRef]
- Sorge, U.S.; Henriksen, M.; Bastan, A.; Cremers, N.; Olsen, K.; Crooker, B.A. Short communication: Iodine concentrations in serum, milk, and tears after feeding Ascophyllum nodosum to dairy cows—A pilot study. J. Dairy Sci. 2016, 99, 8472–8476. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Anacleto, P.; Barbosa, V.; Sloth, J.J.; Rasmussen, R.R.; Tediosi, A.; Fernandez-Tejedor, M.; van den Heuvel, F.H.M.; Kotterman, M.; Marques, A. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environ. Res. 2015, 143, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratcliff, J.J.; Wan, A.H.L.; Edwards, M.D.; Soler-Vila, A.; Johnson, M.P.; Abreu, M.H.; Morrison, L. Metal content of kelp (Laminaria digitata) co-cultivated with Atlantic salmon in an Integrated Multi-Trophic Aquaculture system. Aquaculture 2016, 450, 234–243. [Google Scholar] [CrossRef]
- Manns, D.; Deutschle, A.L.; Saake, B.; Meyer, A.S. Methodology for quantitative determination of the carbohydrate composition of brown seaweeds (Laminariaceae). RSC Adv. 2014, 4, 25736–25746. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Summers, G.; Wong, R. Nutrient and heavy metal content of edible seaweeds in New Zealand. N. Z. J. Crop. Hortic. Sci. 2010, 38, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Yeh, T.S.; Hung, N.H.; Lin, T.C. Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. J. Food Drug Anal. 2014, 22, 189–196. [Google Scholar] [CrossRef]
- Kupper, F.C.; Carpenter, L.J.; McFiggans, G.B.; Palmer, C.J.; Waite, T.J.; Boneberg, E.M.; Woitsch, S.; Weiller, M.; Abela, R.; Grolimund, D.; et al. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 6954–6958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouritsen, O.G.; Dawczynski, C.; Duelund, L.; Jahreis, G.; Vetter, W.; Schröder, M. On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J. Appl. Phycol. 2013, 25, 1777–1791. [Google Scholar] [CrossRef]
- Inui, S. Suppression of Thyroid Function by Seaweed “Kombu” (Laminaria japonica) Supplement seen in a patient with alopecia areata: A case report. Open Dermatol. J. 2010, 4, 108–109. [Google Scholar] [CrossRef]
- Miyai, K.; Tokushige, T.; Kondo, M. Suppression of Thyroid Function during Ingestion of Seaweed “Kombu” (Laminaria japonoca) in Normal Japanese Adults. Endocr. J. 2008, 55, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. Iodine requirements and the risks and benefits of correcting iodine deficiency in populations. J. Trace Elem. Med. Biol. 2008, 22, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.Q.; Lim, C.S.; Sung, J.Y.; Choi, H.G.; Ha, I.; Han, J.S. Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosc. Lett. 2006, 402, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The okinawan diet: Health implications of a low-Calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 2009, 28, 500–516. [Google Scholar] [CrossRef]
- European Commission. Commission Directive 2008/100/EC of October 28, 2008 Amending Council Directive 90/496/EEC on Nutrition Labelling for Foodstuffs as Regards Recommended Daily Allowances, Energy Conversion Factors, and Definitions. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0100 (accessed on 13 December 2014).
- WHO. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Rey-Crespo, F.; López-Alonso, M.; Miranda, M. The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle. Animal 2014, 8, 580–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Hernández, G.B.; Castillejo, N.; Carrión-Monteagudo, M.D.M.; Artés, F.; Artés-Hernández, F. Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Sci. Technol. Int. 2018, 24, 172–182. [Google Scholar] [CrossRef] [PubMed]
- López-López, I.; Cofrades, S.; Jiménez-Colmenero, F. Low-fat frankfurters enriched with n-3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Sci. 2009, 83, 148–154. [Google Scholar] [CrossRef] [PubMed]
- López-López, I.; Cofrades, S.; Cañeque, V.; Díaz, M.T.; López, O.; Jiménez-Colmenero, F. Effect of cooking on the chemical composition of low-salt, low-fat Wakame/olive oil added beef patties with special reference to fatty acid content. Meat Sci. 2011, 89, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Cofrades, S.; López-López, I.; Solas, M.T.; Bravo, L.; Jiménez-Colmenero, F. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci. 2008, 79, 767–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cofrades, S.; López-López, I.; Ruiz-Capillas, C.; Triki, M.; Jiménez-Colmenero, F. Quality characteristics of low-salt restructured poultry with microbial transglutaminase and seaweed. Meat Sci. 2011, 87, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-López, I.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Design and nutritional properties of potential functional frankfurters based on lipid formulation, added seaweed and low salt content. Meat Sci. 2009, 83, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-López, I.; Cofrades, S.; Yakan, A.; Solas, M.T.; Jiménez-Colmenero, F. Frozen storage characteristics of low-salt and low-fat beef patties as affected by Wakame addition and replacing pork backfat with olive oil-in-water emulsion. Food Res. Int. 2010, 43, 1244–1254. [Google Scholar] [CrossRef] [Green Version]
