Comparative Effects of Remimazolam and Propofol on Intraoperative Hypertension and Hypotension During Robot-Assisted Laparoscopic Gynecologic Surgery: A Retrospective Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. General Anesthesia
2.2. Surgical Procedure
2.3. Data Collection
2.4. Outcomes
2.4.1. Primary Outcomes
2.4.2. Secondary Outcomes
2.4.3. Exploratory Outcomes
2.4.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TIVA | Total intravenous anesthesia |
RA-LGS | Robot-assisted laparoscopic gynecologic surgery |
TCI | Target-controlled infusion |
PONV | Postoperative nausea and vomiting |
PCA | Patient-controlled analgesia |
NRS | Numeric rating scale |
PACU | Postanesthesia care unit |
SBP | Systolic blood pressure |
References
- Likhvantsev, V.V.; Landoni, G.; Berikashvili, L.B.; Polyakov, P.A.; Ya Yadgarov, M.; Ryzhkov, P.V.; Plotnikov, G.P.; Kornelyuk, R.A.; Komkova, V.V.; Zaraca, L.; et al. Hemodynamic Impact of the Trendelenburg Position: A Systematic Review and Meta-analysis. J. Cardiothorac. Vasc. Anesth. 2025, 39, 256–265. [Google Scholar] [CrossRef]
- Haas, S.; Haese, A.; Goetz, A.E.; Kubitz, J.C. Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int. J. Med. Robot. 2011, 7, 408–413. [Google Scholar] [CrossRef]
- Lundström, S.; Twycross, R.; Mihalyo, M.; Wilcock, A. Propofol. J. Pain. Symptom Manag. 2010, 40, 466–470. [Google Scholar] [CrossRef]
- Tsukimoto, S.; Kitaura, A.; Yamamoto, R.; Hirase, C.; Nakao, S.; Nakajima, Y.; Sanuki, T. Comparative Analysis of the Hemodynamic Effects of Remimazolam and Propofol During General Anesthesia: A Retrospective Study. Cureus 2024, 16, e58340. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, X.; Wen, C.; Li, D.; Lei, X. Remimazolam: An Updated Review of a New Sedative and Anaesthetic. Drug Des. Dev. Ther. 2022, 16, 3957–3974. [Google Scholar] [CrossRef] [PubMed]
- Fechner, J.; El-Boghdadly, K.; Spahn, D.R.; Motsch, J.; Struys, M.; Duranteau, O.; Ganter, M.T.; Richter, T.; Hollmann, M.W.; Rossaint, R.; et al. Anaesthetic efficacy and postinduction hypotension with remimazolam compared with propofol: A multicentre randomised controlled trial. Anaesthesia 2024, 79, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Min, K.T.; Park, E.K.; Park, S. Comparison of hypotension incidence between remimazolam and propofol in patients with hypertension undergoing neurosurgery: Prospective, randomized, single-blind trial. BMC Anesthesiol. 2024, 24, 198. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.Y.; Park, H.S.; Kim, H.; Ro, Y.J.; Koh, W.U. Effect of Remimazolam- versus Propofol-Based Total Intravenous General Anesthesia on Intraoperative Hemodynamic Stability for Major Spine Surgery in the Prone Position: A Randomized Controlled Trial. Medicina 2024, 60, 432. [Google Scholar] [CrossRef]
