Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries
Abstract
:1. Background
2. Nutraceuticals in the Global Market
Category | Bioactive Molecules | Applications | Major Marine Sources | Health Perspectives | References |
---|---|---|---|---|---|
Protein and Peptides | Collagen | Edible coating in meat industry (e.g., sausages) | Fish (albacore tuna, silver-line grunt, brown-backed toadfish, hake, trout, lingcod, catfish, rainbow trout, yellow sea bream and common horse mackerel etc.). | Anti-oxidant, anti-hypertensive and anti-skin-aging activities. | [16,17] |
Gelatin | Stabilizer, texturizer, or thickener in ice cream, jam, yogurt, cream cheese, margarine, confectionaries, utilized in low fat foods and clarifiers | Fish, especially cold-water (Pollock, cod, haddock, hake and cusk) | It has been shown to prevent and treat chronic atrophic gastritis | [18] | |
Albumin | Whipping, suspending, or stabilizing agent | Mollusks, crustaceans, low-fat fish | Anticoagulant and antioxidant properties | [19] | |
Poly-Saccharides | Carrageenan | Gel formation and coatings in the meat and dairy industry | Macroalgae e.g., K. alvarezii, E. denticulatum and B. gelatinum | Anti-HIV activity and anticoagulant properties | [20] |
Agar agar | Gel formation and food gums | Red Alga is a main source of agar agar like Gelidium, Gracilaria, Hypnea and Gigartina | [21] | ||
Fucans and fucanoids | Nutraceutical supplements | Cell walls of brown algae, sea urchin eggs, sea cucumbers | Anticoagulant, antiviral, antithrombotic, proliferative and anti-inflammatory | [22] | |
Chitin, chitosan, and derivatives | Gelling agents, edible protective films, clarification and de-acidification of fruits | Shrimp, crab, lobster, prawn and krill | Increase dietary fiber, reduce lipid absorption, antitumor, bactericidal and fungicidal activities | [23] | |
Fatty acids | Omega-3 fatty acids | Nutraceuticals (fish oil and capsules), fortification of livestock, feed and infant formula | Almost all marine sources | Numerous health benefits (e.g., visual and neurodevelopment, reduce risk of cardiovascular problems, ameliorate diseases such as arthritis and hypertension) | [24] |
Phenolic compounds and other pigments | Phlorotannins | Active ingredients in the nutraceuticals | They are the most abundant polyphenols found in the marine brown algae | Antioxidant activity | [25] |
Carotenoids: β-carotene, and lutein | Natural food colorings, nutraceutical agents, farmed salmon pigmentation | Dunaliella salina, Sarcina maxima, Chlorella protothecoides, Chlorella vulgaris and Haematococcus pluvialis | Vitamin A precursors, antioxidants, anti-carcinogenic and anti-inflammatory | [26] | |
Chlorophylls | Natural food and beverage colorants | S. platensis and A. flos-aquae | Anticancer activity, natural source of pigmentation | [27] | |
Marine enzymes | Gastric proteases; pepsins, gastricsins and chymosins | Cold renneting milk and fish feed digestion aid | Various fish body viscera like atlantic cod, carp, harp seals, and tuna etc. | [28] | |
Serine and cysteine proteases | Preventing unwanted color changes in food products, meat tenderizing, curing of Herring, squid fermentation | Crustaceans, mollusks and short-finned squid | [28] | ||
Lipases | Numerous uses in the fats and oils industry | Atlantic cod, seal, salmon, sardine, Indian mackerel and red sea bream | [28] | ||
Transglutaminase | Creates protein cross-links to improve rheological properties of gels, i.e., surimi, gelatin | Red sea bream, rainbow trout, atka mackerel, walleye, Pollock liver and scallop | [29] | ||