- López-López, I.; Bastida, S.; Ruiz-Capillas, C.; Bravo, L.; Larrea, M.T.; Sánchez-Muniz, F.; Cofrades, S.; Jiménez-Colmenero, F. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 2009, 83, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989; ISBN 978-0-309-03994-9. [Google Scholar]
- Michalak, I.; Chojnacka, K.; Dobrzański, Z.; Górecki, H.; Zielińska, A.; Korczyński, M.; Opaliński, S. Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings: Macroalgae as mineral feed additives. J. Anim. Physiol. Anim. Nutr. 2011, 95, 374–387. [Google Scholar] [CrossRef] [PubMed]
- He, M.L.; Hollwich, W.; Rambeck, W.A. Supplementation of algae to the diet of pigs: A new possibility to improve the iodine content in the meat. J. Anim. Physiol. Anim. Nutr. 2002, 86, 97–104. [Google Scholar] [CrossRef]
- Ramalho Ribeiro, A.; Gonçalves, A.; Bandarra, N.; Nunes, M.L.; Dinis, M.T.; Dias, J.; Rema, P. Natural fortification of trout with dietary macroalgae and selenised-yeast increases the nutritional contribution in iodine and selenium. Food Res. Int. 2017, 99, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.P.; Rema, P.; Ferraro, V.; Pintado, M.; Sousa-Pinto, I.; Cunha, L.M.; Oliveira, M.B.; Araújo, M. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 2015, 446, 132–139. [Google Scholar] [CrossRef]
- Schmid, S.; Ranz, D.; He, M.L.; Lukowicz, M.V.; Reiter, R.; Arnold, R.; Le Deit, H.; David, M.; Rambeck, W.A. Marine algae as natural source of iodine in the feeding of freshwater fish: A new possibility to improve iodine supply of man. Revue de Médecine Vétérinaire (France) 2003, 154, 645–648. [Google Scholar]
- Ramalho Ribeiro, A.; Gonçalves, A.; Colen, R.; Nunes, M.L.; Dinis, M.T.; Dias, J. Dietary macroalgae is a natural and effective tool to fortify gilthead seabream fillets with iodine: Effects on growth, sensory quality and nutritional value. Aquaculture 2015, 437, 51–59. [Google Scholar] [CrossRef]
- Brewer, V.; Kussy, D.; Eckert, J. Calcium Fortification of Food Powders. U.S. Patent 11/893478, 4 December 2008. [Google Scholar]
- Weipeng, U. Seaweed Soybean Milk Powder. China Patent CN107410509A, 1 December 2017. [Google Scholar]
- Marigot Ltd. Aquamin Applications; Marigot Ltd. Available online: http://aquamin.com/food-beverage/adding-value/ (accessed on 22 October 2018).
- Lalic, L.M.; Berkovic, K. The influence of algae addition on physicochemical properties of cottage cheese. Milchwiss. Milk Sci. Int. 2005, 60, 151–154. [Google Scholar]
- Koval, P.V.; Shulgin, Y.P.; Lazhentseva, L.Y.; Zagorodnaya, G.I. Probiotic drinks containing iodine. Molochnaya Promyshlennost 2005, 6, 38–39. [Google Scholar]
- Cofrades, S.; Serdaroğlu, M.; Jiménez-Colmenero, F. Design of healthier foods and beverages containing whole algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 609–633. ISBN 978-0-85709-512-1. [Google Scholar] [Green Version]
- Shrestha, M.; Woehlk, H.; Tchetseubu Saha, G. Studies on drying and comminution of young brown seaweed for manufacture of algae-enriched dairy products. Die Milchwirschaft 2011, 332–336. [Google Scholar]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Chang, H.C.; Chen, H.H.; Hu, H.H. Textural changes in fresh egg noodles formulated with seaweed powder and full or partial replacement of cuttlefish paste: Textural changes in fresh egg noodles. J. Texture Stud. 2011, 42, 61–71. [Google Scholar] [CrossRef]
- Kim, Y.M.; Byun, J.Y.; Namgung, B.; Jo, J.H.; Do, J.R.; In, J.P. Studies on functional salt fortified with seaweed components. Korean J. Food Sci. Technol. 2007, 39, 152–157. [Google Scholar]
- Magnusson, M.; Carl, C.; Mata, L.; de Nys, R.; Paul, N.A. Seaweed salt from Ulva: A novel first step in a cascading biorefinery model. Algal Res. 2016, 16, 308–316. [Google Scholar] [CrossRef]
- Domínguez-González, R.; Romarís-Hortas, V.; García-Sartal, C.; Moreda-Piñeiro, A.; Barciela-Alonso, M.d.C.; Bermejo-Barrera, P. Evaluation of an in vitro method to estimate trace elements bioavailability in edible seaweeds. Talanta 2010, 82, 1668–1673. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.A.; Souza, T.L.; Santana, F.B.; Araujo, R.G.O.; Teixeira, L.S.G.; Santos, D.C.M.B.; Korn, M.G.A. Determination and in vitro bioaccessibility evaluation of Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and Zn in linseed and sesame. Microchem. J. 2018, 137, 8–14. [Google Scholar] [CrossRef]
