Next Article in Journal
LC-PUFA-Enriched Oil Production by Microalgae: Accumulation of Lipid and Triacylglycerols Containing n-3 LC-PUFA Is Triggered by Nitrogen Limitation and Inorganic Carbon Availability in the Marine Haptophyte Pavlova lutheri
Next Article in Special Issue
Biosynthesis of Polyunsaturated Fatty Acids in the Oleaginous Marine Diatom Fistulifera sp. Strain JPCC DA0580
Previous Article in Journal
Evidence of Accelerated Evolution and Ectodermal-Specific Expression of Presumptive BDS Toxin cDNAs from Anemonia viridis
Open AccessArticle

Chemical Diversity as a Function of Temperature in Six Northern Diatom Species

1
MabCent-SFI, University of Tromsø, N-9037 Tromsø, Norway
2
Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
3
Marbio, University of Tromsø, N-9037 Tromsø, Norway
*
Author to whom correspondence should be addressed.
Mar. Drugs 2013, 11(11), 4232-4245; https://doi.org/10.3390/md11114232
Received: 12 August 2013 / Revised: 17 October 2013 / Accepted: 17 October 2013 / Published: 30 October 2013
(This article belongs to the Special Issue Metabolites in Diatoms)
In this study, we investigate how metabolic fingerprints are related to temperature. Six common northern temperate diatoms (Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Porosira glacialis, Skeletonema marinoi, and Thalassiosira gravida) were cultivated at two different temperatures, 0.5 and 8.5 °C. To exclude metabolic variations due to differences in growth rates, the growth rates were kept similar by performing the experiments under light limited conditions but in exponential growth phase. Growth rates and maximum quantum yield of photosynthesis were measured and interpreted as physiological variables, and metabolic fingerprints were acquired by high-resolution mass spectrometry. The chemical diversity varied substantially between the two temperatures for the tested species, ranging from 31% similarity for C. furcellatus and P. glacialis to 81% similarity for A. longicornis. The chemical diversity was generally highest at the lowest temperature. View Full-Text
Keywords: diatoms; physiology; metabolic fingerprinting; temperature diatoms; physiology; metabolic fingerprinting; temperature
Show Figures

Figure 1

MDPI and ACS Style

Huseby, S.; Degerlund, M.; Eriksen, G.K.; Ingebrigtsen, R.A.; Eilertsen, H.C.; Hansen, E. Chemical Diversity as a Function of Temperature in Six Northern Diatom Species. Mar. Drugs 2013, 11, 4232-4245.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop