Prognostic Impact of Glomerular Filtration Rate Decline on Survival Outcomes in Metastatic Renal Cell Carcinoma Treated with Targeted Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics and Study Design
3.2. Survival Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
CI | confidence interval |
CKD | chronic kidney disease |
GFR | glomerular filtration rate |
ICIs | immune checkpoint inhibitors |
HR | hazard ratio |
IMDC | International Metastatic Renal Cell Carcinoma Database Consortium |
OS | overall survival |
PFS | progression-free survival |
mRCC | metastatic renal cell carcinoma |
SD | standard deviation |
TMA | thrombotic microangiopathy |
VEGFR | vascular endothelial growth factor receptor |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Heng, D.Y.C.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, J.D.; Cheng, T.; North, S. Prognostic Factors for Overall Survival in Patients with Metastatic Renal Cell Carcinoma Treated with Vascular Endothelial Growth Factor–Targeted Agents: Results from a Large, Multicenter Study. J. Clin. Oncol. 2009, 27, 5794–5799. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Welsh, C.E.; Celis-Morales, C.A.; Mackay, D.; Lewsey, J.; Gray, S.R.; Lyall, D.M.; Cleland, J.G.; Gill, J.M.R.; Jhund, P.S.; et al. Glomerular Filtration Rate by Differing Measures, Albuminuria and Prediction of Cardiovascular Disease, Mortality and End-Stage Kidney Disease. Nat. Med. 2019, 25, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic Kidney Disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Iff, S.; Craig, J.C.; Turner, R.; Chapman, J.R.; Wang, J.J.; Mitchell, P.; Wong, G. Reduced Estimated GFR and Cancer Mortality. Am. J. Kidney Dis. 2014, 63, 23–30. [Google Scholar] [CrossRef]
- Premužić, V.; Bašić-Kinda, S.; Radman, I.; Dujmović, D.; Ilić, I.; Živković, N.; Maleta, L.; Kralik, M.; Dobrenić, M.; Galunić-Bilić, L.; et al. Glomerular Filtration Rate Is an Independent Prognostic Factor in Patients with B-Large Cell Lymphoma. Medicine 2023, 102, e33675. [Google Scholar] [CrossRef]
- Tural, D.; Arslan, C.; Selcukbiricik, F.; Olmez, O.F.; Akar, E.; Erman, M.; Ürün, Y.; Erdem, D.; Kilickap, S. Immune Checkpoint Blockade Therapies Efficacy and Toxicity in Patients With Impaired Renal Function in Metastatic Bladder Cancer. Clin. Genitourin. Cancer 2024, 22, 102228. [Google Scholar] [CrossRef]
- Nouhaud, F.-X.; Pfister, C.; Defortescu, G.; Giwerc, A.; Charbit, D.; Gouerant, S.; Sabourin, J.-C.; Di Fiore, F. Baseline Chronic Kidney Disease Is Associated with Toxicity and Survival in Patients Treated with Targeted Therapies for Metastatic Renal Cell Carcinoma. Anticancer Drugs 2015, 26, 866–871. [Google Scholar] [CrossRef]
- Mielczarek, Ł.; Brodziak, A.; Sobczuk, P.; Kawecki, M.; Cudnoch-Jędrzejewska, A.; Czarnecka, A.M. Renal Toxicity of Targeted Therapies for Renal Cell Carcinoma in Patients with Normal and Impaired Kidney Function. Cancer Chemother. Pharmacol. 2021, 87, 723–742. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, R.; Heng, D.Y.C.; Xie, W.; Knox, J.J.; McDermott, D.F.; Rini, B.I.; Kollmannsberger, C.; Choueiri, T.K. The Impact of Kidney Function on the Outcome of Metastatic Renal Cell Carcinoma Patients Treated with Vascular Endothelial Growth Factor-targeted Therapy. Cancer 2012, 118, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Eremina, V.; Jefferson, J.A.; Kowalewska, J.; Hochster, H.; Haas, M.; Weisstuch, J.; Richardson, C.; Kopp, J.B.; Kabir, M.G.; Backx, P.H.; et al. VEGF Inhibition and Renal Thrombotic Microangiopathy. N. Engl. J. Med. 2008, 358, 1129–1136. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The Biology of VEGF and Its Receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Izzedine, H.; Rixe, O.; Billemont, B.; Baumelou, A.; Deray, G. Angiogenesis Inhibitor Therapies: Focus on Kidney Toxicity and Hypertension. Am. J. Kidney Dis. 2007, 50, 203–218. [Google Scholar] [CrossRef]
- Han, Q.; Li, L.; Li, Z.; Yang, M.; Lei, S.; Su, Y.; Xu, H. Clinicopathological Analysis of Anti-VEGF Drug-Associated Renal Thrombotic Microangiopathy: A Case Series and Review of the Literature. Pathol. Res. Pract. 2025, 266, 155824. [Google Scholar] [CrossRef]
- Mazzierli, T.; Allegretta, F.; Maffini, E.; Allinovi, M. Drug-Induced Thrombotic Microangiopathy: An Updated Review of Causative Drugs, Pathophysiology, and Management. Front. Pharmacol. 2023, 13, 1088031. [Google Scholar] [CrossRef]
- Camarda, N.; Travers, R.; Yang, V.K.; London, C.; Jaffe, I.Z. VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Curr. Oncol. Rep. 2022, 24, 463–474. [Google Scholar] [CrossRef]
- Porta, C.; Cosmai, L.; Gallieni, M.; Pedrazzoli, P.; Malberti, F. Renal Effects of Targeted Anticancer Therapies. Nat. Rev. Nephrol. 2015, 11, 354–370. [Google Scholar] [CrossRef]
- Tinti, F.; Lai, S.; Noce, A.; Rotondi, S.; Marrone, G.; Mazzaferro, S.; Di Daniele, N.; Mitterhofer, A.P. Chronic Kidney Disease as a Systemic Inflammatory Syndrome: Update on Mechanisms Involved and Potential Treatment. Life 2021, 11, 419. [Google Scholar] [CrossRef]
- Matsushita, K.; Ballew, S.H.; Wang, A.Y.-M.; Kalyesubula, R.; Schaeffner, E.; Agarwal, R. Epidemiology and Risk of Cardiovascular Disease in Populations with Chronic Kidney Disease. Nat. Rev. Nephrol. 2022, 18, 696–707. [Google Scholar] [CrossRef]
- Jufar, A.H.; Lankadeva, Y.R.; May, C.N.; Cochrane, A.D.; Bellomo, R.; Evans, R.G. Renal Functional Reserve: From Physiological Phenomenon to Clinical Biomarker and Beyond. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 319, R690–R702. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.; Golshayan, A.; Elson, P.; Wood, L.; Garcia, J.; Bukowski, R.; Rini, B. Sunitinib and Sorafenib in Metastatic Renal Cell Carcinoma Patients with Renal Insufficiency. Ann. Oncol. 2010, 21, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Masini, C.; Vitale, M.G.; Maruzzo, M.; Procopio, G.; de Giorgi, U.; Buti, S.; Rossetti, S.; Iacovelli, R.; Atzori, F.; Cosmai, L.; et al. Safety and Efficacy of Pazopanib in First-Line Metastatic Renal-Cell Carcinoma With or Without Renal Failure: CORE-URO-01 Study. Clin. Genitourin. Cancer 2019, 17, e150–e155. [Google Scholar] [CrossRef] [PubMed]
- Na, S.Y.; Sung, J.Y.; Chang, J.H.; Kim, S.; Lee, H.H.; Park, Y.H.; Chung, W.; Oh, K.-H.; Jung, J.Y. Chronic Kidney Disease in Cancer Patients: An Independent Predictor of Cancer-Specific Mortality. Am. J. Nephrol. 2011, 33, 121–130. [Google Scholar] [CrossRef]