- Lan, H.; Cao, H.; Liu, S.; Gong, X.; Huang, X.; Rong, H.; Xu, B.; Chen, H.; Jiao, Z.; Lin, Y.; et al. Efficacy of remimazolam tosilate versus propofol for total intravenous anaesthesia in urological surgery: A randomised clinical trial. Eur. J. Anaesthesiol. 2024, 41, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, L.; Shao, C.; Yang, Y.; Tang, Y.; Wei, Q.; Xu, L. Comparison of remimazolam tosylate and propofol in hemodynamic stability, postoperative cognitive function, and recovery in general anesthesia combined with regional nerve blocks: A retrospective cohort study. BMC Anesthesiol. 2025, 25, 126. [Google Scholar] [CrossRef]
- Kaneko, R.; Koshika, K.; Shionoya, M.; Shimizu, K.; Sendai, Y.; Matsuura, N.; Ichinohe, T. Retrospective Study on the Incidence of Postoperative Nausea and Vomiting and Hypotension During Orthognathic Surgery Using Propofol or Remimazolam. Anesth. Prog. 2024, 71, 3–7. [Google Scholar] [CrossRef]
- Choi, E.K.; Jang, Y.; Park, S.J. Comparison of remimazolam and propofol induction on hemodynamic response in hypertensive patients. Medicine 2023, 102, e34358. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, H.S.; Kim, J.Y.; Han, D.W.; Yang, J.Y.; Kim, M.J.; Song, Y. Comparison of remimazolam-based and propofol-based total intravenous anesthesia on postoperative quality of recovery: A randomized non-inferiority trial. J. Clin. Anesth. 2022, 82, 110955. [Google Scholar] [CrossRef]
- Liu, T.; Lai, T.; Chen, J.; Lu, Y.; He, F.; Chen, Y.; Xie, Y. Effect of remimazolam induction on hemodynamics in patients undergoing valve replacement surgery: A randomized, double-blind, controlled trial. Pharmacol. Res. Perspect. 2021, 9, e00851. [Google Scholar] [CrossRef]
- Peng, X.; Liu, C.; Zhu, Y.; Peng, L.; Zhang, X.; Wei, W.; Zhu, T. Hemodynamic Influences of Remimazolam Versus Propofol During the Induction Period of General Anesthesia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Pain Physician 2023, 26, e761–e773. [Google Scholar] [CrossRef] [PubMed]
- Irimpan, J.; Kesavan, R.; Rajan, S.; Kumar, L. Comparison of intraoperative blood pressure values measured by noninvasive versus invasive methods during normotension, hypertension, and hypotension. J. Anaesthesiol. Clin. Pharmacol. 2024, 40, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bohringer, C.; Liu, H. What is “normal” intraoperative blood pressure and do deviations from it really affect postoperative outcome? J. Biomed. Res. 2017, 31, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Bloomstone, J.A.; Aronson, S.; Berry, C.; Gan, T.J.; Kellum, J.A.; Plumb, J.; Mythen, M.G.; Grocott, M.P.W.; Edwards, M.R.; et al. Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br. J. Anaesth. 2019, 122, 563–574. [Google Scholar] [CrossRef]
- Walco, J.P.; Rengel, K.F.; McEvoy, M.D.; Henson, C.P.; Li, G.; Shotwell, M.S.; Feng, X.; Freundlich, R.E. Association between Preoperative Blood Pressures and Postoperative Adverse Events. Anesthesiology 2024, 141, 272–285. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, S.; Kim, J.Y.; Moon, B.; Lee, D.; Jang, J.; Seo, W.Y.; Kim, H.S.; Kim, S.H.; Sim, J. Impact of Preanesthetic Blood Pressure Deviations on 30-Day Postoperative Mortality in Non-Cardiac Surgery Patients. J. Korean Med. Sci. 2024, 39, e241. [Google Scholar] [CrossRef]
