Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Alg/PGA Composite Microparticles
2.2. Morphology of the Alg/PGA Composite Microparticles
2.3. Swelling Behavior of Alg/PGA Composite Microparticles
2.4. Thermal Stability of Alg/PGA Composite Microparticles
2.5. In Vitro Cytotoxicity and Compatibility
3. Materials and Methods
3.1. Materials
3.2. Preparation of Alg/PGA Composite Microparticles
3.3. Characterization of Alg/PGA Composite Microparticles
3.4. Determination of the Swelling Behavior of Composite Microparticles
3.5. Thermal Stability Study of Composite Microparticles
3.6. In Vitro Cytotoxicity and Compatibility
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Winter, G.D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. J. Wound Care 1995, 4, 368–371. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Bayer, I.S.; Pompa, P.P.; Cingolani, R.; Athanassiou, A. Controlled antiseptic release by alginate polymer films and beads. Carbohydr. Polym. 2013, 92, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Albertini, B.; Di, S.M.; Calonghi, N.; Rodriguez, L.; Passerini, N. Novel multifunctional platforms for potential treatment of cutaneous wounds: Development and in vitro characterization. Int. J. Pharm. 2013, 440, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Tadej, M. The use of flivasorb in highly exuding wounds. B. J. Nurs. 2009, 18, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Mignon, A.; Graulus, G.J.; Snoeck, D.; Martins, J.; Belie, N.D.; Dubruel, P.; Vlierberghe, S.V. Ph-sensitive superabsorbent polymers: A potential candidate material for self-healing concrete. J. Mater. Sci. 2015, 50, 970–979. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahaman, M.S.; Yeum, J.H. Electrospun novel super-absorbent based on polysaccharide–polyvinyl alcohol–montmorillonite clay nanocomposites. Carbohydr. Polym. 2015, 115, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Dua, A.; Malik, A. Polyaspartic acid based superabsorbent polymers. Eur. Polym. J. 2014, 59, 363–376. [Google Scholar] [CrossRef]
- Rashidzadeh, A.; Olad, A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/mmt superabsorbent nanocomposite. Carbohydr. Polym. 2014, 114, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Hrynyk, M.; Martins-Green, M.; Barron, A.E.; Neufeld, R.J. Alginate-peg sponge architecture and role in the design of insulin release dressings. Biomacromolecules 2012, 13, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.; Melvik, J.E.; Gåserød, O.; Alsberg, E.; Christensen, B.E. Correction to ionically gelled alginate foams: Physical properties controlled by operational and macromolecular parameters. Biomacromolecules 2012, 13, 3703–3710. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.G.; Dorfel, H. Polyuronic acids in brown algae. Hoppe-Seyler’s Z. Physiol. Chem. 1955, 302, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Claeson, K.; Hansen, S.E.; Sömme, R.; Stenhagen, E.; Palmstierna, H. Fractionation of alginic acid. Acta Chem. Scand. 1959, 13, 601–603. [Google Scholar] [CrossRef]
- Kost, J.; Langer, R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 2001, 46, 19–50. [Google Scholar] [CrossRef]
- Urbanska, A.M.; Karagiannis, E.D.; Guajardo, G.; Langer, R.S.; Anderson, D.G. Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer. Biomaterials 2012, 33, 4752–4761. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Cathala, B. Smart swelling biopolymer microparticles by a microfluidic approach: Synthesis, in situ encapsulation and controlled release. Colloids Surf. B Biointerfaces 2011, 82, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.G.; Yousaf, A.M.; Kim, K.S.; Kim, D.W.; Kim, D.S.; Kim, J.K.; Yong, C.S.; Youn, Y.S.; Kim, J.O.; Choi, H.G. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int. J. Pharm. 2016, 501, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Cicco, F.D.; Russo, P.; Reverchon, E.; Garcíagonzález, C.A.; Aquino, R.P.; Gaudio, P.D. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr. Polym. 2016, 147, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Mannemala, S.S.; Kollipara, R.; Wadhwani, A.D. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 2016, 93, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Morgado, P.I.; Aguiar-Ricardo, A.; Correia, I.J. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J. Membr. Sci. 2015, 490, 139–151. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Wang, F.J.; Meng, W.W.; Yang, X.L.; Jiang, J.X.; Tan, H.M.; Zheng, Y.F. Preparation of the porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater. Sci. Eng. C 2016, 63, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Inbaraj, B.S.; Wang, J.S.; Lu, J.F.; Siao, F.Y.; Chen, B.H. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid). Bioresour. Technol. 2009, 100, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Chang, J.J.; Lai, W.F.; Yang, M.C.; Chien, C.T. Layered hydrogel of poly(γ-glutamic acid), sodium alginate, and chitosan: Fluorescence observation of structure and cytocompatibility. Colloids Surf. B Biointerfaces 2011, 86, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Yang, M.C. Swelling and biocompatibility of sodium alginate/poly (γ-glutamic acid) hydrogels. Polym. Adv. Technol. 2010, 21, 1099–1581. [Google Scholar] [CrossRef]
- Stojkovska, J.; Kostić, D.; Jovanović, Ž.; Vukašinovićsekulić, M.; Miškovićstanković, V.; Obradović, B. A comprehensive approach to in vitro functional evaluation of ag/alginate nanocomposite hydrogels. Carbohydr. Polym. 2014, 111, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, X.; Sun, Y.; Wang, T.; Chen, X.; Yin, J. In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(l-glutamic acid)/chitosan microcapsules for drug delivery. Colloids Surf. B Biointerfaces 2014, 113, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Higashi, M.; Kaneko, T.; Kida, T.; Akashi, M. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid). Macromol. Biosci. 2005, 5, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Shih, I.L.; Van, Y.T. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001, 79, 207–225. [Google Scholar] [CrossRef]
- Suzuki, S.; Asoh, T.A.; Kikuchi, A. Design of core–shell gel beads for time-programmed protein release. J. Biomed. Mater. Res. A 2013, 101A, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, J.; Wei, X.; Huo, F.; Li, W.; Hu, Q.; Liu, H. Adsorption of rare earths (III) by calcium alginate–poly glutamic acid hybrid gels. J. Chem. Technol. Biotechnol. 2014, 89, 969–977. [Google Scholar] [CrossRef]
- Guan, H.; Chi, D.; Yu, J.; Li, H. Encapsulated ecdysone by internal gelation of alginate microspheres for controlling its release and photostability. Chem. Eng. J. 2011, 168, 94–101. [Google Scholar] [CrossRef]
- Paques, J.P.; Van, d.L.E.; van Rijn, C.J.; Sagis, L.M. Preparation methods of alginate nanoparticles. Adv. Colloid Interface Sci. 2014, 209, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Gonçalves, A.R.; Veiga, F. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. Int. J. Pharm. 2006, 311, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lupo, B.; Maestro, A.; Porras, M.; Gutiérrez, J.M.; González, C. Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocoll. 2014, 38, 56–65. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Mundargi, R.C.; Shelke, N.B.; Babu, V.R.; Patel, P.; Rangaswamy, V.; Aminabhavi, T.M. Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly(n -isopropylacrylamide) for controlled release of atenolol. J. Appl. Polym. Sci. 2010, 116, 1832–1841. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta Esca300 Database; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Paşcalău, V.; Popescu, V.; Popescu, G.L.; Dudescu, M.C.; Borodi, G.; Dinescu, A.; Perhaiţa, I.; Paul, M. The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. J. Alloys Compd. 2012, 536, 418–423. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jeong, Y.; Choi, K.C. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. Int. J. Nanomed. 2011, 6, 2879–2888. [Google Scholar]
- Santini, E.; Liggieri, L.; Sacca, L.; Clausse, D.; Ravera, F. Interfacial rheology of span 80 adsorbed layers at paraffin oil–water interface and correlation with the corresponding emulsion properties. Colloids Surf. A Physicochem. Eng. Asp. 2007, 309, 270–279. [Google Scholar] [CrossRef]
