Preoperative Activation of c-Src Kinase in Atrial Tissue in Patients Developing Postoperative Atrial Fibrillation
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
AF | Atrial fibrillation |
PoAF | Postoperative atrial fibrillation |
SR | Sinus rhythm |
ECG | Electrocardiogram |
PDGF | Platelet-derived growth factor |
PDGFR | Platelet-derived growth factor receptor |
MAPK | Mitogen-activated protein kinase |
References
- Mariscalco, G.; Engstrom, K.G. Postoperative atrial fibrillation is associated with late mortality after coronary surgery, but not after valvular surgery. Ann. Thorac. Surg. 2009, 88, 1871–1876. [Google Scholar] [CrossRef]
- Maisel, W.H.; Rawn, J.D.; Stevenson, W.G. Atrial fibrillation after cardiac surgery. Ann. Intern. Med. 2001, 135, 1061–1073. [Google Scholar] [CrossRef]
- Ahlsson, A.; Fengsrud, E.; Bodin, L.; Englund, A. Postoperative atrial fibrillation in patients undergoing aortocoronary bypass surgery carries an eightfold risk of future atrial fibrillation and a doubled cardiovascular mortality. Eur. J. Cardiothorac. Surg. 2010, 37, 1353–1359. [Google Scholar] [CrossRef]
- Shingu, Y.; Kubota, S.; Wakasa, S.; Ooka, T.; Tachibana, T.; Matsui, Y. Postoperative atrial fibrillation: Mechanism, prevention, and future perspective. Surg. Today 2012, 42, 819–824. [Google Scholar] [CrossRef]
- Emren, V.; Aldemir, M.; Duygu, H.; Kocabas, U.; Tecer, E.; Cerit, L.; Erdil, N. Usefulness of HATCH score as a predictor of atrial fibrillation after coronary artery bypass graft. Kardiol. Pol. 2016, 74, 749–753. [Google Scholar] [CrossRef]
- Schotten, U.; Verheule, S.; Kirchhof, P.; Goette, A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol. Rev. 2011, 91, 265–325. [Google Scholar] [CrossRef]
- Haissaguerre, M.; Jais, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Metayer, P.; Clementy, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Wijffels, M.C.; Kirchhof, C.J.; Dorland, R.; Allessie, M.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995, 92, 1954–1968. [Google Scholar] [CrossRef]
- Lau, D.H.; Linz, D.; Schotten, U.; Mahajan, R.; Sanders, P.; Kalman, J.M. Pathophysiology of Paroxysmal and Persistent Atrial Fibrillation: Rotors, Foci and Fibrosis. Heart Lung Circ. 2017, 26, 887–893. [Google Scholar] [CrossRef]
- Nattel, S.; Maguy, A.; Le Bouter, S.; Yeh, Y.H. Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev. 2007, 87, 425–456. [Google Scholar] [CrossRef]
- Schroder, F.; Klein, G.; Frank, T.; Bastein, M.; Indris, S.; Karck, M.; Drexler, H.; Wollert, K.C. Src family tyrosine kinases inhibit single L-type: Ca2+ channel activity in human atrial myocytes. J. Mol. Cell Cardiol. 2004, 37, 735–745. [Google Scholar] [CrossRef]
- Greiser, M.; Halaszovich, C.R.; Frechen, D.; Boknik, P.; Ravens, U.; Dobrev, D.; Luckhoff, A.; Schotten, U. Pharmacological evidence for altered src kinase regulation of I (Ca,L) in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch. Pharmacol. 2007, 375, 383–392. [Google Scholar] [CrossRef]
- Rao, F.; Deng, C.Y.; Wu, S.L.; Xiao, D.Z.; Yu, X.Y.; Kuang, S.J.; Lin, Q.X.; Shan, Z.X. Involvement of Src in L-type Ca2+ channel depression induced by macrophage migration inhibitory factor in atrial myocytes. J. Mol. Cell Cardiol. 2009, 47, 586–594. [Google Scholar] [CrossRef]