- Espi, M.; Koppe, L.; Fouque, D.; Thaunat, O. Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins 2020, 12, 300. [Google Scholar] [CrossRef]
- Izzedine, H.; Massard, C.; Spano, J.P.; Goldwasser, F.; Khayat, D.; Soria, J.C. VEGF Signalling Inhibition-Induced Proteinuria: Mechanisms, Significance and Management. Eur. J. Cancer 2010, 46, 439–448. [Google Scholar] [CrossRef]
Characteristics | All Patients (n = 260) | GFR < 30 (n = 44) | GFR = 30–60 (n = 77) | GFR ≥ 60 (n = 139) | p Value |
---|---|---|---|---|---|
Age (years), (SD) | 60.3 (10.6) | 60 (8.3) | 60.2 (10.1) | 60.4 (11.5) | 0.973 |
Gender | 0.327 | ||||
Female | 71 (27.3) | 8 (18.2) | 23 (29.9) | 40 (28.8) | |
Male | 189 (72.7) | 36 (81.8) | 54 (70.1) | 99 (71.2) | |
BMI (kg/m2), IQR | 26.6 (3.7) | 27.2 (3.9) | 26.9 (4.1) | 26.3 (3.3) | 0.250 |
Baseline GFR, IQR | 66.4 (18.1) | 68.8 (15.3) | 65.9 (17.9) | 66 (19) | 0.645 |
Nephrectomy history | 0.909 | ||||
Present | 235 (90.4) | 39 (88.6) | 70 (90.9) | 126 (90.6) | |
Histology | 0.254 | ||||
Clear cell | 199 (76.5) | 32 (72.7) | 55 (71.4) | 112 (80.6) | |
Non-clear cell | 61 (23.5) | 12 (27.3) | 22 (28.6) | 27 (19.4) | |
Tumor grade | 0.413 | ||||
I–II | 89 (34.2) | 14 (31.8) | 31 (40.3) | 44 (31.7) | |
III–IV | 171 (65.8) | 30 (68.2) | 46 (59.7) | 95 (68.3) | |
Metastatic region sites | |||||
Lung | 190 (73.1) | 34 (77.3) | 48 (62.3) | 108 (77.7) | 0.040 |
Liver | 51 (19.6) | 8 (18.2) | 14 (18.2) | 29 (20.9) | 0.863 |
Bone | 72 (27.7) | 8 (18.2) | 17 (22.1) | 47 (33.8) | 0.055 |
Brain | 18 (6.9) | 1 (2.3) | 8 (10.4) | 9 (6.5) | 0.228 |
IMDC | 0.014 | ||||
Favorable | 35 (13.5) | 9 (20.5) | 14 (18.2) | 12 (8.6) | |
Intermediate | 150 (57.7) | 28 (63.6) | 46 (59.7) | 76 (54.7) | |
Poor | 75 (28.8) | 7 (15.9) | 17 (22.1) | 51 (36.7) | |
First-line treatment | 0.410 | ||||
Pazopanib | 141 (54.2) | 28 (63.6) | 42 (54.5) | 71 (51.2) | |
Sunitinib | 93 (35.7) | 14 (31.9) | 29 (37.7) | 50 (35.9) | |
Cabozantinib | 26 (10.1) | 2 (4.5) | 6 (7.8) | 18 (12.9) | |
Second-line treatment | 0.948 | ||||
Nivolumab | 81 (48.2) | 13 (48.1) | 24 (48) | 44 (48.4) | |
Axitinib | 42 (25) | 7 (25.9) | 14 (28) | 21 (23.1) | |
Everolimus | 38 (22.6) | 6 (22.2) | 9 (18) | 23 (25.3) | |
Cabozantinib | 7 (4.2) | 1 (3.8) | 3 (6) | 3 (3.2) | |
Third-line treatment | 0.690 | ||||
Nivolumab | 16 (19.8) | 2 (14.3) | 6 (23.1) | 8 (19.5) | |
Axitinib | 48 (59.3) | 9 (64.3) | 15 (57.7) | 24(58.5) | |
Everolimus | 13 (16) | 1(7.1) | 4(15.4) | 8(19.5) | |
Cabozantinib | 4 (4.9) | 2(14.3) | 1(3.8) | 1(2.4) |
PFS | OS | |||
---|---|---|---|---|
Variable | HR (95 CI%) | p Value | HR (95 CI%) | p Value |
Age, years | 1 (0.98–1.01) | 0.910 | 1 (0.98–1.01) | 0.773 |
Gender (male vs. female) | 0.79 (0.58–1.08) | 0.149 | 0.90 (0.64–1.27) | 0.563 |
Histology (non-clear vs. clear) | 1.14 (0.82–1.57) | 0.413 | 1.27 (0.88–1.82) | 0.195 |
Tumor grade (III–IV vs. I–II) | 0.93 (0.70–1.25) | 0.673 | 1.45 (1.03–2.02) | 0.030 |
Lung metastasis (present vs. absent) | 0.78 (0.57–1.07) | 0.126 | 1.08 (0.76–1.54) | 0.640 |
Liver metastasis (present vs. absent) | 1.39 (0.98–1.97) | 0.062 | 1.47 (1.01–2.13) | 0.043 |
Bone metastasis (present vs. absent) | 1.32 (0.98–1.78) | 0.063 | 1.66 (1.19–2.32) | 0.004 |