Vitamins and Minerals | Fat and water soluble vitamins, iron, iodine, manganese and zinc | Food, Pharma and nutraceutical industries | Almost all marine sources. Seaweeds are rich sources of vitamins and minerals | Vitamins and minerals perform many essential functions in the body, for example, they provide transport inside cells and also serve as cofactors during metabolic processes | [30] |
3. Marine Sources of Bioactive Molecules
3.1. Marine Algae
3.2. Marine Fish
3.3. Marine Invertebrates
3.4. Sponges
3.5. Molluscs, Echinoderms and Crustaceans
4. Marine Derived Bioactive Components
4.1. Proteins
4.2. Peptides
4.3. Polysaccharides
4.4. Fatty Acid
4.5. Phenolic Compounds and Prebiotics
4.6. Enzymes, Vitamins and Minerals
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Palthur, M.P.; Sajala Palthur, S.S.; Chitta, S.K. Nutraceuticals: Concept and Regulatory Scenario. Int. J. Pharm. Pharm. Sci. 2010, 2, 14–20. [Google Scholar]
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [PubMed]
- Keith, W.G. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean, Vazhiyil Venugopal. In Functional Foods and Nutraceuticals Series; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Hill, R.T.; Fenical, W. Pharmaceuticals from marine natural products: Surge or ebb? Curr. Opin. Biotechnol. 2010, 21, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, J.P.; Sole-Cava, A.M.; Watts, P.C. Exploited marine invertebrates: Genetics and fisheries. Hydrobiologia 2000, 420, 165–184. [Google Scholar] [CrossRef]
- Voultsiadou, E. Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantum. J. Ethnopharmacol. 2010, 130, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Borresen, T. Seafood for improved health and wellbeing. Food Technol. 2009, 63, 88. [Google Scholar]
- Mordor Intelligence. Global Nutraceuticals Market—Growth, Trends and Forecasts (2015–2020). Available online: http://www.mordorintelligence.com/industry-reports/global-nutraceuticals-market-industry (accessed on 1 August 2015).
- Research and Markets: Nutraceuticals—2012, Global Strategic Business Report Annual Estimates and Forecasts for 2010–2018. 2012. Available online: http://www.researchandmarkets.com/research/n54vdx/nutraceuticals (accessed on 20 September 2012).
- Gahche, J.; Bailey, R.; Burt, V.; Hughes, J.; Yetley, E.; Dwyer, J.; Picciano, M.F.; McDowell, M.; Sempos, C. Dietary Supplement Use Among U.S. Adults Has Increased Since NHANES III (1988–1994). NCHS Data Brief 2011, 61, 1–8. [Google Scholar] [PubMed]
- Rovira, M.A.; Grau, M.; Castañer, O.; Covas, M.I.; Schröder, H. Dietary supplement use and health-related behaviors in a Mediterranean population. J. Nutr. Educ. Behav. 2013, 45, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Foote, J.A.; Murphy, S.P.; Wilkens, L.R.; Hankin, J.H.; Henderson, B.E.; Kolonel, L.N. Factors associated with dietary supplement use among healthy adults of five ethnicities: The Multiethnic Cohort Study. Am. J. Epidemiol. 2003, 157, 888–897. [Google Scholar] [CrossRef] [PubMed]
- González-Sarrías, A.; Larrosa, M.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. Nutraceuticals for older people: Facts, fictions and gaps in knowledge. Maturitas 2013, 75, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Charu, G.; Dhan, P. Nutraceuticals for geriatrics. J. Tradit. Complement. Med. 2015, 5, 5–14. [Google Scholar]
- Mintel. Functional Food—U.S. August; Mintel International Group Ltd.: Chicago, IL, USA, 2009; Available online: www.mintel.com (accessed on 15 July 2015).
