Snorkel Stenting During Transcatheter Aortic Valve Implantation: A Single-Center Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Snorkel Stenting Approach
2.2. Definitions
2.3. Statistical Methods
3. Results
4. Discussion
- −
- To enhance leaflet separation during the BASILICA procedure, a modified technique called balloon-augmented (BA)-BASILICA has been developed. This variation follows the traditional BASILICA workflow but introduces a crucial step: just before the leaflet is lacerated, a 4 to 5 mm balloon is inflated within the targeted cusp to facilitate a wider splay [18]. The preliminary data documented one case each of CO (6%), stroke (6%), and life-threatening bleeding (6%), along with two cases of major vascular complications (13%). No 30-day mortality was reported. The more established nature of snorkel stenting compared with BA-BASILICA may account for these differences and highlights the need for further outcome improvements.
- −
- Developed by Pi-Cardia (Rehovot, Israel), the ShortCut device is engineered to modify valve leaflets [19]. It employs a dual-arm mechanism at its tip; one arm positions the device, while the other performs the split, allowing for precise scissor-like cutting once optimal alignment is reached. Similarly to our study, no cases of CO, moderate/severe aortic regurgitation, or 30-day mortality were observed, with a median transvalvular gradient of 10 mmHg. No stroke occurred, and no new pacemaker implantations were required; one major vascular complication was reported.
- −
- The CLEVE consists of excising a leaflet from a surgically implanted valve, particularly in cases where its presence poses a risk of obstructing the coronary ostia or the left ventricular outflow tract [20]. The process begins by using a 0.014-inch guidewire, stripped to expose the metallic core, through which 70 watts of “cut” mode electrosurgical energy is applied to perforate the target leaflet. After the wire traverses into the ventricular chamber, the leaflet is progressively expanded using balloon dilatation, first with a 4.0 × 20 mm balloon, then with a larger 12.0 × 40 mm balloon. Once the leaflet is adequately modified, a THV is deployed using routine implantation methods. Among the eight patients analyzed, there was one case of CO and one 30-day mortality. No paravalvular leak or stroke was observed, and the mean transvalvular gradient was 7.8 mmHg.
- −
- Building upon the principles of the BASILICA technique, CATHEDRAL (CATHeter Electrosurgical Debulking and RemovAL) introduces a refined method for leaflet removal [21]. A modified “Flying V” wire configuration is used, not for laceration, but to grasp and manipulate the targeted leaflet. Once the leaflet is positioned, a snare is deployed at its base, delivering electrosurgical energy to detach it. The freed leaflet is then guided via the Flying V into a larger sheath for extraction and removal from the body.
- −
- The LLAMACORN (Leaflet Laceration And Midline Approximation to Create an Orifice Resembling Native) technique is designed to reconfigure the bioprosthetic valve opening, restoring a more anatomically native shape [22]. It is especially useful in cases of pronounced commissural misalignment or distorted, non-circular valve orifices, which can hinder proper transcatheter valve expansion or performance. In all five cases, TAVI was performed successfully without complications. None developed CO, conduction disturbances requiring pacemaker implantation, stroke, or vascular complications. All patients were discharged home and remained alive at 30 days. The mean transvalvular gradient was 11.6 mmHg, with only one case of mild paravalvular leak.
- −
- UNICORN (Undermining Iatrogenic Coronary Obstruction With Radiofrequency Needle) is an emergent rescue technique developed to restore coronary perfusion after a coronary obstruction has occurred during TAVI [23]. It is particularly valuable in cases where no preemptive protective measures, such as coronary wiring or stenting, were implemented prior to the obstruction.