Brain metastasis (present vs. absent) | 1.18 (0.70–1.99) | 0.513 | 1.88 (1.10–3.22) | 0.020 |
IMDC risk scoring system | <0.001 | <0.001 | ||
Favorable | 1 (reference) | 1 (reference) | ||
Intermediate | 1.70 (1.08–2.68) | 0.022 | 2.38 (1.29–4.40) | 0.005 |
Poor | 4.36 (2.64–7.20) | <0.001 | 6.32 (3.32–12.03) | <0.001 |
GFR at 6 months | 0.012 | <0.001 | ||
≥60 | 1 (reference) | 1 (reference) | ||
30–60 | 1.29 (0.83–2.00) | 0.258 | 2.45 (1.29–4.66) | 0.006 |
<30 | 1.74 (1.16–2.62) | 0.007 | 4.79 (2.62–8.73) | <0.001 |
HR | 95% CI | p Value | ||
---|---|---|---|---|
Lower | Upper | |||
PFS | ||||
GFR at 6 months | 0.034 | |||
≥60 | 1 (reference) | |||
30–60 | 1.08 | 0.68 | 1.72 | 0.723 |
<30 | 1.54 | 1.01 | 2.33 | 0.040 |
Lung metastasis (present vs. absent) | 0.78 | 0.56 | 1.09 | 0.148 |
Liver metastasis (present vs. absent) | 1.32 | 0.93 | 1.89 | 0.116 |
Bone metastasis (present vs. absent) | 1.17 | 0.86 | 1.59 | 0.306 |
IMDC risk scoring system | <0.001 | |||
Favorable | 1 (reference) | |||
Intermediate | 1.67 | 1.05 | 2.66 | 0.028 |
Poor | 4.13 | 2.47 | 6.91 | <0.001 |
OS | ||||
GFR at 6 months | <0.001 | |||
≥60 | 1 (reference) | |||
30–60 | 2.07 | 1.08 | 3.98 | 0.028 |
<30 | 3.80 | 2.06 | 7.01 | <0.001 |
Liver metastasis (present vs. absent) | 1.60 | 1.09 | 2.37 | 0.017 |
Bone metastasis (present vs. absent) | 1.54 | 1.09 | 2.18 | 0.014 |
Brain metastasis (present vs. absent) | 2.44 | 1.38 | 4.33 | 0.002 |
Histology (non-clear vs. clear cell) | 1.34 | 0.92 | 1.97 | 0.124 |
Tumor grade (III–IV vs. I–II) | 1.05 | 0.74 | 1.50 | 0.757 |
IMDC risk scoring system | <0.001 | |||
Favorable | 1 (reference) | |||
Intermediate | 2.13 | 1.16 | 3.90 | 0.014 |
Poor | 5.81 | 3.07 | 10.99 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktepe, O.H.; Arslan, A.M.; Yetginoglu, O.; Altas, H.; Sencan, C.; Akarca, M.S.; Yildirim, H.C.; Semiz, H.S.; Unek, I.T.; Karaoglu, A.; et al. Prognostic Impact of Glomerular Filtration Rate Decline on Survival Outcomes in Metastatic Renal Cell Carcinoma Treated with Targeted Therapy. Medicina 2025, 61, 1574. https://doi.org/10.3390/medicina61091574
Aktepe OH, Arslan AM, Yetginoglu O, Altas H, Sencan C, Akarca MS, Yildirim HC, Semiz HS, Unek IT, Karaoglu A, et al. Prognostic Impact of Glomerular Filtration Rate Decline on Survival Outcomes in Metastatic Renal Cell Carcinoma Treated with Targeted Therapy. Medicina. 2025; 61(9):1574. https://doi.org/10.3390/medicina61091574
Chicago/Turabian StyleAktepe, Oktay Halit, Ahmet Melih Arslan, Ozge Yetginoglu, Hatice Altas, Canberk Sencan, Mehmet Sinan Akarca, Hasan Cagri Yildirim, Huseyin Salih Semiz, Ilkay Tugba Unek, Aziz Karaoglu, and et al. 2025. "Prognostic Impact of Glomerular Filtration Rate Decline on Survival Outcomes in Metastatic Renal Cell Carcinoma Treated with Targeted Therapy" Medicina 61, no. 9: 1574. https://doi.org/10.3390/medicina61091574
APA StyleAktepe, O. H., Arslan, A. M., Yetginoglu, O., Altas, H., Sencan, C., Akarca, M. S., Yildirim, H. C., Semiz, H. S., Unek, I. T., Karaoglu, A., Erman, M., & Yalcin, S. (2025). Prognostic Impact of Glomerular Filtration Rate Decline on Survival Outcomes in Metastatic Renal Cell Carcinoma Treated with Targeted Therapy. Medicina, 61(9), 1574. https://doi.org/10.3390/medicina61091574