- Lai, G.; Yang, L.; Guoying, L. Effect of concentration and temperature on the rheological behavior of collagen solution. Int. J. Biol. Macromol. 2008, 42, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Noitup, P.; Garnjanagoonchorn, W.; Morrissey, M.T. Fish Skin Type I Collagen. J. Aquat. Food Prod. Technol. 2005, 14, 17–28. [Google Scholar] [CrossRef]
- Go´mez-Guille´n, M.C.; Turnay, J.; Ferna’ndez-Dı’az, M.D.; Olmo, N.; Lizarbe, M.A.; Montero, P. Structural and physical properties of gelatin extracted from different marine especies: A comparative study. Food Hydrocoll. 2002, 16, 25–34. [Google Scholar] [CrossRef]
- Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth. 2000, 85, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Vlieghe, P.; Clerc, T.; Pannecouque, C.; Witvrouw, M.; de Clercq, E.; Salles, J.P.; Kraus, J.L. Synthesis of new covalently bound kappa-carrageenan-AZT conjugates with improved anti-HIV activities. J. Med. Chem. 2002, 45, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Freile-Pelegrín, Y.; Murano, E. Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour. Technol. 2005, 96, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Berteau, O.; Mulloy, B. Sulfatedfucans, fresh perspectives: Structures, functions, and biological properties of sulfatedfucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003, 13, 29R–40R. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Abuzaytoun, R. Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 2005, 49, 93–135. [Google Scholar] [PubMed]
- Sijtsma, L.; de Swaaf, M.E. Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 2004, 64, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Arct, J.; Pytkowska, K. Flavonoids as components of biologically active cosmeceuticals. Clin. Dermatol. 2008, 26, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Sakuragi, Y.; Bryant, D.A.; Dellapenna, D. Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol. 2005, 138, 1422–1435. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Shivaprakash, M.K. Evaluation of three Spirulina species grown under similarconditions for their growth and biochemicals. J. Sci. Food Agric. 2005, 85, 333–336. [Google Scholar] [CrossRef]
- Shahidi, F.; Janak Kamil, Y.V.A. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sc. Technol. 2001, 12, 435–464. [Google Scholar] [CrossRef]
- Chen, T.; Embree, H.D.; Brown, E.M.; Taylor, M.M.; Payne, G.F. Enzyme-catalyzed gel formation of gelatin and chitosan: Potential for in situ applications. Biomaterials 2003, 24, 2831–2841. [Google Scholar] [CrossRef]
- Parr, R.M.; Aras, N.K.; Iyengar, G.V. Dietary intakes of essential trace elements: Results from total diet studies supported by the IAEA. J. Radioanal. Nucl. Chem. 2006, 270, 155–161. [Google Scholar] [CrossRef]
- Aneiros, A.; Garateix, A. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 803, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.K. Algal biotechnology industries and research activities in China. J. Appl. Phycol. 2001, 13, 375–380. [Google Scholar] [CrossRef]
- Grobbelaar, J.U. Algal biotechnology: Real opportunities for Africa. South Afr. J. Bot. 2004, 70, 140–144. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chen, F. Polyunsaturated fatty acids: Biological significance, biosynthesis, and production by microalgae and microalgae-like organisms. In Algae and Their Biotechnological Potential; Chen, F., Jiang, Y., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 1–32. [Google Scholar]
- Luiten, E.E.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; WijVels, R.H. Realizing the promises of marine biotechnology. Biomol. Eng. 2003, 20, 429–439. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 2003, 60, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Indegaard, M.; Minsaas, J. Animal and human nutrition. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; Wiley: Chichester, UK, 1991; pp. 21–64. [Google Scholar]
- FAO. Available online: http://www.fao.org/fi/oldsite/eims_search/1_dett.asp?calling=simple_s_result&lang=en&pub_id=263055 (accessed on 23 March 2009).