4.1. Medical Therapy
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO | Coronary obstruction |
MI | Myocardial infarction |
TAVI | Transcatheter aortic valve implantation |
THV | Transcatheter heart valve |
References
- VARC-3 Writing Committee; Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; et al. Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef]
- Ibrahim, H.; Chaus, A.; Alkhalil, A.; Prescher, L.; Kleiman, N. Coronary Artery Obstruction After Transcatheter Aortic Valve Implantation: Past, Present, and Future. Circ. Cardiovasc. Interv. 2024, 17, e012827. [Google Scholar] [CrossRef]
- Landes, U.; Webb, J.G.; De Backer, O.; Sondergaard, L.; Abdel-Wahab, M.; Crusius, L.; Kim, W.-K.; Hamm, C.; Buzzatti, N.; Montorfano, M.; et al. Repeat Transcatheter Aortic Valve Replacement for Transcatheter Prosthesis Dysfunction. J. Am. Coll. Cardiol. 2020, 75, 1882–1893. [Google Scholar] [CrossRef]
- Mangieri, A.; Gallo, F.; Popolo Rubbio, A.; Casenghi, M.; Ancona, M.; Regazzoli, D.; Latib, A.; Petriello, G.; Di Stefano, D.; Fraccaro, C.; et al. Outcome of Coronary Ostial Stenting to Prevent Coronary Obstruction During Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2020, 13, e009017. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.M.; Kamioka, N.; Lisko, J.C.; Perdoncin, E.; Zhang, C.; Maini, A.; Chen, M.; Li, Y.; Ludwig, S.; Westermann, D.; et al. Coronary Obstruction From TAVR in Native Aortic Stenosis: Development and Validation of Multivariate Prediction Model. JACC Cardiovasc. Interv. 2023, 16, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.M.; Dvir, D.; Greenbaum, A.B.; Babaliaros, V.C.; Rogers, T.; Aldea, G.; Reisman, M.; Mackensen, G.B.; Eng, M.H.K.; Paone, G.; et al. Transcatheter Laceration of Aortic Leaflets to Prevent Coronary Obstruction During Transcatheter Aortic Valve Replacement: Concept to First-in-Human. JACC Cardiovasc. Interv. 2018, 11, 677–689. [Google Scholar] [CrossRef]
- Mangieri, A.; Richter, I.; Gitto, M.; Abdelhafez, A.; Bedogni, F.; Lanz, J.; Montorfano, M.; Unbehaun, A.; Giannini, F.; Nerla, R.; et al. Chimney Stenting vs BASILICA for Prevention of Acute Coronary Obstruction During Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2024, 17, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Tamis-Holland, J.E.; Abbott, J.D.; Al-Azizi, K.; Barman, N.; Bortnick, A.E.; Cohen, M.G.; Dehghani, P.; Henry, T.D.; Latif, F.; Madjid, M.; et al. SCAI Expert Consensus Statement on the Management of Patients With STEMI Referred for Primary PCI. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 102294. [Google Scholar] [CrossRef]
- Fetahovic, T.; Hayman, S.; Cox, S.; Cole, C.; Rafter, T.; Camuglia, A. The Prophylactic Chimney Snorkel Technique for the Prevention of Acute Coronary Occlusion in High Risk for Coronary Obstruction Transcatheter Aortic Valve Replacement/Implantation Cases. Heart Lung Circ. 2019, 28, e126–e130. [Google Scholar] [CrossRef]