- Hadnađev, T.D.; Dokić, P.; Krstonošić, V.; Hadnađev, M. Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. Eur. J. Lipid Sci. Technol. 2013, 115, 313–321. [Google Scholar] [CrossRef]
- Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm. 2004, 280, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dong, W.; Cao, Y.; Han, Z.; Ding, Z. Preparation and catalytic activity of fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catal. Today 2011, 175, 346–355. [Google Scholar] [CrossRef]
- Cao, H.; Gao, Y.J.; Ren, W.H.; Li, T.T.; Duan, K.Z.; Cui, Y.H.; Cao, X.H.; Zhao, Z.Q.; Ji, R.R.; Zhang, Y.Q. Influence of cation on the pyrolysis and oxidation of alginates. J. Anal. Appl. Pyrolysis 2011, 91, 344–351. [Google Scholar]
- Shan, Z.; Yang, W.-S.; Zhang, X.; Huang, Q.-M.; Ye, H. Preparation and characterization of carboxyl-group functionalized superparamagnetic nanoparticles and t he potential for bio-applications. J. Braz. Chem. Soc. 2007, 18, 1329–1335. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Tang, H.; Yan, R.; Tan, H. Preparation of cmcts-g-paa macroporous superabsorbent polymer by foaming method. CIESC J. 2008, 59, 785–789. [Google Scholar]
- Wilsnack, R.E. Quantitative cell culture biocompatibility testing of medical devices and correlation to animal tests. Biomater. Med. Devices Artif. Organs 1976, 4, 235–261. [Google Scholar] [CrossRef] [PubMed]
Samples | Relative Content Ratio of C/O | C–O | C=O | ||
---|---|---|---|---|---|
B.E. (eV) | Relative Content | B.E. (eV) | Relative Content | ||
Alginate | 1.6 | 531.37 | 81.1% | 529.84 | 18.9% |
Alg/PGA82 (mAlg:mPGA = 8:2) | 1.9 | 531.40 | 69.7% | 530.00 | 30.3% |
Alg/PGA73 (mAlg:mPGA = 7:3) | 2.1 | 531.45 | 51.4% | 530.19 | 48.6% |
PGA | 2.2 | 531.50 | 45.1% | 530.25 | 54.9% |
Group | Sample | (σ0/E)/g·g−1 | τ0/min | ki/g·min−1 | tc/min |
---|---|---|---|---|---|
A | A1 | 219.3 | 6.5 | 19.5 | 7.9 |
A2 | 261.6 | 6.1 | 25.0 | 7.3 | |
A3 | 228.6 | 6.3 | 22.8 | 7.0 | |
A4 | 210.0 | 5.5 | 21.6 | 6.8 | |
A5 | 204.1 | 8.3 | 14.2 | 10.0 | |
B | B1 | 272.6 | 7.3 | 21.9 | 8.7 |
B2 | 268.3 | 6.3 | 24.8 | 7.6 | |
B3 | 261.6 | 6.1 | 25.0 | 7.3 | |
B4 | 233.3 | 8.3 | 16.4 | 10.0 | |
B5 | 205.5 | 12.3 | 9.81 | 14.7 | |
C | C1 | 236.0 | 1.4 | 25.9 | 6.4 |
C2 | 261.6 | 6.1 | 25.0 | 7.3 | |
C3 | 482.7 | 6.0 | 47.8 | 7.1 |
Sample | Stage | Temperature Range (°C) | Tmax (°C) | Weight Loss (%) | Weight Loss 5% (°C) | Weight Loss 50% (°C) |
---|---|---|---|---|---|---|
PGA | 1 | 50–250 | 55 | 11.84 | 155 | Above 450 |
2 | 250–450 | 345 | 35.74 | |||
Alginate | 1 | 50–200 | 184 | 12.03 | 77 | 287 |
2 | 200–280 | 252 | 36.20 | |||
3 | 280–450 | 361 | 10.71 | |||
mAlg:mPGA = 9:1 | 1 | 50–200 | 116 | 12.57 | 80 | 312 |
2 | 200–280 | 263 | 31.32 | |||
3 | 280–450 | 405 | 15.22 | |||
mAlg:mPGA = 8:2 | 1 | 50–200 | 79 | 9.04 | 104 | 341 |
2 | 200–280 | 252 | 32.01 | |||
3 | 280–450 | 349 | 19.62 | |||
mAlg:mPGA = 7:3 | 1 | 50–200 | 79 | 10.67 | 88 | 336 |
2 | 200–280 | 250 | 32.06 | |||
3 | 280–450 | 354 | 17.20 | |||
mAlg:mPGA = 6:4 | 1 | 50–200 | 122 | 11.56 | 75 | 338 |
2 | 200–280 | 279 | 26.94 | |||
3 | 280–450 | 319 | 27.95 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Chen, Y.; Liu, Y.; Tong, L.; Chu, J.; Xiao, K.; Zhou, Z.; Dong, W.; Chu, X. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles. Mar. Drugs 2017, 15, 91. https://doi.org/10.3390/md15040091
Tong Z, Chen Y, Liu Y, Tong L, Chu J, Xiao K, Zhou Z, Dong W, Chu X. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles. Marine Drugs. 2017; 15(4):91. https://doi.org/10.3390/md15040091
Chicago/Turabian StyleTong, Zongrui, Yu Chen, Yang Liu, Li Tong, Jiamian Chu, Kecen Xiao, Zhiyu Zhou, Wenbo Dong, and Xingwu Chu. 2017. "Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles" Marine Drugs 15, no. 4: 91. https://doi.org/10.3390/md15040091
APA StyleTong, Z., Chen, Y., Liu, Y., Tong, L., Chu, J., Xiao, K., Zhou, Z., Dong, W., & Chu, X. (2017). Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles. Marine Drugs, 15(4), 91. https://doi.org/10.3390/md15040091