- Pickering, T.D.; Posa, S.; Reuben, J.S. Intentional introductions of commercially harvested alien seaweeds. Bot. Mar. 2007, 50, 338–350. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Morrissey, M.T. Marine Biotechnology; First Joint Trans-Atlantic Fisheries Technology Conference (TAFT): Reykjavik, Iceland, 2003. [Google Scholar]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 12, 535–543. [Google Scholar] [CrossRef]
- Plaza, M.; Cifuentes, A.; Ibanez, E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef]
- Gomez-Ordonez, E.; Jimenez-Escrig, A.; Ruperez, P. Dietary fibre and physico-chemical properties of several edible seaweeds from the Northwestern Spanish coast. Food Res. Int. 2010, 9, 2289–2294. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed proteins: Biochemical nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, D.G.; Kim, Y.R.; Hwang, H.J.; Nam, T.J.; Kong, I.S. An improved method of protein isolation and proteome analysis with Saccharina japonica (Laminariales) incubated under different pH conditions. J. Appl. Phycol. 2011, 23, 123–130. [Google Scholar]
- Jimenez-Escrig, A.; Sanchez-Muniz, F.J. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000, 20, 585–598. [Google Scholar] [CrossRef]
- Ruperez, P.; Toledano, G. Indigestible fraction of edible marine seaweeds. J. Sci. Food Agric. 2003, 12, 1267–1272. [Google Scholar] [CrossRef]
- Ruperez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar]
- Rioux, L.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–233. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Pallela, R. Medicinal Foods from Marine Animals: Current Status and Prospects. Adv. Food Nutr. Res. 2012, 65, 1–9. [Google Scholar] [PubMed]
- Herpandi, N.H.; Rosma, A.; Wan, N.W.A. The Tuna Fishing Industry: A New Outlook on Fish Protein Hydrolysates. Compr. Rev. Food Sci. Food Saf. 2011, 10, 195–207. [Google Scholar] [CrossRef]
- Vo, T.S.; Kim, S.K. Potential anti-HIV agents from marine resources: An overview. Mar. Drugs 2010, 8, 2871–2892. [Google Scholar] [PubMed]
- Wijesekara, I.; Kim, S.K. Angiotensin-i-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs 2010, 8, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Mos, L.; Jack, J.; Cullon, D.; Montour, L.; Alleyne, C.; Ross, P.S. The importance of marine foods to a near-urban first nation community in coastal British Columbia, Canada: Toward a risk-benefit assessment. J. Toxicol. Environ. Health A 2004, 67, 791–808. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.P.; Yuan, J.; Sun, L.; She, Z.G.; Wu, J.H.; Lan, X.J.; Zhu, X.; Lin, Y.C.; Chen, S.P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 2011, 9, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S.; Rodriguez, A.D.; Berlinck, R.G.S.; Hamann, M.T. Marine pharmacology in 2005–2006: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochem. Biophys. Acta 2009, 1790, 283–308. [Google Scholar] [PubMed]
- Uriz, M.; Turon, X.; Becerro, M.A.; Agell, G. Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microsc. Res. Tech. 2003, 62, 279–299. [Google Scholar] [CrossRef] [PubMed]
- Thoms, C.; Schupp, P.J. Chemical defense strategies in sponges: A review. In Porifera Research: Biodiversity, Innovation and Sustainability; Custodio, M.R., Hajdu, G.L., Hajdu, E., Muricy, G., Eds.; IMOS: Rio de Janeiro, Museu Nacional, Brazil, 2007; pp. 627–637. [Google Scholar]
- Kim, S.K. Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications; CRC Taylor & Francis: Boca Raton, FL, USA, 2010; p. 666. [Google Scholar]
- Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262. [Google Scholar] [PubMed]
- Tou, J.C.; Jaczynski, J.; Chen, Y.C. Krill for human consumption: Nutritional value and potential health benefits. Nutr. Rev. 2007, 65, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Sibilla, S.; Martin, G.; Sarah, B.; Anil, B.R.; Licia, G. An Overview of the Beneficial Effects of Hydrolysed Collagen as a Nutraceutical on Skin Properties: Scientific Background and Clinical Studies. Open Nutraceuticals J. 2015, 8, 29–42. [Google Scholar] [CrossRef]
- Di-Bernardini, R.; Harnedy, P.; Bolton, D.; Kerry, J.; O’Neill, E.; Mullen, A.M.; Hayes, M. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 2011, 124, 1296–1307. [Google Scholar] [CrossRef]
