Predictors of Length of Stay in Hospital After Transcatheter Aortic Valve Replacement: Impact of Naples Prognostic Score
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Periprocedural Imaging and TAVR Procedure
2.3. Definitions
2.4. Assessment of the Naples Prognostic Score
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Avinee, G.; Gillibert, A.; Tron, C.; Bettinger, N.; Bouhzam, N.; Gilard, M.; Verhoye, J.P.; Koning, R.; Lefevre, T.; et al. Analysis of length of stay after transfemoral transcatheter aortic valve replacement: Results from the FRANCE TAVI registry. Clin. Res. Cardiol. 2021, 110, 40–49. [Google Scholar] [CrossRef]
- Wayangankar, S.A.; Elgendy, I.Y.; Xiang, Q.; Jneid, H.; Vemulapalli, S.; Khachatryan, T.; Pham, D.; Hilliard, A.A.; Kapadia, S.R. Length of Stay After Transfemoral Transcatheter Aortic Valve Replacement: An Analysis of the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. JACC Cardiovasc. Interv. 2019, 12, 422–430. [Google Scholar] [CrossRef]
- Edwards, F.H.; Grover, F.L.; Shroyer, A.L.; Schwartz, M.; Bero, J. The Society of Thoracic Surgeons National Cardiac Surgery Database: Current risk assessment. Ann. Thorac. Surg. 1997, 63, 903–908. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Michel, P.; Gauducheau, E.; Lemeshow, S.; Salamon, R. European system for cardiac operative risk evaluation (EuroSCORE). Eur. J. Cardiothorac. Surg. 1999, 16, 9–13. [Google Scholar] [CrossRef]
- Ishizu, K.; Shirai, S.; Tashiro, H.; Kitano, K.; Tabata, H.; Nakamura, M.; Morofuji, T.; Murakami, N.; Morinaga, T.; Hayashi, M.; et al. Prevalence and Prognostic Significance of Malnutrition in Older Japanese Adults at High Surgical Risk Undergoing Transcatheter Aortic Valve Implantation. J. Am. Heart Assoc. 2022, 11, e026294. [Google Scholar] [CrossRef] [PubMed]
- Sudo, M.; Shamekhi, J.; Aksoy, A.; Al-Kassou, B.; Tanaka, T.; Silaschi, M.; Weber, M.; Nickenig, G.; Zimmer, S. A simply calculated nutritional index provides clinical implications in patients undergoing transcatheter aortic valve replacement. Clin. Res. Cardiol. 2024, 113, 58–67. [Google Scholar] [CrossRef]
- Yamamoto, M.; Shimura, T.; Kano, S.; Kagase, A.; Kodama, A.; Sago, M.; Tsunaki, T.; Koyama, Y.; Tada, N.; Yamanaka, F.; et al. Prognostic Value of Hypoalbuminemia After Transcatheter Aortic Valve Implantation (from the Japanese Multicenter OCEAN-TAVI Registry). Am. J. Cardiol. 2017, 119, 770–777. [Google Scholar] [CrossRef]
- Hoffmann, J.; Mas-Peiro, S.; Berkowitsch, A.; Boeckling, F.; Rasper, T.; Pieszko, K.; De Rosa, R.; Hiczkiewicz, J.; Burchardt, P.; Fichtlscherer, S.; et al. Inflammatory signatures are associated with increased mortality after transfemoral transcatheter aortic valve implantation. ESC Heart Fail. 2020, 7, 2597–2610. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Goyal, P.; Ahsan, S.A.; Surya Srivyshnavi, K.S.; Hannan Asghar, A.; Riyalat, A.A.; Wei, C.R.; Khan, A. The Prognostic Value of Neutrophil-to-Lymphocyte Ratio on Mortality in Patients Undergoing Transcatheter Aortic Valve Implantation: A Systematic Review and Meta-Analysis. Cureus 2025, 17, e77909. [Google Scholar] [CrossRef] [PubMed]