- Burzotta, F.; Kovacevic, M.; Aurigemma, C.; Shoeib, O.; Bruno, P.; Cangemi, S.; Romagnoli, E.; Trani, C. An “Orthotopic” Snorkel-Stenting Technique to Maintain Coronary Patency During Transcatheter Aortic Valve Replacement. Cardiovasc. Revasc. Med. 2021, 28, 94–97. [Google Scholar] [CrossRef]
- Carroll, J.D.; Mack, M.J.; Vemulapalli, S.; Herrmann, H.C.; Gleason, T.G.; Hanzel, G.; Deeb, G.M.; Thourani, V.H.; Cohen, D.J.; Desai, N.; et al. STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2020, 76, 2492–2516. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. STROBE Initiative Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef]
- Jabbour, R.J.; Tanaka, A.; Finkelstein, A.; Mack, M.; Tamburino, C.; Van Mieghem, N.; de Backer, O.; Testa, L.; Gatto, P.; Purita, P.; et al. Delayed Coronary Obstruction After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 71, 1513–1524. [Google Scholar] [CrossRef]
- Ribeiro, H.B.; Rodés-Cabau, J.; Blanke, P.; Leipsic, J.; Kwan Park, J.; Bapat, V.; Makkar, R.; Simonato, M.; Barbanti, M.; Schofer, J.; et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: Insights from the VIVID registry. Eur. Heart J. 2018, 39, 687–695. [Google Scholar] [CrossRef]
- Chen, F.; Xiong, T.; Li, Y.; Wang, X.; Zhu, Z.; Yao, Y.; Ou, Y.; Li, X.; Wei, X.; Zhao, Z.; et al. Risk of Coronary Obstruction During Redo-TAVR in Patients With Bicuspid Versus Tricuspid Aortic Valve Stenosis. JACC Cardiovasc. Interv. 2022, 15, 712–724. [Google Scholar] [CrossRef]
- Tang, G.H.L.; Komatsu, I.; Tzemach, L.; Simonato, M.; Wolak, A.; Blanke, P.; Dvir, D. Risk of coronary obstruction and the need to perform BASILICA: The VIVID classification. EuroIntervention 2020, 16, e757–e759. [Google Scholar] [CrossRef]
- Perdoncin, E.; Bruce, C.G.; Babaliaros, V.C.; Yildirim, D.K.; Depta, J.P.; McCabe, J.M.; Gleason, P.T.; Xie, J.; Grubb, K.J.; Paone, G.; et al. Balloon-Augmented Leaflet Modification With Bioprosthetic or Native Aortic Scallop Intentional Laceration to Prevent Iatrogenic Coronary Artery Obstruction and Laceration of the Anterior Mitral Leaflet to Prevent Outflow Obstruction: Benchtop Validation and First In-Man Experience. Circ. Cardiovasc. Interv. 2021, 14, e011028. [Google Scholar] [CrossRef] [PubMed]
- Dvir, D.; Leon, M.B.; Abdel-Wahab, M.; Unbehaun, A.; Kodali, S.; Tchetche, D.; Pibarot, P.; Leipsic, J.; Blanke, P.; Gerckens, U.; et al. First-in-Human Dedicated Leaflet Splitting Device for Prevention of Coronary Obstruction in Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2023, 16, 94–102. [Google Scholar] [CrossRef]
- Krishnaswamy, A.; Meier, D.; Harb, S.; Gill, H.; Delarive, J.; Lai, A.; Payne, G.; Yun, J.; Miyasaka, R.; Sellers, S.; et al. Initial Experience and Bench Validation of the CLEVE Prosthetic Leaflet Modification Procedure During Aortic and Mitral Valve-in-Valve Procedures. JACC Cardiovasc. Interv. 2025, 18, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Babaliaros, V.C.; Gleason, P.T.; Xie, J.X.; Khan, J.M.; Bruce, C.G.; Byku, I.; Grubb, K.; Paone, G.; Rogers, T.; Lederman, R.J.; et al. Toward Transcatheter Leaflet Removal With the CATHEDRAL Procedure: CATHeter Electrosurgical Debulking and RemovAL. JACC Cardiovasc. Interv. 2022, 15, 1678–1680. [Google Scholar] [CrossRef]