- Guarracino, F.; Bertini, P. Perioperative hypotension: Causes and remedies. J. Anesth. Analg. Crit. Care 2022, 2, 17. [Google Scholar] [CrossRef]
- Lee, C.; Lee, C.; Lee, J.; Jang, G.; Kim, B.; Park, S. Comparison of Core Body Temperatures in Patients Administered Remimazolam or Propofol during Robotic-Assisted and Laparoscopic Radical Prostatectomy. Medicina 2022, 58, 690. [Google Scholar] [CrossRef]
- Rismiati, H.; Lee, H.-Y. Perioperative Management of Hypertensive Patients. Cardiovasc. Prev. Pharmacother. 2021, 3, 54–63. [Google Scholar] [CrossRef]
- Mohseni, S.; Behnam-Roudsari, S.; Tarbiat, M.; Shaker, P.; Shivaie, S.; Shafiee, M.A. Perioperative Hypertension Etiologies in Patients Undergoing Noncardiac Surgery in University Health Network Hospitals-Canada from 2015-2020. Integr. Blood Press. Control 2022, 15, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Mohr, N.L.; Krannich, A.; Jung, H.; Hulde, N.; von Dossow, V. Intraoperative Blood Pressure Management and Its Effects on Postoperative Delirium After Cardiac Surgery: A Single-Center Retrospective Cohort Study. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Aronow, W.S. Management of hypertension in patients undergoing surgery. Ann. Transl. Med. 2017, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, A.F.; Foubert, L.; Hendrickx, J.F.; Mottrie, A.; Absalom, A.; Mortier, E.P.; Struys, M.M. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br. J. Anaesth. 2010, 104, 433–439. [Google Scholar] [CrossRef]
- Falabella, A.; Moore-Jeffries, E.; Sullivan, M.J.; Nelson, R.; Lew, M. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: A trans-oesophageal Doppler probe study. Int. J. Med. Robot. 2007, 3, 312–315. [Google Scholar] [CrossRef]
- Sabljak, V.D.; Zivaljevic, V.R.; Milicic, B.R.; Paunovic, I.R.; Toskovic, A.R.; Stevanovic, K.S.; Tausanovic, K.M.; Markovic, D.Z.; Stojanovic, M.M.; Lakicevic, M.V.; et al. Risk Factors for Intraoperative Hypertension during Surgery for Primary Hyperparathyroidism. Med. Princ. Pract. 2017, 26, 381–386. [Google Scholar] [CrossRef]
- Luo, H.; Tang, Z. Efficacy and safety of remimazolam vs. propofol for general anesthesia with tracheal intubation: Systematic review and meta-analysis. Biomed. Rep. 2025, 22, 13. [Google Scholar] [CrossRef]
- Kumar, G.; Stendall, C.; Mistry, R.; Gurusamy, K.; Walker, D. A comparison of total intravenous anaesthesia using propofol with sevoflurane or desflurane in ambulatory surgery: Systematic review and meta-analysis. Anaesthesia 2014, 69, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Sim, K.M.; Na, H.S.; Koo, B.W.; Shin, H.J. Effect of remimazolam for general anesthesia on postoperative nausea and vomiting: A systematic review and meta-analysis. Anaesthesiologie 2024, 73, 685–693. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kawashima, S.; Makino, H.; Doi, M.; Nakajima, Y. Comparison of postoperative nausea and vomiting between remimazolam and propofol: A propensity score-matched, retrospective, observational, single-center cohort study. Korean J. Anesthesiol. 