- Galizia, G.; Lieto, E.; Auricchio, A.; Cardella, F.; Mabilia, A.; Podzemny, V.; Castellano, P.; Orditura, M.; Napolitano, V. Naples Prognostic Score, Based on Nutritional and Inflammatory Status, is an Independent Predictor of Long-term Outcome in Patients Undergoing Surgery for Colorectal Cancer. Dis. Colon. Rectum. 2017, 60, 1273–1284. [Google Scholar] [CrossRef]
- Aydin, S.S.; Aydemir, S.; Ozmen, M.; Aksakal, E.; Sarac, I.; Aydinyilmaz, F.; Altinkaya, O.; Birdal, O.; Tanboga, I.H. The importance of Naples prognostic score in predicting long-term mortality in heart failure patients. Ann. Med. 2025, 57, 2442536. [Google Scholar] [CrossRef]
- Erdogan, A.; Genc, O.; Ozkan, E.; Goksu, M.M.; Ibisoglu, E.; Bilen, M.N.; Guler, A.; Karagoz, A. Impact of Naples Prognostic Score at Admission on In-Hospital and Follow-Up Outcomes Among Patients with ST-Segment Elevation Myocardial Infarction. Angiology 2023, 74, 970–980. [Google Scholar] [CrossRef]
- Gitmez, M.; Guzel, T.; Kis, M.; Coskun, F.; Isik, M.A.; Aktan, A.; Kilic, R.; Demir, M.; Ertas, F. The performance of the NAPLES prognostic score in predicting one-year mortality and major adverse cardiovascular events after transcatheter aortic valve implantation in patients with severe aortic stenosis. Kardiol. Pol. 2025, 83, 287–294. [Google Scholar] [CrossRef]
- Hakgor, A.; Dursun, A.; Kahraman, B.C.; Yazar, A.; Savur, U.; Akhundova, A.; Olgun, F.E.; Sengor, B.G. The impact of the Naples Prognostic Score on the short- and long-term prognosis of patients undergoing transcatheter aortic valve implantation. J. Cardiovasc. Med. 2024, 25, 519–528. [Google Scholar] [CrossRef]
- Varc-3 Writing, C.; Genereux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; et al. Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. J. Am. Coll. Cardiol. 2021, 77, 2717–2746. [Google Scholar] [CrossRef]
- Carroll, J.D.; Mack, M.J.; Vemulapalli, S.; Herrmann, H.C.; Gleason, T.G.; Hanzel, G.; Deeb, G.M.; Thourani, V.H.; Cohen, D.J.; Desai, N.; et al. STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2020, 76, 2492–2516. [Google Scholar] [CrossRef]
- Costa, G.; Barbanti, M.; Picci, A.; Todaro, D.; La Spina, K.; Di Simone, E.; D’Arrigo, P.; Criscione, E.; Valvo, R.; Reddavid, C.; et al. Predictors and safety of next-day discharge in patients undergoing transfemoral transcatheter aortic valve implantation. EuroIntervention 2020, 16, e494–e501. [Google Scholar] [CrossRef] [PubMed]
- Sawan, M.A.; Calhoun, A.E.; Grubb, K.J.; Devireddy, C.M. Update on Minimalist TAVR Care Pathways: Approaches to Care in 2022. Curr. Cardiol. Rep. 2022, 24, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Afilalo, J.; Lauck, S.; Kim, D.H.; Lefevre, T.; Piazza, N.; Lachapelle, K.; Martucci, G.; Lamy, A.; Labinaz, M.; Peterson, M.D.; et al. Frailty in Older Adults Undergoing Aortic Valve Replacement: The FRAILTY-AVR Study. J. Am. Coll. Cardiol. 2017, 70, 689–700. [Google Scholar] [CrossRef]