- Xiao, L.; Salem, J.E.; Clauss, S.; Hanley, A.; Bapat, A.; Hulsmans, M.; Iwamoto, Y.; Wojtkiewicz, G.; Cetinbas, M.; Schloss, M.J.; et al. Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 2020, 142, 2443–2455. [Google Scholar] [CrossRef]
- Dziemidowicz, M.; Bonda, T.A.; Litvinovich, S.; Taranta, A.; Winnicka, M.M.; Kaminski, K.A. The role of interleukin-6 in intracellular signal transduction after chronic beta-adrenergic stimulation in mouse myocardium. Arch. Med. Sci. 2019, 15, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Kievisas, M.; Keturakis, V.; Vaitiekunas, E.; Dambrauskas, L.; Jankauskiene, L.; Kinduris, S. Prognostic factors of atrial fibrillation following coronary artery bypass graft surgery. Gen. Thorac. Cardiovasc. Surg. 2017, 65, 566–574. [Google Scholar] [CrossRef]
- Parsons, S.J.; Parsons, J.T. Src family kinases, key regulators of signal transduction. Oncogene 2004, 23, 7906–7909. [Google Scholar] [CrossRef]
- Callera, G.E.; Antunes, T.T.; He, Y.; Montezano, A.C.; Yogi, A.; Savoia, C.; Touyz, R.M. c-Src Inhibition Improves Cardiovascular Function but not Remodeling or Fibrosis in Angiotensin II-Induced Hypertension. Hypertension 2016, 68, 1179–1190. [Google Scholar] [CrossRef]
- Araujo, E.G.; Bianchi, C.; Sato, K.; Faro, R.; Li, X.A.; Sellke, F.W. Inactivation of the MEK/ERK pathway in the myocardium during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2001, 121, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.S.; Chen, L.S.; Fishbein, M.C.; Lin, S.F.; Nattel, S. Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy. Circ. Res. 2014, 114, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Kitakaze, M.; Takamoto, S.; Namiki, A.; Kasanuki, H.; Hosoda, S.; JL-KNIGHT Study Group. Landiolol, an ultra-short-acting beta(1)-blocker, more effectively terminates atrial fibrillation than diltiazem after open heart surgery: Prospective, multicenter, randomized, open-label study (JL-KNIGHT study). Circ. J. 2012, 76, 1097–1101. [Google Scholar] [CrossRef]
- Hilleman, D.E.; Reyes, A.P.; Mooss, A.N.; Packard, K.A. Esmolol versus diltiazem in atrial fibrillation following coronary artery bypass graft surgery. Curr. Med. Res. Opin. 2003, 19, 376–382. [Google Scholar] [CrossRef]
- Bogdelis, A.; Treinys, R.; Stankevicius, E.; Jurevicius, J.; Skeberdis, V.A. Src family protein tyrosine kinases modulate L-type calcium current in human atrial myocytes. Biochem. Biophys. Res. Commun. 2011, 413, 116–121. [Google Scholar] [CrossRef]
- Huang, J.; Lin, Y.C.; Hileman, S.; Martin, K.H.; Hull, R.; Yu, H.G. PP2 prevents beta-adrenergic stimulation of cardiac pacemaker activity. J. Cardiovasc. Pharmacol. 2014, 63, 533–543. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wu, W.; Deng, X.L.; Lau, C.P.; Li, G.R. Genistein and tyrphostin AG556 inhibit inwardly-rectifying Kir2.1 channels expressed in HEK 293 cells via protein tyrosine kinase inhibition. Biochim. Biophys. Acta 2011, 1808, 1993–1999. [Google Scholar] [CrossRef]
- Vest, J.A.; Wehrens, X.H.; Reiken, S.R.; Lehnart, S.E.; Dobrev, D.; Chandra, P.; Danilo, P.; Ravens, U.; Rosen, M.R.; Marks, A.R. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 2005, 111, 2025–2032. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Hwang, M.; Song, J.S.; Li, C.; Joung, B.; Sobie, E.A.; Pak, H.N. The Contribution of Ionic Currents to Rate-Dependent Action Potential Duration and Pattern of Reentry in a Mathematical Model of Human Atrial Fibrillation. PLoS ONE 2016, 11, e0150779. [Google Scholar] [CrossRef]