- Pereira, C.C.; do Nascimento da Silva, E.; de Souza, A.O.; Vieira, M.A.; Ribeiro, A.S.; Cadore, S. Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. J. Food Compos. Anal. 2016. [Google Scholar] [CrossRef]
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Urbano, M.G.; Goñi, I. Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem. 2002, 76, 281–286. [Google Scholar] [CrossRef]
- Debon, S.J.J.; Tester, R.F. In vitro binding of calcium, iron and zinc by non-starch polysaccharides. Food Chem. 2001. [Google Scholar] [CrossRef]
- Bocanegra, A.; Nieto, A.; Blas, B.; Sánchez-Muniz, F.J. Diets containing a high percentage of Nori or Konbu algae are well-accepted and efficiently utilised by growing rats but induce different degrees of histological changes in the liver and bowel. Food Chem. Toxicol. 2003, 41, 1473–1480. [Google Scholar] [CrossRef]
- Bocanegra, A.; Nieto, A.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. A Nori but not a Konbu, dietary supplement decreases the cholesterolaemia, liver fat infiltration and mineral bioavailability in hypercholesterolaemic growing Wistar rats. Br. J. Nutr. 2008, 99, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, M.; Namitha, K.K.; Murthy, K.N.C.; Swamy, M.M.; Sarada, R.; Khanam, S.; Subbarao, P.V.; Ravishankar, G.A. Chemical Composition, Iron Bioavailability, and Antioxidant Activity of Kappaphycus alvarezzi (Doty). J. Agric. Food Chem. 2005, 53, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Mamatha, B.; Namitha, K.; Senthil, A.; Smitha, J.; Ravishankar, G. Studies on use of Enteromorpha in snack food. Food Chem. 2007, 101, 1707–1713. [Google Scholar] [CrossRef]
- García-Casal, M.N.; Pereira, A.C.; Leets, I.; Ramírez, J.; Quiroga, M.F. High Iron Content and Bioavailability in Humans from Four Species of Marine Algae. J. Nutr. 2007, 137, 2691–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thahira Banu, A.; Uma Mageswari, S. Nutritional status and effect of seaweed chocolate on anemic adolescent girls. Food Sci. Hum. Wellness 2015, 4, 28–34. [Google Scholar] [CrossRef]
- Fang, Y.; Al-Assaf, S.; Phillips, G.O.; Nishinari, K.; Funami, T.; Williams, P.A. Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydr. Polym. 2008. [Google Scholar] [CrossRef]
- Fujita, T. Calcium bioavailability from heated oyster shell-seaweed calcium (active absorbable algae calcium) as assessed by urinary calcium excretion. J. Bone Miner. MeTable 1996, 14, 31–34. [Google Scholar] [CrossRef]
- Domínguez-González, M.R.; Chiocchetti, G.M.; Herbello-Hermelo, P.; Vélez, D.; Devesa, V.; Bermejo-Barrera, P. Evaluation of Iodine Bioavailability in Seaweed Using in Vitro Methods. J. Agric. Food Chem. 2017, 65, 8435–8442. [Google Scholar] [CrossRef] [PubMed]
- Ayranci, E.; Duman, O. Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chem. 2004, 84, 539–543. [Google Scholar] [CrossRef]
- Combet, E.; Ma, Z.F.; Cousins, F.; Thompson, B.; Lean, M.E.J. Low-level seaweed supplementation improves iodine status in iodine-insufficient women. Br. J. Nutr. 2014, 112, 753–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raes, K.; Knockaert, D.; Struijs, K.; Van Camp, J. Role of processing on bioaccessibility of minerals: Influence of localization of minerals and anti-nutritional factors in the plant. Trends Food Sci. Technol. 2014, 37, 32–41. [Google Scholar] [CrossRef]
- Żbikowski, R.; Szefer, P.; Latała, A. Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environ. Pollut. 2006, 143, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Edible Seaweed-French & European Regulation. Available online: http://www.cybercolloids.net/sites/default/files/seaweed%20and%20regulation2014.pdf (accessed on 15 July 2018).
- European Commission. Commission Regulation (EC) No 629/2008 of 2 July 2008 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; European Commission: Brussels, Belgium, 2008; Volume 173, pp. 6–9. [Google Scholar]
- European Commission. Commission Regulation (EU) No 1275/2013 of 6 December 2013 Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as Regards Maximum Levels for Arsenic, Cadmium, Lead, Nitrites, Volatile Mustard Oil and Harmful Botanical Impurities; European Commission: Brussels, Belgium, 2013; Volume 328, pp. 86–92. [Google Scholar]
- European Commission. Commission Recommendation (EU) 2015/1381 of 10 August 2015 on the Monitoring of Arsenic in Food; European Commission: Brussels, Belgium, 2015; Volume 213, pp. 9–10. [Google Scholar]
- WHO Arsenic. Available online: https://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm280202.htm (accessed on 8 March 2018).