- Anand, A.; Harley, C.; Visvanathan, A.; Shah, A.S.V.; Cowell, J.; MacLullich, A.; Shenkin, S.; Mills, N.L. The relationship between preoperative frailty and outcomes following transcatheter aortic valve implantation: A systematic review and meta-analysis. Eur. Heart J. Qual. Care Clin. Outcomes 2017, 3, 123–132. [Google Scholar] [CrossRef]
- Seoudy, H.; Al-Kassou, B.; Shamekhi, J.; Sugiura, A.; Frank, J.; Saad, M.; Bramlage, P.; Seoudy, A.K.; Puehler, T.; Lutter, G.; et al. Frailty in patients undergoing transcatheter aortic valve replacement: Prognostic value of the Geriatric Nutritional Risk Index. J. Cachexia Sarcopenia Muscle 2021, 12, 577–585. [Google Scholar] [CrossRef]
- Lee, K.; Ahn, J.M.; Kang, D.Y.; Ko, E.; Kwon, O.; Lee, P.H.; Lee, S.W.; Kim, D.H.; Kim, H.J.; Kim, J.B.; et al. Nutritional status and risk of all-cause mortality in patients undergoing transcatheter aortic valve replacement assessment using the geriatric nutritional risk index and the controlling nutritional status score. Clin. Res. Cardiol. 2020, 109, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Mas-Peiro, S.; Papadopoulos, N.; Walther, T.; Zeiher, A.M.; Fichtlscherer, S.; Vasa-Nicotera, M. Nutritional risk index is a better predictor of early mortality than conventional nutritional markers after transcatheter aortic valve replacement: A prospective cohort study. Cardiol. J. 2021, 28, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Arques, S. Human serum albumin in cardiovascular diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Wleklik, M.; Denfeld, Q.; Lisiak, M.; Czapla, M.; Kaluzna-Oleksy, M.; Uchmanowicz, I. Frailty Syndrome in Older Adults with Cardiovascular Diseases-What Do We Know and What Requires Further Research? Int. J. Environ. Res. Public Health 2022, 19, 2234. [Google Scholar] [CrossRef]
- Czapla, M.; Juarez-Vela, R.; Lokiec, K.; Karniej, P. The Association between Nutritional Status and In-Hospital Mortality among Patients with Heart Failure-A Result of the Retrospective Nutritional Status Heart Study 2 (NSHS2). Nutrients 2021, 13, 1669. [Google Scholar] [CrossRef]
- Czapla, M.; Juarez-Vela, R.; Lokiec, K.; Wleklik, M.; Karniej, P.; Smereka, J. The Association between Nutritional Status and Length of Hospital Stay among Patients with Hypertension. Int. J. Environ. Res. Public Health 2022, 19, 5827. [Google Scholar] [CrossRef]
- Czapla, M.; Uchmanowicz, I.; Juarez-Vela, R.; Durante, A.; Kaluzna-Oleksy, M.; Lokiec, K.; Baeza-Trinidad, R.; Smereka, J. Relationship between nutritional status and length of hospital stay among patients with atrial fibrillation—A result of the nutritional status heart study. Front. Nutr. 2022, 9, 1086715. [Google Scholar] [CrossRef]
- Beydoun, N.Y.; Tsytsikova, L.; Han, H.; Furzan, A.; Weintraub, A.; Cobey, F.; Quraishi, S.A. Pre-procedural serum albumin concentration is associated with length of stay, discharge destination, and 90-day mortality in patients after transcatheter aortic valve replacement. Ann. Card. Anaesth. 