2023, 76, 143–151. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, C.H.; Yoon, J.Y.; Byeon, G.J.; Kim, H.Y.; Choi, E.J. Comparison of postoperative nausea and vomiting between Remimazolam and Propofol in Patients undergoing oral and maxillofacial surgery: A prospective Randomized Controlled Trial. BMC Anesthesiol. 2023, 23, 132. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Cheng, B.; Luo, J.; Xiong, Q.J.; Min, S.; Wei, K. The characteristics and risk factors of the postoperative nausea and vomiting in female patients undergoing laparoscopic sleeve gastrectomy and laparoscopic gynecological surgeries: A propensity score matching analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 182–189. [Google Scholar] [CrossRef]
- Lim, B.L.; Low, T.C. Total intravenous anaesthesia versus inhalational anaesthesia for dental day surgery. Anaesth. Intensive Care 1992, 20, 475–478. [Google Scholar] [CrossRef]
- Soleimanpour, H.; Ghafouri, R.R.; Taheraghdam, A.; Aghamohammadi, D.; Negargar, S.; Golzari, S.E.; Abbasnezhad, M. Effectiveness of intravenous dexamethasone versus propofol for pain relief in the migraine headache: A prospective double blind randomized clinical trial. BMC Neurol. 2012, 12, 114. [Google Scholar] [CrossRef]
- Heller, A.H.; Emily, K.N.; Rogawski, M. Efficacy of EP102 (Oral Fospropofol) for the Acute Treatment of Migraine in an Open-label Proof-of-concept Trial: Effect of Time to Treatment (P6-12.009). In Neurology; Lippincott Williams & Wilkins: Hagerstown, MD, USA, 2024; p. 6601. [Google Scholar]
- Colussi, G.L.; Di Fabio, A.; Catena, C.; Chiuch, A.; Sechi, L.A. Involvement of endothelium-dependent and -independent mechanisms in midazolam-induced vasodilation. Hypertens. Res. 2011, 34, 929–934. [Google Scholar] [CrossRef]
- Matthew, E.; Andreason, P.; Pettigrew, K.; Carson, R.E.; Herscovitch, P.; Cohen, R.; King, C.; Johanson, C.E.; Greenblatt, D.J.; Paul, S.M. Benzodiazepine receptors mediate regional blood flow changes in the living human brain. Proc. Natl. Acad. Sci. USA 1995, 92, 2775–2779. [Google Scholar] [CrossRef] [PubMed]
- Spivey, W.H.; Roberts, J.R.; Derlet, R.W. A clinical trial of escalating doses of flumazenil for reversal of suspected benzodiazepine overdose in the emergency department. Ann. Emerg. Med. 1993, 22, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.; Albers, G.; Burkhart, K.; Liebelt, E.; Kelley, M.; McCubbin, M.M.; Hoffman, J.; Massarella, J. Safety and efficacy of flumazenil in the reversal of benzodiazepine-induced conscious sedation. The Flumazenil Pediatric Study Group. J. Pediatr. 1997, 131, 582–586. [Google Scholar] [CrossRef] [PubMed]
Variable | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Remimazolam (n = 321) | Propofol (n = 373) | p Value | Remimazolam (n = 317) | Propofol (n = 317) | p Value | |
Age (years) | 41 (35–46) | 42 (36–46) | 0.543 | 41 (35–46) | 42 (36.5–46) | 0.393 |