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wanibuchi, H.; Morimura, K.; Iwai, S.; Yoshida, K.; Endo, G.; Nakae, D.; Fukushima, S. Carcinogenicity of dimethylarsinic acid in male F344 rats and genetic alterations in induced urinary bladder tumors. Carcinogenesis 2002, 23, 1387–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaniamolo, S.; Konishi, Y.; Matsuda, T.; Murai, T.; Shibata, M.A.; Matsui-Yuasa, I.; Otani, S.; Kuroda, K.; Endo, G.; Fukushima, S. Cancer Induction by an Organic Arsenic Compound, Dimethylarsinic Acid (Cacodylic Acid), in F344/DuCrj Rats after Pretreatment with Five Carcinogens. Cancer Res. 1995, 55, 1271–1276. [Google Scholar]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased Mortality from Lung Cancer and Bronchiectasis in Young Adultsafter Exposure to Arsenic in Utero and in Early Childhood. Environ. Health Perspect. 2006, 114, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Bunderson, M.; Brooks, D.M.; Walker, D.L.; Rosenfeld, M.E.; Coffin, J.D.; Beall, H.D. Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol. Appl. Pharmacol. 2004, 201, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Meliker, J.R.; Slotnick, M.J.; AvRuskin, G.A.; Schottenfeld, D.; Jacquez, G.M.; Wilson, M.L.; Goovaerts, P.; Franzblau, A.; Nriagu, J.O. Lifetime exposure to arsenic in drinking water and bladder cancer: A population-based case–control study in Michigan, USA. Cancer Causes Control 2010, 21, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Oyagbemi, A.A.; Omobowale, T.O.; Asenuga, E.R.; Afolabi, J.M.; Adejumobi, O.A.; Adedapo, A.A.; Yakubu, M.A. Effect of arsenic acid withdrawal on hepatotoxicity and disruption of erythrocyte antioxidant defense system. Toxicol. Rep. 2017, 4, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Almela, C.; Algora, S.; Benito, V.; Clemente, M.J.; Devesa, V.; Súñer, M.A.; Vélez, D.; Montoro, R. Heavy Metal, Total Arsenic, and Inorganic Arsenic Contents of Algae Food Products. J. Agric. Food Chem. 2002, 50, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Monagail, M.M.; Cummins, E.; Bermejo, R.; Daly, E.; Costello, D.; Morrison, L. Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed. Environ. Int. 2018, 118, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Huff, J.; Lunn, R.M.; Waalkes, M.P.; Tomatis, L.; Infante, P.F. Cadmium-induced Cancers in Animals and in Humans. Int. J. Occup. Environ. Health 2007, 13, 202–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. AMBIO J. Hum. Environ. 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Jacobson, J.L.; Muckle, G.; Ayotte, P.; Dewailly, É.; Jacobson, S.W. Relation of Prenatal Methylmercury Exposure from Environmental Sources to Childhood IQ. Environ. Health Perspect. 2015, 123, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Solan, T.D.; Lindow, S.W. Mercury exposure in pregnancy: A review. J. Perinat. Med. 2014, 42, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Axelrad, D.A.; Bellinger, D.C.; Ryan, L.M.; Woodruff, T.J. Dose–Response Relationship of Prenatal Mercury Exposure and IQ: An Integrative Analysis of Epidemiologic Data. Environ. Health Perspect. 2007, 115, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favero, N.; Frigo, M.G. Biomonitoring of Metal Availability in the Southern Basin of the Lagoon of Venice (Italy) by Means of Macroalgae. Water Air Soil Pollut. 2002, 140, 231–246. [Google Scholar] [CrossRef]
- Laparra, J.M.; Vélez, D.; Montoro, R.; Barberá, R.; Farré, R. Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J. Agric. Food Chem. 2003, 51, 6080–6085. [Google Scholar] [CrossRef] [PubMed]