- Van Wagoner, D.R.; Pond, A.L.; Lamorgese, M.; Rossie, S.S.; McCarthy, P.M.; Nerbonne, J.M. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ. Res. 1999, 85, 428–436. [Google Scholar] [CrossRef]
- Dinanian, S.; Boixel, C.; Juin, C.; Hulot, J.S.; Coulombe, A.; Rucker-Martin, C.; Bonnet, N.; Le Grand, B.; Slama, M.; Mercadier, J.J.; et al. Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. Eur. Heart J. 2008, 29, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Deng, C.Y.; Zhang, Q.H.; Xue, Y.M.; Xiao, D.Z.; Kuang, S.J.; Lin, Q.X.; Shan, Z.X.; Liu, X.Y.; Zhu, J.N.; et al. Involvement of Src tyrosine kinase and protein kinase C in the expression of macrophage migration inhibitory factor induced by H2O2 in HL-1 mouse cardiac muscle cells. Braz. J. Med. Biol. Res. 2013, 46, 746–751. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, F.; Zhang, Q.; Tengholm, A.; Sjoholm, A. Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+ and insulin secretion. Am. J. Physiol. Cell Physiol. 2006, 291, C466–C475. [Google Scholar] [CrossRef]
- Greiser, M.; Schotten, U. Dynamic remodeling of intracellular Ca2+ signaling during atrial fibrillation. J. Mol. Cell Cardiol. 2013, 58, 134–142. [Google Scholar] [CrossRef]
- Thevenin, A.F.; Kowal, T.J.; Fong, J.T.; Kells, R.M.; Fisher, C.G.; Falk, M.M. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology 2013, 28, 93–116. [Google Scholar] [CrossRef]
- Yang, K.C.; Rutledge, C.A.; Mao, M.; Bakhshi, F.R.; Xie, A.; Liu, H.; Bonini, M.G.; Patel, H.H.; Minshall, R.D.; Dudley, S.C., Jr. Caveolin-1 modulates cardiac gap junction homeostasis and arrhythmogenecity by regulating cSrc tyrosine kinase. Circ. Arrhythmia Electrophysiol. 2014, 7, 701–710. [Google Scholar] [CrossRef]
- Solan, J.L.; Lampe, P.D. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 2014, 588, 1423–1429. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, X.; Pierre, S.V.; Askari, A. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am. J. Physiol. Cell Physiol. 2007, 293, C1489–C1497. [Google Scholar] [CrossRef] [PubMed]
- Kieken, F.; Mutsaers, N.; Dolmatova, E.; Virgil, K.; Wit, A.L.; Kellezi, A.; Hirst-Jensen, B.J.; Duffy, H.S.; Sorgen, P.L. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ. Res. 2009, 104, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Bonda, T.A.; Szynaka, B.; Sokolowska, M.; Dziemidowicz, M.; Winnicka, M.M.; Chyczewski, L.; Kaminski, K.A. Remodeling of the intercalated disc related to aging in the mouse heart. J. Cardiol. 2016, 68, 261–268. [Google Scholar] [CrossRef]
- Ponten, A.; Folestad, E.B.; Pietras, K.; Eriksson, U. Platelet-derived growth factor D induces cardiac fibrosis and proliferation of vascular smooth muscle cells in heart-specific transgenic mice. Circ. Res. 2005, 97, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Gallini, R.; Lindblom, P.; Bondjers, C.; Betsholtz, C.; Andrae, J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp. Cell Res. 2016, 349, 282–290. [Google Scholar] [CrossRef]