- Mew, C.; Dahiya, A.; Chong, A.A.; Hayman, S.M.; Moore, P.T.; Harrop, D.L.; Reyaldeen, R.; Cole, C.M.W.; Ross, J.D.W.; Roberts, S.; et al. First-in-human: Leaflet laceration with balloon mediated annihilation to prevent coronary obstruction with radiofrequency needle (LLAMACORN) for valve-in-valve transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2024, 104, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.-Y.E.; Tai-Leung Chan, D.; Lam, C.-C.S.; Shu-Yue Sze, M.; Un, K.-C.; Tam, C.-C.F.; Lam, Y.-M.; Wong, C.-K. First-in-Human Undermining Iatrogenic Coronary Obstruction With Radiofrequency Needle (UNICORN) Procedure During Valve-in-Valve Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2022, 15, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Palmerini, T.; Chakravarty, T.; Saia, F.; Bruno, A.G.; Bacchi-Reggiani, M.-L.; Marrozzini, C.; Patel, C.; Patel, V.; Testa, L.; Bedogni, F.; et al. Coronary Protection to Prevent Coronary Obstruction During TAVR: A Multicenter International Registry. JACC Cardiovasc. Interv. 2020, 13, 739–747. [Google Scholar] [CrossRef]
- Mercanti, F.; Rosseel, L.; Neylon, A.; Bagur, R.; Sinning, J.-M.; Nickenig, G.; Grube, E.; Hildick-Smith, D.; Tavano, D.; Wolf, A.; et al. Chimney Stenting for Coronary Occlusion During TAVR: Insights From the Chimney Registry. JACC Cardiovasc. Interv. 2020, 13, 751–761. [Google Scholar] [CrossRef]
- Yildirim, A.; Genc, O.; Pacaci, E.; Sen, O.; Kurt, I.H. Real-Life Performance and Clinical Outcomes of Portico Transcatheter Aortic Valve with FlexNav Delivery System: One-Year Data from a Single-Center Experience. J. Clin. Med. 2023, 12, 5373. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardio-Thorac. Surg. 2021, 60, 727–800. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients With Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 151, e771–e862. [Google Scholar] [CrossRef]
Characteristic | n = 21 |
---|---|
Age, years, mean (SD) | 81.3 (6.1) |
Female, n (%) | 16 (76.2) |
BSA, m2, mean (SD) | 1.9 (0.3) |
BMI, kg/m2, mean (SD) | 31.2 (8.5) |
NYHA class, n (%) | |
Class I | 1 (4.8) |
Class II | 6 (28.6) |
Class III | 10 (47.6) |
Class IV | 4 (19.0) |
BNP, pg/mL, median [IQR] | 347 [179–1103] |
STS PROM, median [IQR] | 5.0 [3.0–8.0] |
Hypertension, n (%) | 20 (95.2) |
Dyslipidemia, n (%) | 20 (95.2) |
Diabetes mellitus, n (%) | 5 (23.8) |
Previous endocarditis, n (%) | 1 (4.8) |
Smoke, n (%) | |
Never | 17 (81.0) |
Former | 4 (19.0) |
Chronic lung disease, n (%) | 3 (14.3) |
Creatinine, mg/dL, mean (SD) | 1.2 (0.5) |
eGFR, mL/min/1.73 m2, median [IQR] | 53.2 [36.8–70.3] |
