Acute Normovolemic Hemodilution Changes the Aquaporin Expression Profile in Specific Tissues and Induces Apoptotic and Inflammatory Processes in a Rat Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement and Animals
2.2. Experimental Setup and Design
2.3. Experimental Acute Normovolemic Hemodilution Model
2.4. Hemodynamic and Blood (Gas) Measurements
2.5. Protein Extraction from Tissues and Western Blot Analysis
2.6. Statistical Analysis
3. Results
3.1. Bioparameters, Acid Base Status, and Metabolic Parameters
3.2. The Effects of Acute Normovolemic Hemodilution on Aquaporin Expression Profile in Different Tissues
3.3. The Effects of Acute Normovolemic Hemodilution on Apoptotic and Inflammatory Responses in Different Tissues
3.4. Relationship Between Aquaporin Expression and Apoptotic/Inflammatory Response Markers in Experimental Rats with and Without Acute Normovolemic Hemodilution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANH | Acute normovolemic hemodilution |
AQP | Aquaporin |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma 2 |
Cas3 | Caspase-3 |
CPB | Cardiopulmonary bypass |
HCT | Hematocrit |
NF-κB | Nuclear factor kappa B |
PaCO2 | Partial carbon dioxide pressure |
TNF-α | Tumor necrosis factor alpha |
References
- Grant, M.C.; Resar, L.M.; Frank, S.M. The Efficacy and Utility of Acute Normovolemic Hemodilution. Anesth. Analg. 2015, 121, 1412–1414. [Google Scholar] [CrossRef]
- Malbrain, M.; Langer, T.; Annane, D.; Gattinoni, L.; Elbers, P.; Hahn, R.G.; De Laet, I.; Minini, A.; Wong, A.; Ince, C.; et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann. Intensive Care 2020, 10, 64. [Google Scholar] [CrossRef]
- Messmer, K. Hemodilution. Surg. Clin. N. Am. 1975, 55, 659–678. [Google Scholar] [CrossRef]
- Cusack, R.; Leone, M.; Rodriguez, A.H.; Martin-Loeches, I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines 2022, 10, 3150. [Google Scholar] [CrossRef]
- Segal, J.B.; Blasco-Colmenares, E.; Norris, E.J.; Guallar, E. Preoperative acute normovolemic hemodilution: A meta-analysis. Transfusion 2004, 44, 632–644. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, D.W.; Jeong, M.A.; Jun, J.H.; Min, S.J.; Shin, S.J.; Ha, T.K.; Choi, D. Effects of acute normovolemic hemodilution on healing of gastric anastomosis in rats. Ann. Surg. Treat. Res. 2018, 95, 312–318. [Google Scholar] [CrossRef]
- Mikami, N.; Saito, J.; Ohyama, T.; Kubota, M.; Noguchi, S.; Kitayama, M.; Hirota, K. Acute normovolemic hemodilution and acute kidney injury after open abdominal cancer surgery. J. Clin. Anesth. 2020, 61, 109657. [Google Scholar] [CrossRef]
- Monaco, F.; Guarracino, F.; Vendramin, I.; Lei, C.; Zhang, H.; Lomivorotov, V.; Osinsky, R.; Efremov, S.; Gürcü, M.E.; Mazzeffi, M.; et al. Acute normovolemic hemodilution in cardiac surgery: Rationale and design of a multicenter randomized trial. Contemp. Clin. Trials 2024, 143, 107605. [Google Scholar] [CrossRef]
- Prangenberg, J.; Doberentz, E.; Madea, B. Mini Review: Forensic Value of Aquaporines. Front. Med. 2021, 8, 793140. [Google Scholar] [CrossRef]