- Marzocchi, M.; Badocco, D.; Piovan, A.; Pastore, P.; Di Marco, V.; Filippini, R.; Caniato, R. Metals in Undaria pinnatifida (Harvey) Suringar and Sargassum muticum (Yendo) Fensholt edible seaweeds growing around Venice (Italy). J. Appl. Phycol. 2016, 28, 2605–2613. [Google Scholar] [CrossRef]
- Khan, N.; Ryu, K.Y.; Choi, J.Y.; Nho, E.Y.; Habte, G.; Choi, H.; Kim, M.H.; Park, K.S.; Kim, K.S. Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea. Food Chem. 2015, 169, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.S.; Mantri, V.A.; Ganesan, K. Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem. 2007, 102, 215–218. [Google Scholar] [CrossRef]
Species | Location | Macrominerals | Trace Elements | Reference | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | P | Fe | Mn | Cu | Zn | Co | Mo | Se | I | |||
green macroalgae | |||||||||||||||
Ulva spp. | Portugal | 24 | 25 | 4–8 | 20–38 | 1.3 | 139–1100 | 13–94 | 3–33 | 16–64 | 0.2–1.4 | 0.3 | 0.2–2 | 23–114 | [35,37,44] |
Spain | 16–23 | 16–26 | 3.7–5.2 | 19–21 | 2 | 190–2830 | 16–91 | 2–9 | 4–30 | 0.1–0.6 | - | 0.3 | 8–66 | [36,49,65,66,67,68] | |
Italy | - | - | - | - | - | 1033 | - | 13 | 64 | - | - | - | - | [69] | |
Ireland | 11 | 12 | 20 | 24 | 3 | 353 | 86 | 22 | 17 | 0.3 | - | <0.1 | - | [70] | |
Norway | - | - | 4, 6 | 15–26 | 0.5–1 | 210–6000 | 11–130 | 5–6 | 8–25 | - | - | 0.03–0.1 | 21–130 | [71] | |
Unknown | - | 12–26 | 2–5 | - | 3–7 | - | 32–637 | 3–23 | 6–35 | - | - | - | 28–64 | [46,72] | |
red macroalgae | |||||||||||||||
C. crispus | Denmark | 31 | 33 | 54 | 9 | 3 | 490 | 653 | 5 | 74 | - | 0.7 | 0.6 | - | [52] |
Unknown | 7–43 | 10–32 | 2–4 | 3–7 | - | 22–40 | 10–13 | <5 | 9–71 | 0.1 | 0.1 | - | - | [6,72,73] | |
Gracilaria spp. | Portugal | 16 | 92 | 2 | 3–4 | 2 | 1049–2110 | 157–392 | 2–35 | 33 | 1.5 | - | 1 | 47 | [35,44] |
Greece | - | - | - | - | - | 95 | - | 2 | 95 | - | - | - | - | [74] | |
Denmark | 10 | 49 | 4 | 3 | 1 | 352 | 502 | 2 | 24 | - | 0.2 | - | - | [52] | |
P. calcareum | Unknown | - | 1 | 303 | - | 0.6 | - | 175 | 14 | 15 | 7 | - | - | 34 | [46] |
P. palmata | Spain | 3 | 44 | 7 | 2 | - | 114 | 233 | 4 | 15–46 | 0.4 | - | - | 77 | [49,65,68] |
Norway | - | - | 4 | 5 | 3 | 100 | 11 | 5 | 29 | - | - | 0.1 | 260 | [71] | |
Denmark | 3 | 41 | 9 | 2 | - | 307 | 578 | 5 | 21 | - | 0.6 | - | - | [52] | |
Unknown | 4 | 8–96 | 0.4–1 | 1 | 3 | 35 | 2–17 | 1–4 | 5–26 | 0.03 | 0.1 | - | 220 | [73] | |
Porphyra spp. | Portugal | 24 | 25–46 | 1–9 | 4–7 | - | 53–322 | 11–31 | 3–8 | 10–29 | 0.1–0.6 | - | <0.2 | - | [60,75] |
Spain | 4–41 | 13–23 | 2–6 | 2–7 | 6 | 201–663 | 15–33 | 12–20 | 12–20 | 0.2–0.3 | 0.4 | 0.2–0.5 | 43 | [36,38,45,49,65,68] | |
France | 44 | 24 | 7 | 8 | 1.5 | 149 | 23 | 10 | 82 | 0.3 | 1 | 0.5 | - | [38,45] | |
Unknown | 2–36 | 7–35 | 1–4 | 4–6 | 5 | 103–156 | 27–37 | 3–14 | 14–74 | 0.1 | 0.2 | - | 42 | [6,46,72,73] | |
brown macroalgae | |||||||||||||||
A. esculenta | Ireland | - | - | - | - | - | 82–411 | - | 0.4–1 | 24–45 | - | - | - | - | [76] |
Norway | 12–61 | 20–32 | 7–31 | 4–12 | 2–3 | 52–850 | 2–22 | 1–4 | 7–49 | 0.2–1 | 0.4–3 | 0.04–1 | 220 | [32,71,77] | |
Scotland | - | - | - | - | - | 180–1159 | 7–35 | 2–4 | 18–29 | - | 0.4–0.6 | - | 398–1238 | [56] | |
A. nodosum | Spain | 46–49 | 38–41 | 7–10 | 8.6–9 | - | 133–212 | 20–41 | 25 | 64 | - | - | - | - | [34,78] |
Norway | 31–52 | 14–87 | 11–14 | 8–10 | 0.5–2 | 150–370 | 10–16 | 2–9 | 28–96 | 3–5 | 0.1–1 | <1 | - | [32] | |
Unknown | 42 | 22–28 | 10–13 | 8 | 2 | 204 | 16–42 | 2–4 | 29 | 2 | <1 | <1 | 744–811 | [46,79] | |
F. spiralis | Portugal | 14 | 10–47 | 1–11 | 2–10 | - | 24–1205 | 14–98 | 1–2.4 | 15–740 | 0.2–2 | - | <0.2 | - | [60,75] |
Spain | 39 | 40 | 7 | 9 | - | 448 | 145 | 45 | 71 | - | - | - | - | [78] | |