- Murray, B.A.; FitzGerald, R.J. Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr. Pharm. Des. 2007, 13, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Danquah, K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 2011, 29, 272–277. [Google Scholar] [PubMed]
- Byun, H.G.; Kim, S.K. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragrachalcogramma) skin. Process. Biochem. 2001, 36, 1155–1162. [Google Scholar] [CrossRef]
- Je, J.Y.; Kim, S.Y.; Kim, S.K. Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. Eur. Food Res. Technol. 2005, 221, 157–162. [Google Scholar] [CrossRef]
- Rajapakse, N.; Jung, W.K.; Mendis, E.; Moon, S.H.; Kim, S.K. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci. 2005, 76, 2607–2619. [Google Scholar] [CrossRef] [PubMed]
- Fouchereau-Peron, M.; Duvail, L.; Michel, C.; Gildberg, A.; Batista, I.; Gal, Y.I. Isolation of an acid fraction from a fish protein hydrolysate with a calcitonin-generelated-peptide-like biological activity. Biotechnol. Appl. Biochem. 1999, 29, 87–92. [Google Scholar]
- Minkiewicz, P.; Dziuba, J.; Michalska, J. Bovine meat proteins as potential precursors of biologically active peptides—A computational study based on the BIOPEP database. Food Sci. Technol. Int. 2011, 17, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Ravichandran, Y.D.; Khan, S.B.; Kim, Y.T. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 2008, 13, 511–523. [Google Scholar] [CrossRef]
- Li, L.Y.; Sattler, I.; Deng, Z.W.; Groth, I.; Walther, G.; Menzel, K.D.; Peschel, G.; Grabley, S.; Lin, W.H. A seco-oleane-type triterpenes from Phomopsis sp. (strain HK10458) isolated from the mangrove plant Hibiscus tiliaceus. Phytochemistry 2008, 69, 511–517. [Google Scholar] [PubMed]
- Vidanarachchi, J.K.; Kurukulasuriya, M. Industrial Applications of Marine Cosmeceuticals, Marine Cosmeceuticals: Latest Trends and Prospects; Taylor & Francis: New York, NY, USA, 2011. [Google Scholar]
- Harris, K.A.; Hill, A.M.; Kris-Etherton, P.M. Health benefits of marine derived omega-3 fatty acids. ACSMS Health Fit. J. 2010, 14, 22–28. [Google Scholar]
- Shibata, T.; Ishimaru, K.; Kawaguchi, S.; Yoshikawa, H.; Hama, Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 2008, 20, 705–711. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, Y.B.; Jeong, S.Y.; Nam, S.W.; Kim, Y.T. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccushaeundaensis. Biotechnol. Bioprocess Eng. 2007, 12, 312–317. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [PubMed]
- Honypattarakere, T.; Cherntong, N.; Wickienchot, S.; Kolida, S.; Rastall, R.A. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr. Polym. 2012, 87, 846–852. [Google Scholar] [CrossRef]
- Diaz-Lopez, M.; Garcia-Carreno, F.L. Applications of fish and shellfish enzymes in food and feed products. In Seafood Enzymes; Haard, N.F., Simpson, B.K., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 571–618. [Google Scholar]
- Okada, T.; Morrissey, M.T. Marine enzymes from seafood by-products. In Maximising the Value of Marine Byproducts; Shahidi, F., Ed.; CRC Press: Boca Raton, FL, USA; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 374–396. [Google Scholar]
- Fujiwara, S. Extremophiles: Developments of their special functions and potential resources. J. Biosci. Bioeng. 2002, 94, 518–525. [Google Scholar] [CrossRef]
- Pena-Rodriguez, A.; Mawhinney, T.P.; Ricque-Marie, D.; Cruz-Sua’rez, L.E. Chemical composition of cultivated seaweed Ulvaclathrata (Roth) C. Agardh. Food Chem. 2011, 129, 491–498. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleria, H.A.R.; Osborne, S.; Masci, P.; Gobe, G. Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries. Mar. Drugs 2015, 13, 6336-6351. https://doi.org/10.3390/md13106336
Suleria HAR, Osborne S, Masci P, Gobe G. Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries. Marine Drugs. 2015; 13(10):6336-6351. https://doi.org/10.3390/md13106336
Chicago/Turabian StyleSuleria, Hafiz Ansar Rasul, Simone Osborne, Paul Masci, and Glenda Gobe. 2015. "Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries" Marine Drugs 13, no. 10: 6336-6351. https://doi.org/10.3390/md13106336
APA StyleSuleria, H. A. R., Osborne, S., Masci, P., & Gobe, G. (2015). Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries. Marine Drugs, 13(10), 6336-6351. https://doi.org/10.3390/md13106336