- Li, N.; Ying, Y.; Yang, B. Aquaporins in Edema. In Aquaporins; Yang, B., Ed.; Springer Nature: Singapore, 2023; pp. 281–287. [Google Scholar]
- Ziebart, A.; Breit, C.; Ruemmler, R.; Hummel, R.; Möllmann, C.; Jungmann, F.; Kamuf, J.; Garcia-Bardon, A.; Thal, S.C.; Kreitner, K.F.; et al. Effect of fluid resuscitation on cerebral integrity: A prospective randomised porcine study of haemorrhagic shock. Eur. J. Anaesthesiol. 2021, 38, 411–421. [Google Scholar] [CrossRef]
- Jonker, S.; Davis, L.E.; van der Bilt, J.D.; Hadder, B.; Hohimer, A.R.; Giraud, G.D.; Thornburg, K.L. Anaemia stimulates aquaporin 1 expression in the fetal sheep heart. Exp. Physiol. 2003, 88, 691–698. [Google Scholar] [CrossRef]
- Tabbutt, S.; Nelson, D.P.; Tsai, N.; Miura, T.; Hickey, P.R.; Mayer, J.E.; Neufeld, E.J. Induction of aquaporin-1 mRNA following cardiopulmonary bypass and reperfusion. Mol. Med. 1997, 3, 600–609. [Google Scholar] [CrossRef]
- Orrico, F.; Lopez, A.C.; Saliwonczyk, D.; Acosta, C.; Rodriguez-Grecco, I.; Mouro-Chanteloup, I.; Ostuni, M.A.; Denicola, A.; Thomson, L.; Möller, M.N. The permeability of human red blood cell membranes to hydrogen peroxide is independent of aquaporins. J. Biol. Chem. 2022, 298, 101503. [Google Scholar] [CrossRef]
- Kokkoris, S.; Vrettou, C.S.; Lotsios, N.S.; Issaris, V.; Keskinidou, C.; Papavassiliou, K.A.; Papavassiliou, A.G.; Kotanidou, A.; Dimopoulou, I.; Vassiliou, A.G. Aquaporins in Acute Brain Injury: Insights from Clinical and Experimental Studies. Biomedicines 2025, 13, 1406. [Google Scholar] [CrossRef]
- Shangzu, Z.; Dingxiong, X.; ChengJun, M.; Yan, C.; Yangyang, L.; Zhiwei, L.; Ting, Z.; Zhiming, M.; Yiming, Z.; Liying, Z.; et al. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol. Res. 2022, 183, 106363. [Google Scholar] [CrossRef]
- Tang, G.; Yang, G.Y. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema. Int. J. Mol. Sci. 2016, 17, 1413. [Google Scholar] [CrossRef]
- Akdemir, G.; Kaymaz, F.; Gursoy-Özdemir, Y.; Akalan, N.; Akdemir, E.S. The time course changes in expression of aquaporin 4 and aquaporin 1 following global cerebral ischemic edema in rat. Surg. Neurol. Int. 2016, 7, 4. [Google Scholar] [CrossRef]
- Papadopoulos, M.C.; Verkman, A.S. Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 2013, 14, 265–277. [Google Scholar] [CrossRef]
- Lee, H.B.; Blaufox, M.D. Blood volume in the rat. J. Nucl. Med. 1985, 26, 72–76. [Google Scholar]
- Barajas, M.B.; Riess, M.L.; Hampton, M.J.W.; Li, Z.; Shi, Y.; Shotwell, M.S.; Staudt, G.; Baudenbacher, F.J.; Lefevre, R.J.; Eagle, S.S. Peripheral Intravenous Waveform Analysis Responsiveness to Subclinical Hemorrhage in a Rat Model. Anesth. Analg. 2023, 136, 941–948. [Google Scholar] [CrossRef]
- Mathew, J.P.; Mackensen, G.B.; Phillips-Bute, B.; Stafford-Smith, M.; Podgoreanu, M.V.; Grocott, H.P.; Hill, S.E.; Smith, P.K.; Blumenthal, J.A.; Reves, J.G.; et al. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology 2007, 107, 577–584. [Google Scholar] [CrossRef]