2023, 26, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Navani, R.V.; Dayawansa, N.H.; Nanayakkara, S.; Palmer, S.; Noaman, S.; Htun, N.M.; Walton, A.S.; Peter, K.; Stub, D. Post-Procedure Monocyte Count Levels Predict Major Adverse Cardiovascular Events (MACE) Following Transcatheter Aortic Valve Implantation (TAVI) for Aortic Stenosis. Heart Lung Circ. 2024, 33, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, O.; Erdogan, T.; Panc, C.; Gurbak, I.; Erturk, M. Naples prognostic score as a predictor of mortality in surgical aortic valve replacement. Biomark. Med. 2024, 18, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Jiritano, F.; Serraino, G.F.; Sorrentino, S.; Napolitano, D.; Costa, D.; Ielapi, N.; Bracale, U.M.; Mastroroberto, P.; Andreucci, M.; Serra, R. Risk of Bleeding in Elderly Patients Undergoing Transcatheter Aortic Valve Implantation or Surgical Aortic Valve Replacement. Prosthesis 2024, 6, 175–185. [Google Scholar] [CrossRef]
Variables | LoS ≤ 3 Days n = 240 (59.4%) Median [IQR] or n (%) | LoS > 3 Days n = 164 (40.6%) Median [IQR] or n (%) | p-Values * |
---|---|---|---|
Baseline characteristics | |||
Age (years) | 79 [75.5–82.5] | 80.5 [77–83] | 0.008 |
Sex (male) | 115 (60.5) | 75 (39.5) | 0.666 |
BMI (kg/m2) | 24.6 [22–29.2] | 24.3 [22.1–29.4] | 0.915 |
NYHA (≥3) | 126 (48.3) | 135 (51.7) | <0.001 |
Hypertension | 156 (57.1) | 117 (42.9) | 0.181 |
Diabetes mellitus | 75 (48.7) | 79 (51.3) | 0.001 |
Hyperlipidemia | 106 (62.4) | 64 (37.6) | 0.304 |
Peripheral artery disease | 28 (56.0) | 22 (44.0) | 0.600 |
Cerebrovascular disease | 8 (47.1) | 9 (52.9) | 0.290 |
Coronary artery disease | 87 (52.7) | 78 (47.3) | 0.023 |
Prior CABG | 35 (64.8) | 19 (35.2) | 0.385 |
Atrial fibrillation | 49 (57.6) | 36 (42.4) | 0.710 |
COPD | 85 (61.6) | 53 (38.4) | 0.519 |
Smoking | 20 (55.6) | 16 (44.4) | 0.622 |
STS risk score | 7.5 [6.4–8.8] | 10.2 [8.5–12.1] | <0.001 |
Laboratory parameters | |||
WBC (×1000/µL) | 7.0 [6–8.3] | 7.6 [6.3–9.1] | 0.010 |
Hemoglobin (g/dL) | 12.2 [11.6–13.2] | 11.2 [10.6–11.9] | <0.001 |
Lymphocyte (×1000/µL) | 1.7 [1.4–2.1] | 1.3 [1–1.7] | <0.001 |
Neutrophil (×1000/µL) | 4.4 [3.7–5.2] | 5.8 [4.6–6.8] | <0.001 |
Monocyte (×1000/µL) | 0.5 [0.4–0.7] | 0.6 [0.5–0.7] | <0.001 |
Platelet count (×1000/dL) | 229 [185–263] | 229 [190–287] | 0.372 |
Creatinine (mg/dL) | 0.9 [0.8–1] | 1.1 [0.9–1.3] | <0.001 |
eGFR (ml/min/1.73 m2) | 70 [63.2–80] | 59.3 [46.7–65.3] | <0.001 |
Total protein (g/dL) | 7 [6.7–7.3] | 6.9 [6.4–7.2] | 0.016 |
Glucose (mg/dL) | 104.5 [94–134] | 116.5 [99–154] | 0.004 |
LDL cholesterol (mg/dL) | 112.1 [91–140] | 104 [91.6–125.6] | 0.062 |
HDL cholesterol (mg/dL) | 44.5 [38.5–52] | 43 [39–48] | 0.137 |
Total cholesterol (mg/dL) | 189 [166.5–216.5] | 175.5 [156–204.5] | 0.015 |
NLR | 2.6 [2–3.1] | 4.2 [3.1–6.1] | <0.001 |
LMR | 3.2 [2.4–4.2] | 2 [1.6–2.9] | <0.001 |
Albumin (g/dL) | 4.1 [3.8–4.2] | 3.7 [3.5–3.8] | <0.001 |
Naples prognostic score | |||
| 193 (91.0) | 19 (9.0) | <0.001 |
| 47 (24.5) | 145 (75.5) | |
Echocardiographic parameters | |||
Peak aortic gradient (mmHg) | 80 [70–90] | 77 [69–88] | 0.068 |
Mean aortic gradient (mmHg) | 48 [43–55] | 47 [42–54.5] | 0.140 |
Aortic valve area (cm2) | 0.8 [0.7–0.9] | 0.8 [0.7–0.9] | 0.096 |
Left ventricular ejection fraction (%) | 55 [50–60] | 50 [40–55] | <0.001 |
Systolic pulmonary arterial pressure (mmHg) | 38 [35–41.5] | 44 [39–50] | <0.001 |