Height (cm) | 162 (158–165) | 162 (159–166) | 0.810 | 162 (158–165) | 162 (158–166) | 0.976 |
Weight (kg) | 58 (53–65) | 59 (53–65.6) | 0.449 | 58.1 (53–65) | 59 (53–65.1) | 0.566 |
BMI (kg/m2) | 0.1 | 0.253 | ||||
underweight | 27 (8.4) | 15 (4) | 26 (8.1) | 14 (4.4) | ||
normal | 157 (48.9) | 197 (52.8) | 155 (48.9) | 163 (51.4) | ||
overweight | 71 (22.1) | 88 (23.6) | 66 (20.8) | 64 (20.2) | ||
obese | 66 (20.6) | 73 (18.6) | 70 (22.1) | 76 (24.0) | ||
History of HTN | 23 (7.2) | 26 (7) | 0.961 | 23 (7.3) | 22 (6.9) | 0.877 |
Thyroid disease | 17 (5.3) | 19 (5.1) | 0.959 | 16 (5.0) | 11 (3.5) | 0.325 |
ASA-PS (I/II) | 8/313 | 12/361 | 0.498 | 8/309 | 7/310 | 0.794 |
Hb (mg/dl) | 12.7 (11.9–13.5) | 12.8 (11.8–13.5) | 0.705 | 12.7 (11.8–13.5) | 12.8 (11.8–13.5) | 0.779 |
Ward SBP (mmHg) * | 119 (110–130) | 119 (110–128) | 0.840 | 120 (110–130) | 119 (110–128) | 0.785 |
Events | Before Matching | After Matching | |||||
---|---|---|---|---|---|---|---|
Remimazolam (n = 321) | Propofol (n = 373) | p Value | Remimazolam (n = 317) | Propofol (n = 317) | p Value | ARD (95% CIs) | |
Hypertension | |||||||
once | 216 (67.3) | 207 (55.5) | 0.002 * | 210 (66.2) | 165 (52.1) | <0.001 * | 14.2 (6.6–21.8) |
≥5 min | 159 (49.5) | 147 (39.4) | 0.009 * | 158 (49.8) | 123 (38.8) | 0.005 * | 11.0 (3.4–18.7) |
≥10 min | 124 (38.6) | 83 (22.3) | <0.001 * | 124 (39.1) | 70 (22.1) | <0.001 * | 17.0 (10.0–24.1) |
Hypotension | |||||||
once | 17 (5.3) | 47 (12.6) | 0.001 * | 17 (5.4) | 38 (12.0) | 0.003 * | −6.6 (−11.0–−2.3) |
≥5 min | 6 (1.9) | 17 (4.6) | 0.049 * | 6 (1.9) | 17 (5.4) | 0.019 * | −3.5 (−6.4–−0.6) |
≥10 min | 2 (0.6) | 6 (1.6) | 0.225 | 2 (0.6) | 5 (1.6) | 0.254 | – |
Stratification | Hypertension | Hypotension | ||||
---|---|---|---|---|---|---|
Remimazolam (n = 210) | Propofol (n = 165) | p Value | Remimazolam (n = 17) | Propofol (n = 38) | p Value | |
Phases | ||||||
before incision | 4 (1.9) | 7 (4.2) | 0.183 | 13 (76.5) | 30 (78.9) | 0.837 |
during procedure | 148 (70.5) | 131 (79.4) | 0.050 | 4 (23.5) | 6 (15.8) | 0.492 |
both phases | 58 (27.6) | 27 (16.4) | 0.010 * | 0 (0.0) | 2 (5.3) | 0.335 |
Hemodynamic burden | 0.20 (0.07–0.48) | 0.13 (0.07–0.28) | <0.001 * | 0.03 (0.03–0.07) | 0.03 (0.03–0.07) | 0.911 |
Severe cases | 69 (32.9) | 49 (29.7) | 0.513 | 0 | 0 | N/A |
Variable | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Remimazolam (n = 321) | Propofol (n = 373) | p Value | Remimazolam (n = 317) | Propofol (n = 317) | p Value | |
Remifentanil (mcg/kg/min) | 0.27 (0.13–0.45) | 0.05 (0.04–0.06) | <0.001 * | 0.27 (0.12–0.45) | 0.05 (0.04–0.062) | <0.001 * |
Vasoactive agents | ||||||
vasopressors | 34 (10.6) | 69 (18.5) | 0.003 * | 34 (10.7) | 66 (20.8) | <0.001 * |
antihypertensives | 63 (19.6) | 82 (22.0) | 0.504 | 62 (19.6) | 66 (20.8) | 0.692 |
Variable | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Remimazolam (n = 321) | Propofol (n = 373) | p Value | Remimazolam (n = 317) | Propofol (n = 317) | p Value | |
Intraoperative | ||||||
OR SBP (mmHg) † | 135 (123–150) | 135 (123–147) | 0.685 | 135 (124–150) | 136 (123–147) | 0.680 |
Surgery type | 0.576 | 0.430 | ||||
myomectomy | 136 (42.4) | 145 (38.9) | 136 (42.9) | 124 (39.1) | ||
TLH ± BSO | 96 (29.9) | 134 (35.9) | 95 (30.0) | 118 (37.2) | ||
combination | 47 (14.6) | 49 (13.1) | 46 (14.5) | 40 (12.6) | ||
OC | 38 (11.8) | 40 (10.7) | 36 (11.4) | 31 (9.8) | ||
staging | 4 (1.2) | 5 (1.3) | 4 (1.3) | 4(1.3) | ||
Tilting angle | 0.457 | 0.253 | ||||
15° | 87 (27.1) | 113 (30.3) | 85 (26.8) | 100 (31.5) | ||
20° | 163 (50.8) | 190 (50.9) | 161 (50.8) | 160 (50.5) | ||
23–28° | 71 (22.1) | 70 (18.8) | 71 (22.4) | 57 (18.0) | ||
OP duration (min) | 120 (90–155) | 120 (90–145) | 0.547 | 120 (95–157) | 120 (90–145) | 0.412 |
ANS duration (min) | 145 (115–182) | 145 (115–170) | 0.432 | 145 (118–184.5) | 145 (115–170) | 0.344 |
Vasopressin ‡ | 173 (53.9) | 188 (50.4) | 0.400 | 173 (54.6) | 159 (50.2) | 0.266 |
Input (mL) | 950 (750–1175) | 800 (550–1100) | <0.001 * | 950 (750–1200) | 800 (550–1150) | <0.001 * |
Output (mL) | 500 (300–700) | 450 (319–700) | 0.589 | 500 (340–700) | 480 (330–700) | 0.587 |
EBL (mL) | 200 (100–350) | 200 (100–375) | 0.850 | 200 (100–350) | 200 (100–400) | 0.947 |
Atropine | 1 (0.3) | 7 (1.9) | 0.117 | 1 (0.3) | 6 (1.9) | 0.057 |
Flumazenil | 26 (8.1) | N/A | N/A | 25 (7.89) | N/A | N/A |
Postoperative | ||||||
RBC Transfusion | 10 (3.1) | 16 (4.3) | 0.541 | 10 (3.2) | 14 (4.4) | 0.405 |
PACU SBP (mmHg) | 125 (116–138) | 122 (113–131) | <0.001 * | 125 (116–138) | 122 (113–132) | <0.001 * |
NRS in PACU | 2 (1–2) | 2 (1–2) | 0.601 | 2 (1–2) | 2 (1–2) | 0.637 |
PACU LOS (min) | 28 (28–33) | 28 (28–33) | 0.223 | 28 (28–33) | 28 (28–33) | 0.544 |
Postoperative pain | 160 (49.8) | 167 (44.8) | 0.208 | 158 (49.8) | 144 (45.4) | 0.266 |
MED of opioid (mg/kg) | 1.41 ± 0.23 | 1.40 ± 0.21 | 0.179 | 1.41 ± 0.23 | 1.39 ± 0.20 | 0.467 |
characteristics | ||||||
OP site pain | 137 (42.7) | 146 (39.1) | 0.385 | 135 (42.6) | 127 (40.1) | 0.519 |
headache | 41 (12.8) | 25 (6.7) | 0.010 * | 40 (12.6) | 21 (6.6) | 0.010 * |
distension pain | 9 (2.8) | 11 (2.9) | 0.910 | 8 (2.5) | 10 (3.2) | 0.633 |
PONV | 163 (50.8) | 206 (55.2) | 0.208 | 162 (51.1) | 177 (55.8) | 0.232 |
Hospitalization LOS (h) | 90 (89–92) | 90 (88–92) | 0.881 | 90 (89–92) | 90 (88–92) | 0.909 |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CIs) | p Value | OR (95% CIs) | p Value | |
Remimazolam vs. propofol | 1.808 (1.312–2.491) | <0.001 * | 1.949 (1.333–2.850) | 0.001 * |
Age | 1.041 (1.017–1.65) | 0.001 * | 1.018 (0.988–1.049) | 0.246 |
BMI | ||||
Underweight | 0.788 (0.408–1.522) | 0.477 | 0.662 (0.318–1.380) | 0.271 |
Overweight | 1.265 (0.837–1.912) | 0.265 | 0.992 (0.610–1.613) | 0.974 |
Obese | 2.565 (1.663–3.955) | <0.001 * | 1.604 (0.963–2.670) | 0.069 |
HTN history | 1.986 (1.006–3.923) | 0.048 * | 0.415 (0.172–1.001) | 0.050 |
Ward SBP ≥ 140 † | 11.174 (2.646–47.182) | 0.001 * | 2.383 (0.500–1.361) | 0.276 |
OR SBP ‡ | ||||