F. vesiculosus | Portugal | 23 | 41 | 14 | 8 | - | 88 | 547 | 30 | 30 | - | - | - | - | [44] |
Spain | 38 | 52 | 7 | 8 | - | 398 | 238 | 17 | 114 | - | - | - | - | [78] | |
UK | 37 | 30 | 14 | 9 | 2 | 1500 | - | 80 | - | - | - | - | 700 | [61] | |
Norway | 27–40 | 21–42 | 10–21 | 6–9 | 0.9–2 | 150–260 | 56–99 | 3–6 | 41–95 | <3 | <1 | <1 | - | [32,71] | |
Unknown | 55 | 24–43 | 9 | 10 | 1 | 42 | 55–72 | 5 | 37 | - | - | - | 655 | [6,46] | |
H. elongata | Spain | 18 | 78 | 12 | 2 | - | 14 | 10–47 | 2 | 4–40 | 0.4–1 | - | - | 117 | [49,65,68] |
Unknown | 5 | 8–62 | 3–5 | 3 | 1 | 4 | 7–49 | 1–4 | 6–49 | 0.2 | 0.03 | - | 122 | [46,72,73] | |
Laminaria spp. | Spain | 13–45 | 52–113 | 10–20 | 4–11 | 2 | 20–108 | 3–7 | 1–13 | 5–37 | 0.03–0.2 | 0.07 | 0.2–0.3 | 6138 | [36,38,45,49,65,68] |
France | 31 | 23 | 13 | 9 | 1 | 68 | 4 | 16 | 33 | 0.07 | 0.05 | 0.6 | - | [38,45] | |
Norway | - | - | 10 | 8 | 2 | 13–58 | 1.6–4 | 0.6–2 | 6–24 | 0.03–0.3 | - | 0.02 | 3100 | [71,77,80] | |
Ireland | - | - | - | - | - | - | 2–4 | 3–4 | 23–48 | 0.03–0.1 | - | - | - | [81] | |
Scotland | - | - | - | - | - | 41–199 | 4–12 | 2–12 | 33–49 | - | 0.1–0.4 | - | 4761–9014 | [56] | |
Denmark | 10 | 22 | 2 | 8 | 4 | 194 | 37 | 4 | 49 | - | - | - | - | [57] | |
Unknown | 6–38 | 9–116 | 3–23 | 2–7 | 2 | 7–33 | 1–34 | 1–5 | 2–23 | 0.01 | 0.03 | - | 7316 | [6,46,72,73] | |
S. latissima | Portugal | 30 | 39 | 9–10 | 5–6 | 2 | 30–1854 | 4–6 | 1–38 | 39–42 | 0.4 | - | 1.3 | 958 | [35,44] |
Norway | 42–48 | 25–120 | 13–17 | 8–10 | 0.7–6 | 35–370 | 2–13 | 0.3–7 | 3–38 | 0.05–0.3 | - | - | - | [32,77,80] | |
Scotland | - | - | - | - | 16–1159 | 7–45 | 2–5 | 8–31 | - | 0.1–1 | - | 39–4855 | [56] | ||
Denmark | 12 | 26 | 1 | 8 | 4 | 134 | 10 | 2 | 44 | - | - | - | - | [82] | |
U. pinnatifida | Spain | 52 | 63 | 13 | 10 | - | 43–46 | 1–7 | 1 | 4–22 | 0.1–0.4 | - | 0.5 | 306 | [36,49,65,68] |
Unknown | 7–71 | 9–87 | 3–17 | 3–12 | 3 | 9–170 | 1–19 | 1–7 | 3–136 | 0.03–0.4 | 0.03 | - | 191 | [6,46,72,73] |
Species | Na | K | Ca | Mg | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | |
green macroalgae | ||||||||||
Ulva spp. | 7 | 10 | 8 | 10 | 6 | 20 | 49 | 80 | 3 | 7 |
red macroalgae | ||||||||||
C. crispus | 11 | 17 | 9 | 13 | 18 | 54 | 14 | 20 | 3 | - |
Gracilaria spp. | 5 | 6 | 28 | 37 | 3 | 4 | 7 | 9 | 2 | 3 |
P. calcareum | - | - | 1 | - | 303 | - | - | - | - | - |
P. palmata | 1.3 | 1.5 | 19 | 38 | 4 | 9 | 5 | 11 | 3 | - |
Porphyra spp. | 10 | 17 | 10 | 19 | 4 | 7 | 11 | 17 | 5 | 6 |
brown macroalgae | ||||||||||
A. esculenta | 15 | 24 | 10 | 13 | 15 | 31 | 17 | 26 | 3 | 4 |
A. nodosum | 17 | 21 | 15 | 35 | 11 | 14 | 19 | 21 | 2 | 3 |
F. spiralis | 11 | 16 | 13 | 19 | 7 | 11 | 15 | 21 | - | - |
F. vesiculosus | 15 | 22 | 15 | 21 | 12 | 21 | 17 | 21 | 2 | 3 |
H. elongata | 5 | 7 | 20 | 31 | 6 | 12 | 5 | - | 1 | - |
Laminaria spp. | 10 | 18 | 22 | 46 | 11 | 23 | 15 | 24 | 3 | 4 |
S. latissima | 13 | 19 | 21 | 48 | 10 | 17 | 16 | 20 | 4 | 6 |
U. pinnatifida | 17 | 28 | 16 | 35 | 11 | 17 | 19 | 25 | 3 | - |
Species | Fe | Mn | Cu | Zn | Mo | Se | I | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | |
green seaweeds | ||||||||||||||
Ulva spp. | 78 | 343 | 49 | 255 | 9 | 26 | 2 | 5 | - | - | 9 | 29 | 263 | 608 |
red seaweeds | ||||||||||||||
C. crispus | 11 | 28 | 72 | 261 | 2.6 | 4 | 9 | 30 | 6 | 11 | 9 | - | 3221 | - |
Gracilaria spp. | 37 | 121 | 92 | 201 | 6 | 28 | 7 | 13 | 3 | - | 15 | - | 251 | - |
P. calcareum | - | - | 70 | - | 11 | - | 1.2 | 1 | - | - | - | - | 181 | - |
P. palmata | 7 | 18 | 58 | 231 | 3 | 4 | 1.9 | 4 | 6 | 10 | 1.5 | - | 990 | 1387 |
Porphyra spp. | 16 | 38 | 10 | 15 | 8.3 | 16 | 3 | 7 | 3.5 | 6.4 | 3.5 | 7.3 | 227 | 229 |
brown seaweeds | ||||||||||||||