- Murray, D. Acute normovolemic hemodilution. Eur. Spine J. 2004, 13 (Suppl. S1), S72–S75. [Google Scholar] [CrossRef]
- Perini, F.V.; Montano-Pedroso, J.C.; Oliveira, L.C.; Donizetti, E.; Rodrigues, R.D.R.; Rizzo, S.; Rabello, G.; Junior, D.M.L. Consensus of the Brazilian association of hematology, hemotherapy and cellular therapy on patient blood management: Acute normovolemic hemodilution and intraoperative autotransfusion. Hematol. Transfus. Cell Ther. 2024, 46 (Suppl. S1), S48–S52. [Google Scholar] [CrossRef]
- Amoroso, M.; Özkan, Ö.; Özkan, Ö.; Başsorgun, C.; Ögan, Ö.; Ünal, K.; Longo, B.; Santanelli di Pompeo, F. The Effect of Normovolemic and Hypervolemic Hemodilution on a Microsurgical Model: Experimental Study in Rats. Plast. Reconstr. Surg. 2015, 136, 512–519. [Google Scholar] [CrossRef]
- Gravante, G.; Ong, S.L.; Metcalfe, M.S.; Sorge, R.; Bikhchandani, J.; Lloyd, D.M.; Dennison, A.R. Effects of hypoxia due to isovolemic hemodilution on an ex vivo normothermic perfused liver model. J. Surg. Res. 2010, 160, 73–80. [Google Scholar] [CrossRef]
- Demirgan, S.; Akyol, O.; Temel, Z.; Şengelen, A.; Pekmez, M.; Ulaş, O.; Sevdi, M.S.; Erkalp, K.; Selcan, A. Intranasal levosimendan prevents cognitive dysfunction and apoptotic response induced by repeated isoflurane exposure in newborn rats. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 1553–1567. [Google Scholar] [CrossRef]
- Yayla-Tunçer, E.; Şengelen, A.; Tan-Recep, B.Z.; Şavluk, Ö.F.; Yilmaz, A.A.; Ceyran, H.; Önay-Uçar, E. Acute Changes in Myocardial Expression of Heat Shock Proteins and Apoptotic Response Following Blood, delNido, or Custodiol Cardioplegia in Infants Undergoing Open-Heart Surgery. Pediatr. Cardiol. 2022, 43, 567–579. [Google Scholar] [CrossRef]
- Wessel, D.; Flügge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141–143. [Google Scholar] [CrossRef]
- Nishi, K.; Takasu, A.; Shinozaki, H.; Yamamoto, Y.; Sakamoto, T. Hemodilution as a result of aggressive fluid resuscitation aggravates coagulopathy in a rat model of uncontrolled hemorrhagic shock. J. Trauma. Acute Care Surg. 2013, 74, 808–812. [Google Scholar] [CrossRef]
- Wrobeln, A.; Jägers, J.; Quinting, T.; Schreiber, T.; Kirsch, M.; Fandrey, J.; Ferenz, K.B. Albumin-derived perfluorocarbon-based artificial oxygen carriers can avoid hypoxic tissue damage in massive hemodilution. Sci. Rep. 2020, 10, 11950. [Google Scholar] [CrossRef]
- You, G.X.; Li, B.T.; Wang, Z.; Wang, Q.; Wang, Y.; Zhao, J.X.; Zhao, L.; Zhou, H. Effects of different plasma expanders on rats subjected to severe acute normovolemic hemodilution. Mil. Med. Res. 2020, 7, 55. [Google Scholar] [CrossRef]
- Dorwart, W.V.; Chalmers, L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin. Chem. 1975, 21, 190–194. [Google Scholar] [CrossRef]
- Fujita, T.; Inomata, T.; Yazaki, M.; Iida, Y.; Kaida, T.; Ikeda, Y.; Nabeta, T.; Ishii, S.; Maekawa, E.; Yanagisawa, T.; et al. Hemodilution after Initial Treatment in Patients with Acute Decompensated Heart Failure. Int. Heart J. 2018, 59, 573–579. [Google Scholar] [CrossRef]