Dialysis, n (%) | 0 (0.0) |
Previous TIA, n (%) | 2 (9.5) |
Previous stroke, n (%) | 2 (9.5) |
PAD, n (%) | 2 (9.5) |
Previous MI, n (%) | 3 (14.3) |
Previous PCI, n (%) | 4 (19.0) |
Previous CABG, n (%) | 5 (23.8) |
Previous mitral/tricuspid surgery, n (%) | 0 (0.0) |
Atrial fibrillation, n (%) | |
Paroxysmal | 5 (23.8) |
Long-standing persistent | 1 (4.8) |
Permanent | 1 (4.8) |
Atrial flutter, n (%) | 3 (14.3) |
Preoperative RBBB, n (%) | 5 (23.8) |
Preoperative LBBB, n (%) | 4 (19.0) |
Preoperative pacemaker/ICD, n (%) | 1 (4.8) |
Parameter | n = 21 |
---|---|
MDCT data | |
SoV diameter, mm, mean (SD) | 24.6 (6.8) |
STJ diameter, mm, mean (SD) | 26.1 (4.1) |
Mean annulus diameter, mm, mean (SD) | 21.2 (2.5) |
Max annulus diameter, mm, mean (SD) | 23.7 (2.61) |
Min annulus diameter, mm, mean (SD) | 20.3 (2.3) |
Annulus area, mm2, mean (SD) | 402.0 (59.7) |
Annulus perimeter, mm, mean (SD) | 71.7 (5.2) |
Aortic angle, °degree, mean (SD) | 43.4 (10.9) |
Left coronary height, mm, mean (SD) | 7.9 (3.3) |
Right coronary height, mm, mean (SD) | 10.6 (5.5) |
Echocardiographic data | |
LVEF, %, mean (SD) | 60.0 (7.6) |
AVA, cm2, median [IQR] | 0.90 [0.60–1.66] |
iAVA, cm2, median [IQR] | 0.46 [0.33–0.82] |
Peak velocity, m/s, mean (SD) | 3.6 (1.0) |
Mean gradient, mmHg, mean (SD) | 30.0 (15.5–48.5) |
Aortic regurgitation, n (%) | |
None/Trace | 9 (42.9) |
Mild | 1 (4.8) |
Moderate | 2 (9.5) |
Severe | 9 (42.9) |
Previous bioprostheses | |
Degenerated bioprosthesis, n (%) | 18 (85.7) |
Trifecta | 7 (33.3) |
Mitroflow | 3 (14.3) |
Freestyle | 2 (9.5) |
CoreValve | 2 (9.5) |
Evolut R | 1 (4.8) |
Evolut PRO | 1 (4.8) |
Perceval | 1 (4.8) |
Toronto Bilinks | 1 (4.8) |
Degenerated bioprosthesis size, n (%) | |
19 | 1 (4.8) |
21 | 7 (33.3) |
23 | 4 (19.0) |
25 | 1 (4.8) |
29 | 5 (23.8) |
Perioperative Outcomes | n = 21 |
---|---|
Transfemoral approach, n (%) | 20 (95.2) |
Transaxillary approach, n (%) | 1 (4.8) |
Pre-dilatation, n (%) | 3 (14.3) |
Post-dilatation, n (%) | 7 (33.3) |
Valve-in-Valve, n (%) | 18 (85.7) |
Implanted Valve | |
Evolut R | 2 (9.5) |
Evolut PRO | 2 (9.5) |
Evolut PRO+ | 5 (23.8) |
Evolut FX | 4 (19.0) |
Sapien 3 | 2 (9.5) |
Sapien Ultra | 6 (28.6) |
Device size, n (%) | |
20 | 1 (4.8) |
23 | 14 (66.7) |
26 | 5 (23.8) |
34 | 1 (4.8) |
Snorkel coronary, n (%) | |
LMC | 9 (42.9) |
RCA | 10 (47.6) |
LMC + RCA | 2 (9.5) |
Surgical conversion, n (%) | 0 (0.0) |
MCS, n (%) | 0 (0.0) |
Intraoperative transfusions, n (%) | 0 (0.0) |
Valve mispositioning, n (%) | 0 (0.0) |
Second valve deployment, n (%) | 0 (0.0) |
Annulus rupture, n (%) | 0 (0.0) |
Coronary obstruction, n (%) | 0 (0.0) |
Major vascular complication, n (%) | 0 (0.0) |
Minor vascular complication, n (%) | 0 (0.0) |
Stroke | 1 (4.8) |
Disabling | 1 (4.8) |
Postoperative MI | 0 (0.0) |
New LBBB, n (%) | 4 (19.0) |
New pacemaker implant, n (%) | 1 (4.8) |
Postoperative transfusion, n (%) | 1 (4.8) |
Length of stay, days, median [IQR] | 1 [1,2] |