Procedural features | |||
Valve size (mm) | 29 [26–29] | 27.5 [26–29] | 0.318 |
Transcatheter Heart Valve Type | |||
| 168 (57.7) | 123 (42.3) | 0.272 |
| 72 (63.7) | 41 (36.3) | |
Pre-Dilatation | 157 (59.5) | 107 (40.5) | 0.971 |
Post-Dilatation | 27 (54.0) | 23 (46.0) | 0.406 |
Access Site Closure | |||
| 228 (70.6) | 95 (29.4) | <0.001 |
| 12 (14.8) | 69 (85.2) | |
Major vascular, access-related or cardiac structural complication | 0 | 8 (100) | 0.001 |
Minör vascular, access-related or cardiac structural complication | 6 (16.7) | 30 (83.3) | <0.001 |
Myocardial infarction | 4 (16.0) | 21 (84.0) | <0.001 |
Cerebrovascular event | 3 (16.7) | 15 (83.3) | <0.001 |
Acute kidney injury | 0 | 13 (100) | <0.001 |
Pacemaker implantation | 9 (33.3) | 18 (66.7) | 0.004 |
Major bleeding | 3 (14.3) | 18 (85.7) | <0.001 |
Transfusion | 16 (25.8) | 46 (74.2) | <0.001 |
Variables | Low NPS (0–2) n = 212 (52.5%) Median [IQR] or n (%) | High NPS (3–4) n = 192 (47.5%) Median [IQR] or n (%) | p-Values * |
---|---|---|---|
Age (years) | 78 [75–82] | 81 [78–84] | <0.001 |
Sex (male) | 100 (52.6) | 90 (47.4) | 0.953 |
BMI (kg/m2) | 24.8 [22–29.3] | 24.3 [22–29.2] | 0.773 |
NYHA (≥3) | 108 (41.4) | 153 (58.6) | <0.001 |
Hypertension | 139 (50.9) | 134 (49.1) | 0.365 |
Diabetes mellitus | 69 (44.8) | 85 (55.2) | 0.015 |
Hyperlipidemia | 100 (58.8) | 70 (41.2) | 0.029 |
Peripheral artery disease | 22 (44.0) | 28 (56.0) | 0.200 |
Cerebrovascular disease | 7 (41.2) | 10 (58.8) | 0.341 |
Coronary artery disease | 73 (44.2) | 92 (55.8) | 0.006 |
Prior CABG | 27 (50.0) | 27 (50.0) | 0.696 |
Atrial fibrillation | 41 (48.2) | 44 (51.8) | 0.378 |
COPD | 76 (55.1) | 62 (44.9) | 0.451 |
Smoking | 20 (55.6) | 16 (44.4) | 0.698 |
STS risk score | 7.5 [6.0–8.7] | 9.9 [8.0–11.9] | <0.001 |
Peak aortic gradient (mmHg) | 80 [70–90] | 78 [70–88] | 0.106 |
Mean aortic gradient (mmHg) | 48 [43–55] | 48 [42–55] | 0.499 |
Aortic valve area (cm2) | 0.8 [0.7–0.9] | 0.8 [0.7–0.9] | 0.760 |
Left ventricular ejection fraction (%) | 55 [50–60] | 50 [40–60] | 0.001 |
Systolic pulmonary arterial pressure (mmHg) | 38 [35–40.5] | 42 [38–48] | <0.001 |
Valve size (mm) | 28 [26–29] | 29 [26–29] | 0.942 |
Transcatheter heart valve type | |||
| 150 (51.5) | 141 (48.5) | 0.549 |
| 62 (54.9) | 51 (45.1) | |
Pre-dilatation | 141 (53.4) | 123 (46.6) | 0.606 |
Post-dilatation | 26 (52.0) | 24 (48.0) | 0.943 |
Access site closure | |||
| 195 (60.4) | 128 (39.6) | <0.001 |
| 17 (21.0) | 64 (79.0) | |
Major vascular complication | 3 (37.5) | 5 (62.5) | 0.392 |
Minor vascular complication | 9 (25.0) | 27 (75.0) | 0.001 |
Myocardial infarction | 4 (16.0) | 21 (84.0) | <0.001 |
Cerebrovascular event | 4 (22.2) | 14 (77.8) | 0.009 |
Acute kidney injury | 2 (15.4) | 11 (84.6) | 0.006 |
Pacemaker implantation | 9 (33.3) | 18 (66.7) | 0.039 |
Major bleeding | 5 (23.8) | 16 (76.2) | 0.007 |
Transfusion | 22 (35.5) | 40 (64.5) | 0.004 |
Intensive care unit stay (day) | 1 [1–1] | 1 [1–2] | <0.001 |
Total hospital stays (day) | 3 [2–3] | 4 [4–5] | <0.001 |
Variables | Univariate OR (95% CI) | p Value | Multivariate * OR (95% CI) | p Value |
---|---|---|---|---|