140 ≤ SBP < 160 | 3.768 (2.553–5.563) | <0.001 * | 4.335 (2.747–6.841) | <0.001 * |
160 ≤ SBP | 19.671 (7.021–55.111) | <0.001 * | 18.251 (5.710–58.337) | <0.001 * |
Tilting angle § | ||||
20° | 1.545 (1.072–2.228) | 0.020 * | 1.543 (0.992–2.402) | 0.055 |
23–28° | 1.633 (1.030–2.588) | 0.037 * | 1.919 (1.113–3.311) | 0.019 * |
Vasopressin ∥ | 0.990 (0.721–1.360) | 0.952 | 1.474 (0.977–2.226) | 0.065 |
Input | 1.001 (1.001–1.001) | <0.001 * | 1.001 (1.000–1.001) | 0.049 * |
Output | 1.001 (1.001–1.002) | <0.001 * | 1.000 (0.999–1.001) | 0.731 |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CIs) | p Value | OR (95% CIs) | p Value | |
Remimazolam vs. propofol | 0.416 (0.230–0.754) | 0.004 * | 0.353 (0.183–0.680) | 0.002 * |
Age | 1.039 (0.998–1.082) | 0.060 | 1.063 (1.010-1.118) | 0.019 * |
BMI | ||||
Underweight | 1.151 (0.382–3.469) | 0.803 | 1.573 (0.492–5.034) | 0.445 |
Overweight | 1.053 (0.518–2.141) | 0.886 | 1.099 (0.511–2.366) | 0.809 |
Obese | 0.844 (0.408–1.745) | 0.647 | 1.067 (0.469–2.428) | 0.876 |
HTN history | 1.695 (0.684–4.203) | 0.254 | 4.549 (1.347–15.364) | 0.015 * |
Ward SBP ≥ 140 † | 0.000 (0.000–0.000) | 0.998 | ||
OR SBP ‡ | ||||
140 ≤ SBP < 160 | 0.324 (0.149–0.700) | 0.004 * | 0.182 (0.071–0.467) | <0.001 * |
160 ≤ SBP | 0.108 (0.015–0.797) | 0.029 * | 0.041 (0.005–0.361) | <0.001 * |
Tilting angle § | ||||
20° | 0.572 (0.309–1.058) | 0.075 | 0.550 (0.284–1.065) | 0.076 |
23–28° | 0.628 (0.287–1.375) | 0.245 | 0.639 (0.277–1.473) | 0.293 |
Vasopressin ∥ | 0.866 (0.498–1.506) | 0.611 | 1.166 (0.609–2.230) | 0.644 |
Input | 0.999 (0.999–1.000) | 0.069 | 1.000 (0.999–1.001) | 0.518 |
Output | 0.999 (0.998–1.000) | 0.104 | 1.000 (0.998–1.001) | 0.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.M.; Lee, J.; Kang, S.H.; Jung, K.; Yeo, H.; Joo, Y. Comparative Effects of Remimazolam and Propofol on Intraoperative Hypertension and Hypotension During Robot-Assisted Laparoscopic Gynecologic Surgery: A Retrospective Analysis. Medicina 2025, 61, 1721. https://doi.org/10.3390/medicina61091721
Lee JM, Lee J, Kang SH, Jung K, Yeo H, Joo Y. Comparative Effects of Remimazolam and Propofol on Intraoperative Hypertension and Hypotension During Robot-Assisted Laparoscopic Gynecologic Surgery: A Retrospective Analysis. Medicina. 2025; 61(9):1721. https://doi.org/10.3390/medicina61091721
Chicago/Turabian StyleLee, Jung Min, Joohyun Lee, Se Hee Kang, Kangha Jung, Hyean Yeo, and Young Joo. 2025. "Comparative Effects of Remimazolam and Propofol on Intraoperative Hypertension and Hypotension During Robot-Assisted Laparoscopic Gynecologic Surgery: A Retrospective Analysis" Medicina 61, no. 9: 1721. https://doi.org/10.3390/medicina61091721
APA StyleLee, J. M., Lee, J., Kang, S. H., Jung, K., Yeo, H., & Joo, Y. (2025). Comparative Effects of Remimazolam and Propofol on Intraoperative Hypertension and Hypotension During Robot-Assisted Laparoscopic Gynecologic Surgery: A Retrospective Analysis. Medicina, 61(9), 1721. https://doi.org/10.3390/medicina61091721