A. esculenta | 22 | 66 | 5 | 14 | 1.6 | 3 | 2.4 | 3.9 | 11 | 16 | 8 | 15 | 3300 | 6603 |
A. nodosum | 12 | 21 | 10 | 17 | 15 | 56 | 4 | 8 | 11 | 16 | 8 | 15 | 5076 | 6933 |
F. spiralis | 32 | 69 | 34 | 58 | 13 | 36 | 22 | 59 | - | - | 2.9 | - | - | |
F. vesiculosus | 19 | 86 | 63 | 219 | 15 | 64 | 4 | 9 | - | - | 8 | 15 | 2640 | 3733 |
H. elongata | 0.5 | 0.8 | 8 | 20 | 2 | 3 | 1.7 | 3.2 | 0.5 | - | - | - | 637 | 651 |
Laminaria spp. | 4 | 11 | 3 | 15 | 4 | 14 | 2.0 | 3.9 | 2 | 16 | 1.4 | 2.9 | 32,351 | 48,075 |
S. latissima | 13 | 66 | 5 | 18 | 2 | 6 | 2.0 | 3.5 | 11 | 16 | 17 | - | 15,501 | 25,893 |
U. pinnatifida | 4 | 10 | 4 | 8 | 3 | 6 | 4 | 11 | - | - | 7 | - | 1325 | 1632 |
Product | Seaweed Species | Relevant Results | Ref. |
---|---|---|---|
meat and meat products | |||
Frankfurters | H. elongata at 5% | ↓ addition of NaCl to half | [96] |
Beef patties | U. pinnatifida at 3% | ↑ Na, K, Ca, and Mg; Na/K = 1 | [97] |
Meat emulsions | H. elongata, U. pinnatifida, or P. umbilicalis (2.5 or 5%) | ↓ of NaCl addition from 2 to 0.5% | [98] |
Restructured poultry | H. elongata (3%) | ↓ of NaCl addition from 1.5 to 0.5% | [99] |
Frankfurters | H. elongata (5.5%) | ↓ of NaCl addition from 2 to 0.5%; ↑ K and Ca; Na/K < 1 | [100] |
Beef patties | U. pinnatifida (3%) | ↑ Na, K, Ca, and Mg; Na/K = 1 | [101] |
Meat emulsions | H. elongata, U. pinnatifida, or P. umbilicalis (5.6%) | ↓ Na and ↑ K, Ca, Mg, and Mn; ↑ Fe only in samples with P. umbilicalis; Na/K = 1 | [102] |
Pork | Feeding piglets with A. nodosum (10 or 20 g/kg feed) | ↑ I content in piglet’s muscles and internal organs | [117] |
Pork | Feeding pigs with L. digitata (1.2–1.9 g/kg feed) | ↑ I content in pigs’ muscles and internal organs | [105] |
fish and fish products | |||
Tuna jerkies | Sargassum swartzii (3 or 5%) | ↑ Na, K, Ca, Mg, Mn, and Fe | [33] |
Gilthead seabream | Feeding fish with L. digitata (10% in fish meal) | ↑ I content in fish fillets | [109] |
Rainbow trout | Feeding fish with L. digitata (3.65 g/kg fish meal) | ↑ I content in fish fillets | [106] |
dairy products | |||
Cottage cheese | U. pinnatifida (15%) | ↑ Ca, Fe and Mg | [113] |
Yogurt | Laminaria spp. (0.2 or 0.5%) | ↑ I, Ca, K, Na, Mg, and Fe | [114] |
Quark and fresh cheese | S. latissima | ↑ I content | [115] |
Milk | Feeding cattle with a mix of U. rigida, Sargassum muticum, and Saccorhiza polyschides (100 g/animal/day) | ↑ I and Mo | [94] |
others | |||
Eggs | Feeding laying hens with Ulva prolifera and Cladophora sp. enriched in Cu, Mn, Zn, Co, or Cr (1.8–48.3 g/50 kg feed) | ↑ Cu, Mn, and Cr; ↑ K on eggs of hens fed with Cr-, Mn-, and Co-enriched algae; ↑ Ca in all eggs except those from hens fed with Cr- and Zn-enriched algae; ↑ Mg in all eggs except those from hens fed with Zn-enriched algae | [104] |
Cookies | Caulerpa racemosa (1–10%) | ↑ ash content | [16] |
Egg noodles | Monostroma nitidum (3 or 6%) | ↑ ash content | [118] |
Hijiki mineral salt | Sargassum spp. | Hijiki salt was richer in K and other trace elements than conventional salts | [119] |
Ulva mineral salt | Ulva ohnoi or Ulva tepida | ↑ K, Ca, Mg, P, B, Cu, Mn, and Se; Na/K between 1.1 to 2.2 | [120] |
Species | Location | As | iAs | Cd | Pb | Hg | Sb | Sn | Sr | Al | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
green macroalgae | |||||||||||
Ulva spp. | Portugal | 2–4 | 0.4 | 0.03–0.1 | 1–1.4 | 0.03 | [37] | ||||
Spain | 0.8–3 | - | 0.1 | 1 | - | <0.007 | - | 27–31 | 117 | [36,49,68] | |
Italy | 7 | - | 0.2 | 7 | - | - | - | - | [69] | ||
Ireland | 6 | - | 0.3 | 1 | <0.01 | - | - | - | - | [70] | |
Norway | 5–8 | - | 0,1 | - | 0.005 | - | - | - | - | [71] | |
Unknown | 2–15 | 0.2–0.4 | 0.03–4 | 0.5–7 | 0.02 | 1–2 | 27–63 | <120 | [46,72,153] | ||
red macroalgae | |||||||||||
C. crispus | Unknown | 4–26 | 0.2 | 0.3–1 | 0.1–5 | 0.006 | - | 3 | 83 | 8–120 | [46,72,73] |
Gracilaria spp. | Greece | - | - | 0.8–3 | 10–19 | - | - | - | - | - | [74] |
Italy | 15 | - | 0.04–0.4 | 0.8–7 | - | - | - | - | 19–149 | [69,160] | |
P. palmata | Spain | 15 | - | 0.1–0.3 | 0.5 | - | 0.01 | - | 31 | 62 | [49,68] |
Norway | 10 | - | 0.5 | - | 0.005 | - | - | - | - | [71] | |
Denmark | 8 | 0.3 | <1 | <1 | <1 | - | - | - | - | [86] | |
Iceland | 1 | <0.03 | <1 | <1 | - | - | - | - | - | [86] | |
Unknown | 8–10 | 0.4 | 0.2–0.7 | 0.05–4 | 0.01 | - | 1 | 3–71 | 32–120 | [46,73,153] | |
Porphyra spp. | Portugal | - | - | 0.4–1 | 0.1–0.2 | <0.005 | - | - | - | - | [60] |
Spain | 9–19 | 0.1–0.6 | 0.1–3 | 0.3–0.5 | 0.008–0.03 | 0.01–0.02 | - | 2–130 | 15–890 | [36,38,45,49,68] | |
France | 4 | - | 3 | 0.3 | - | 0.03 | - | 120 | 22 | [38,45] | |
Unknown | 24–50 | 0.1–0.6 | 0.2–4 | 0.01–2 | 0.004–0.03 | - | <1 | 25 | <120 | [46,72,153] | |
brown macroalgae | |||||||||||
A. esculenta | Ireland | <0.1 | - | 0.2–0.5 | 0.3–0.5 | <0.07 | - | 0.2–1 | - | - | [76] |
Norway | 20–100 | - | 1–8 | 0.07–1 | <0.005 | <1 | - | - | 6–340 | [32,77,80] | |
Scotland | 64–88 | - | - | 0.2–2 | - | - | - | 645–733 | 200–1877 | [56] | |
A. nodosum | Norway | 23–55 | - | 0.1–2 | <0.5 | <0.05 | <1 | - | - | 49–210 | [32] |
Unknown | 37 | - | 1 | 3 | - | - | 5 | 598 | <120 | [46] | |
F. spiralis | Portugal | 39 | - | 0.4–2 | 0.2–0.8 | 0.01 | - | - | - | 571 | [60] |
F. vesiculosus | Norway | 36–59 | - | 0.9–3 | <0.5 | <0.05 | <1 | - | - | 48–140 | [32,71] |
Unknown | 34–50 | 0.3 | 0.5–1 | 0.5–4 | 0.04 | - | 4 | 537 | <120 | [46,153] | |
H. elongata | Spain | 8 | - | - | 0.3 | - | 0.01 | - | 58 | 7 | [49,68] |
Unknown | 33–37 | 0.2 | 0.3–0.8 | 0.02–3 | 0.008–0.02 | - | <1 | 7–560 | 7–120 | [46,72,73] | |
S. fusiformis | Unknown | 99–147 | 32–85 | 1–3 | 0.5–0.9 | 0.01–0.05 | - | - | - | - | [72,153,161] |
Laminaria spp. | Spain | 27–49 | - | 0.1–3.4 | 0.4–0.5 | - | 0.004–0.03 | - | 41–1980 | 10–91 | [36,38,45,49,68] |
France | 53 | - | 0.5 | 0.2 | - | 0.03 | - | 1270 | 40 | [38,45] | |
Norway | 40–100 | 20 | 0.05–0.9 | 0.04–0.2 | 0.01–0.02 | - | - | - | 2–20 | [71,77,80] | |
Ireland | 49–90 | - | 0.06–0.2 | - | - | 0.01–0.02 | - | - | - | [81] | |
Denmark | - | - | - | 2 | - | - | - | - | 139 | [82] | |
Scotland | 72–114 | - | - | 0.1–0.6 | - | - | - | 580–834 | 8–121 | [56] | |
Unknown | 52–68 | 0.05–0.4 | 0.07–7 | 0.01–7 | 0.001–0.005 | - | 34 | 760 | 8–120 | [46,72,73] | |
S. latissima | Portugal | 67 | - | 1.6 | 0.2 | 0.1 | - | - | - | 11 | [35] |
Norway | 28–120 | 0.4 | 0.1–5 | 0.03–0.5 | <0.05 | <1 | - | - | 2–76 | [32,77,80] | |
Scotland | 64–88 | - | - | 0.2–2 | - | - | - | 14–733 | 13–1877 | [56] | |
Denmark | - | - | - | 1.5 | - | - | - | - | 107 | [82] | |
U. pinnatifida | Spain | 13–26 | - | 0.1–0.3 | 1 | - | 0.01 | - | 87 | 29 | [36,49,68] |
Italy | 20–70 | - | 0.1–0.2 | 2–7 | - | - | - | 1200 | 120 | [69,162] | |
Unknown | 32–77 | 0.04–0.3 | 0.1–5 | 0.07–1 | 0.01–0.06 | - | 2 | 883 | 12–120 | [46,72,73,153] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. https://doi.org/10.3390/md16110400
Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs. 2018; 16(11):400. https://doi.org/10.3390/md16110400
Chicago/Turabian StyleCircuncisão, Ana R., Marcelo D. Catarino, Susana M. Cardoso, and Artur M. S. Silva. 2018. "Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers" Marine Drugs 16, no. 11: 400. https://doi.org/10.3390/md16110400
APA StyleCircuncisão, A. R., Catarino, M. D., Cardoso, S. M., & Silva, A. M. S. (2018). Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs, 16(11), 400. https://doi.org/10.3390/md16110400