30-day mortality, n (%) | 0 (0.0) |
30-day CV readmission, n (%) | 0 (0.0) |
Echocardiographic data | |
LVEF, %, mean (SD) | 60.9 (9.2) |
EOA, cm2, mean (SD) | 1.66 (0.55) |
iEOA, cm2, mean (SD) | 0.87 (0.34) |
Peak velocity, m/s, mean (SD) | 2.6 (0.5) |
Mean gradient, mmHg, mean (SD) | 16.1 (7.7) |
Paravalvular leak, n (%) | |
None/Trace | 19 (90.5) |
Mild | 2 (9.5) |
Central leak, n (%) | |
None/Trace | 21 (100) |
Mild | 0 (0.0) |
VARC-3 and Follow-Up Outcomes | n = 21 |
---|---|
VARC-3 outcomes | |
Technical success, n (%) | 21 (100) |
Device success, n (%) | 17 (81.0) |
Early safety, n (%) | 19 (90.5) |
Clinical outcomes | |
Follow-up, years, median [IQR] | 1.25 [1.05–3.05] |
Rehospitalization for heart failure, n (%) | 5 (23.8) |
Aortic valve reintervention, n (%) | 0 (0.0) |
Overall survival, n (%) | 17 (81.0) |
CV-related death, n (%) | 2 (9.5) |
Total new pacemaker, n (%) | 2 (9.5) |
Stroke, n (%) | 1 (4.8) |
Disabling | 1 (4.8) |
Endocarditis, n (%) | 1 (4.8) |
Myocardial infarction, n (%) | 1 (4.8) |
1-month echocardiographic data (n = 19) | |
LVEF, %, mean (SD) | 61.4 (8.5) |
EOA, cm2, mean (SD) | 1.54 (0.50) |
iEOA, cm2, mean (SD) | 0.80 (0.27) |
Mean gradient, mmHg, median [IQR] | 17.0 [12–19] |
Aortic regurgitation, n (%) | |
None/Trace | 16 (84.2) |
Mild | 3 (15.8) |
1-year echocardiographic data (n = 13) | |
LVEF, %, mean (SD) | 68.9 (7.4) |
EOA, cm2, mean (SD) | 1.65 (0.62) |
iEOA, cm2, mean (SD) | 0.83 (0.25) |
Mean gradient, mmHg, median [IQR] | 13.0 [7.0–26.0] |
Aortic regurgitation, n (%) | |
None/Trace | 10 (76.9) |
Mild | 3 (23.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baudo, M.; Sicouri, S.; Yamashita, Y.; Magouliotis, D.E.; Cabrucci, F.; Carnila, S.M.; Goldman, S.M.; Gnall, E.M.; Gray, W.A.; Gelsomino, S.; et al. Snorkel Stenting During Transcatheter Aortic Valve Implantation: A Single-Center Study. Medicina 2025, 61, 1679. https://doi.org/10.3390/medicina61091679
Baudo M, Sicouri S, Yamashita Y, Magouliotis DE, Cabrucci F, Carnila SM, Goldman SM, Gnall EM, Gray WA, Gelsomino S, et al. Snorkel Stenting During Transcatheter Aortic Valve Implantation: A Single-Center Study. Medicina. 2025; 61(9):1679. https://doi.org/10.3390/medicina61091679
Chicago/Turabian StyleBaudo, Massimo, Serge Sicouri, Yoshiyuki Yamashita, Dimitrios E. Magouliotis, Francesco Cabrucci, Sarah M. Carnila, Scott M. Goldman, Eric M. Gnall, William A. Gray, Sandro Gelsomino, and et al. 2025. "Snorkel Stenting During Transcatheter Aortic Valve Implantation: A Single-Center Study" Medicina 61, no. 9: 1679. https://doi.org/10.3390/medicina61091679
APA StyleBaudo, M., Sicouri, S., Yamashita, Y., Magouliotis, D. E., Cabrucci, F., Carnila, S. M., Goldman, S. M., Gnall, E. M., Gray, W. A., Gelsomino, S., & Ramlawi, B. (2025). Snorkel Stenting During Transcatheter Aortic Valve Implantation: A Single-Center Study. Medicina, 61(9), 1679. https://doi.org/10.3390/medicina61091679