- Amanchy, R.; Zhong, J.; Hong, R.; Kim, J.H.; Gucek, M.; Cole, R.N.; Molina, H.; Pandey, A. Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol. Oncol. 2009, 3, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhong, G.; Wen, L.; Hong, Y.; Fang, S.; Sun, P.; Li, S.; Li, S.; Feng, G. The Role of Platelet-Derived Growth Factor-B/Platelet-Derived Growth Factor Receptor-beta Signaling in Chronic Atrial Fibrillation. Cardiology 2016, 133, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Akazawa, H.; Tamagawa, M.; Ito, K.; Yasuda, N.; Kudo, Y.; Yamamoto, R.; Ozasa, Y.; Fujimoto, M.; Wang, P.; et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J. Clin. Investig. 2010, 120, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Musa, H.; Kaur, K.; O’Connell, R.; Klos, M.; Guerrero-Serna, G.; Avula, U.M.; Herron, T.J.; Kalifa, J.; Anumonwo, J.M.; Jalife, J. Inhibition of platelet-derived growth factor-AB signaling prevents electromechanical remodeling of adult atrial myocytes that contact myofibroblasts. Heart Rhythm. 2013, 10, 1044–1051. [Google Scholar] [CrossRef]
- Li, X.; Deng, C.Y.; Xue, Y.M.; Yang, H.; Wei, W.; Liu, F.Z.; Guo, H.M.; Liu, Y.; Wang, Z.Y.; Zhang, M.Z.; et al. High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J. Mol. Cell Cardiol. 2020, 140, 10–21. [Google Scholar] [CrossRef]
SR Group N = 28 | PoAF Group N = 14 | p | |
---|---|---|---|
Age (years) | 55.8 ± 15.5 | 61.8 ± 9.5 | NS |
Males (n; %) | 18; 64% | 8; 57% | NS |
Concomitant disease: | |||
Diabetes mellitus (%) | 17.9% | 35.7% | NS |
Hypertension (%) | 46.5% | 57.1% | NS |
Indication for surgery (n): | |||
MVI | 3 | 2 | |
MVS | 0 | 0 | |
AI | 0 | 2 | |
AS | 4 | 3 | |
CAD | 18 | 5 | |
Combined valvular | 0 | 2 | |
Valvular + CABG | 3 | 0 | |
Echocardiographic parameters: | |||
LA [mm] | 38.9 ± 5.9 | 45.3 ± 6.5 | p < 0.025 |
RA [mm] | 36.6 ± 4.2 | 37.8 ± 3.8 | NS |
LVEDD [mm] | 53 ± 8.4 | 53 ± 11 | NS |
RVEDD [mm] | 25.1 ± 6.0 | 25.8 ± 3.0 | NS |
LVEF [%] | 51.9 ± 12.3 | 45.5 ± 12.1 | NS |
Pharmacotherapy (n): | |||
ACE inhibitor/ARB | 18 | 10 | NS |
Β-blocker | 18 | 13 | NS |
Calcium channel blocker | 4 | 4 | NS |
Statin | 16 | 10 | NS |
Spironolactone | 2 | 7 | p < 0.05 |
SR Group | PoAF Group | |||
---|---|---|---|---|
c-Src | phospho-c-Src | c-Src | phospho-c-Src | |
STAT3 | 0.5 | 0.43 | 0.93 | 0.9 |
phospho-STAT3 | 0.53 | 0.59 | 0.84 | 0.85 |
ERK1/2 | 0.86 | 0.56 | 0.87 | 0.9 |
phospho-ERK1/2 | 0.82 | 0.59 | 0.76 | 0.75 |
PDGFRα | 0.69 | 0.61 | 0.81 | 0.87 |
phospho-PDGFRα | 0.84 | 0. 70 | 0.84 | 0.95 |
PDGFRβ | 0.71 | 0.62 | 0.85 | 0.88 |
phospho-PDGFRβ | 0.4 | 0.75 | 0.69 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonda, T.A.; Dziemidowicz, M.; Hirnle, T.; Dmitruk, I.; Bialuk, I.; Winnicka, M.M. Preoperative Activation of c-Src Kinase in Atrial Tissue in Patients Developing Postoperative Atrial Fibrillation. Medicina 2025, 61, 1669. https://doi.org/10.3390/medicina61091669
Bonda TA, Dziemidowicz M, Hirnle T, Dmitruk I, Bialuk I, Winnicka MM. Preoperative Activation of c-Src Kinase in Atrial Tissue in Patients Developing Postoperative Atrial Fibrillation. Medicina. 2025; 61(9):1669. https://doi.org/10.3390/medicina61091669
Chicago/Turabian StyleBonda, Tomasz Andrzej, Magdalena Dziemidowicz, Tomasz Hirnle, Iwona Dmitruk, Izabela Bialuk, and Maria Małgorzata Winnicka. 2025. "Preoperative Activation of c-Src Kinase in Atrial Tissue in Patients Developing Postoperative Atrial Fibrillation" Medicina 61, no. 9: 1669. https://doi.org/10.3390/medicina61091669
APA StyleBonda, T. A., Dziemidowicz, M., Hirnle, T., Dmitruk, I., Bialuk, I., & Winnicka, M. M. (2025). Preoperative Activation of c-Src Kinase in Atrial Tissue in Patients Developing Postoperative Atrial Fibrillation. Medicina, 61(9), 1669. https://doi.org/10.3390/medicina61091669