Age (years) | 1.057 (1.014–1.103) | 0.009 | ||
NYHA (≥3) | 4.212 (2.621–6.769) | <0.001 | ||
Diabetes mellitus | 2.045 (1.357–3.082) | 0.001 | ||
Coronary artery disease | 1.595 (1.065–2.389) | 0.023 | ||
STS risk score | 1.696 (1.508–1.907) | <0.001 | ||
WBC (×1000/µL) | 1.114 (1.022–1.214) | 0.014 | ||
Hemoglobin (g/dL) | 0.394 (0.313–0.497) | <0.001 | ||
Lymphocyte (×1000/µL) | 0.276 (0.183–0.417) | <0.001 | ||
Neutrophil (×1000/µL) | 1.653 (1.429–1.911) | <0.001 | ||
Monocyte (×1000/µL) | 11.625 (3.961–34.112) | <0.001 | ||
Creatinine (mg/dL) | 82.432 (27.486–247.215) | <0.001 | ||
eGFR (ml/min/1.73 m2) | 0.913 (0.894–0.932) | <0.001 | 0.936 (0.910–0.964) | <0.001 |
Glucose (mg/dL) | 1.006 (1.002–1.010) | 0.003 | ||
Total cholesterol (mg/dL) | 0.994 (0.989–0.999) | 0.035 | ||
NLR | 1.520 (1.348–1.715) | <0.001 | ||
LMR | 0.419 (0.336–0.524) | <0.001 | ||
Albumin (g/dL) | 0.02 (0.008–0.048) | <0.001 | ||
Naples prognostic score (high NPS) | 31.338 (17.639–55.677) | <0.001 | 29.756 (14.071–62.922) | <0.001 |
Left ventricular ejection fraction (%) | 0.951 (0.930–0.973) | <0.001 | ||
Systolic pulmonary arterial pressure (mmHg) | 1.134 (1.096–1.174) | <0.001 | ||
Access site closure (surgical) | 13.800 (7.146–26.649) | <0.001 | 8.518 (3.346–21.683) | <0.001 |
Minor vascular complication | 8.731 (3.543–21.516) | <0.001 | ||
Myocardial infarction | 8.664 (2.915–25.750) | <0.001 | ||
Cerebrovascular event | 7.953 (2.264–27.937) | 0.001 | 7.071 (1.356–36.875) | 0.020 |
Pacemaker implantation | 3.164 (1.385–7.232) | 0.006 | 4.974 (1.276–19.394) | 0.021 |
Major bleeding | 9.740 (2.820–33.641) | <0.001 | ||
Transfusion | 5.458 (2.962–10.054) | <0.001 | 4.746 (1.787–12.609) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyacı, F.; Akcay, M.; Sahin, M.K.; Yenercag, M.; Karagoz, A.; Yanik, A.; Sivri, S.; Yilmaz, R.; Ozturk, B.; Kokcu, H.I.; et al. Predictors of Length of Stay in Hospital After Transcatheter Aortic Valve Replacement: Impact of Naples Prognostic Score. Medicina 2025, 61, 1658. https://doi.org/10.3390/medicina61091658
Boyacı F, Akcay M, Sahin MK, Yenercag M, Karagoz A, Yanik A, Sivri S, Yilmaz R, Ozturk B, Kokcu HI, et al. Predictors of Length of Stay in Hospital After Transcatheter Aortic Valve Replacement: Impact of Naples Prognostic Score. Medicina. 2025; 61(9):1658. https://doi.org/10.3390/medicina61091658
Chicago/Turabian StyleBoyacı, Faruk, Murat Akcay, Mustafa Kursat Sahin, Mustafa Yenercag, Ahmet Karagoz, Ahmet Yanik, Serkan Sivri, Rustem Yilmaz, Berkant Ozturk, Halil Ibrahim Kokcu, and et al. 2025. "Predictors of Length of Stay in Hospital After Transcatheter Aortic Valve Replacement: Impact of Naples Prognostic Score" Medicina 61, no. 9: 1658. https://doi.org/10.3390/medicina61091658
APA StyleBoyacı, F., Akcay, M., Sahin, M. K., Yenercag, M., Karagoz, A., Yanik, A., Sivri, S., Yilmaz, R., Ozturk, B., Kokcu, H. I., Kaya, E., Ovaz, O. O., Mostafa, A. S. A., & Yilmaz, E. K. (2025). Predictors of Length of Stay in Hospital After Transcatheter Aortic Valve Replacement: Impact of Naples Prognostic Score. Medicina, 61(9), 1658. https://doi.org/10.3390/medicina61091658