- Mehlhorn, U.; Geissler, H.J.; Laine, G.A.; Allen, S.J. Myocardial fluid balance. Eur. J. Cardio-Thorac. Surg. 2001, 20, 1220–1230. [Google Scholar] [CrossRef]
- Crystal, G.J. Regional tolerance to acute normovolemic hemodilution: Evidence that the kidney may be at greatest risk. J. Cardiothorac. Vasc. Anesth. 2015, 29, 320–327. [Google Scholar] [CrossRef]
- Konrad, F.M.; Mik, E.G.; Bodmer, S.I.; Ates, N.B.; Willems, H.F.; Klingel, K.; de Geus, H.R.; Stolker, R.J.; Johannes, T. Acute normovolemic hemodilution in the pig is associated with renal tissue edema, impaired renal microvascular oxygenation, and functional loss. Anesthesiology 2013, 119, 256–269. [Google Scholar] [CrossRef]
- van Bommel, J.; Siegemund, M.; Henny, C.P.; Trouwborst, A.; Ince, C. Critical hematocrit in intestinal tissue oxygenation during severe normovolemic hemodilution. Anesthesiology 2001, 94, 152–160. [Google Scholar] [CrossRef]
- Ge, Y.L.; Lv, R.; Zhou, W.; Ma, X.X.; Zhong, T.D.; Duan, M.L. Brain damage following severe acute normovolemic hemodilution in combination with controlled hypotension in rats. Acta Anaesthesiol. Scand. 2007, 51, 1331–1337. [Google Scholar] [CrossRef]
- Patki, A.; Shelgaonkar, V. Effect of 6% hydroxyethyl starch-450 and low molecular weight dextran on blood sugar levels during surgery under subarachnoid block: A prospective randomised study. Indian. J. Anaesth. 2010, 54, 448–452. [Google Scholar] [CrossRef]
- Zanza, C.; Facelli, V.; Romenskaya, T.; Bottinelli, M.; Caputo, G.; Piccioni, A.; Franceschi, F.; Saviano, A.; Ojetti, V.; Savioli, G.; et al. Lactic Acidosis Related to Pharmacotherapy and Human Diseases. Pharmaceuticals 2022, 15, 1496. [Google Scholar] [CrossRef]
- De Araújo, L.M.T.; Garcia, L.V. Acute normovolemic hemodilution: A practical approach. Open J. Anesthesiol. 2013, 3, 38–43. [Google Scholar] [CrossRef]
- Suetrong, B.; Walley, K.R. Lactic Acidosis in Sepsis: It’s Not All Anaerobic: Implications for Diagnosis and Management. Chest 2016, 149, 252–261. [Google Scholar] [CrossRef]
- Vincent, J.L.; Quintairos, E.S.A.; Couto, L., Jr.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 257. [Google Scholar] [CrossRef]
- Woodcock, T.E.; Woodcock, T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012, 108, 384–394. [Google Scholar] [CrossRef]
- Makris, K.; Spanou, L. Acute Kidney Injury: Diagnostic Approaches and Controversies. Clin. Biochem. Rev. 2016, 37, 153–175. [Google Scholar]
- Patil, V.P.; Salunke, B.G. Fluid Overload and Acute Kidney Injury. Indian. J. Crit. Care Med. 2020, 24, S94–S97. [Google Scholar]
- Lv, W.; Liao, J.; Li, C.; Liu, D.; Luo, X.; Diao, R.; Wang, Y.; Jin, Y. Aquaporin 1 is renoprotective in septic acute kidney injury by attenuating inflammation, apoptosis and fibrosis through inhibition of P53 expression. Front. Immunol. 2024, 15, 1443108. [Google Scholar] [CrossRef]
- Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef]
- Liu, T.F.; Brown, C.M.; El Gazzar, M.; McPhail, L.; Millet, P.; Rao, A.; Vachharajani, V.T.; Yoza, B.K.; McCall, C.E. Fueling the flame: Bioenergy couples metabolism and inflammation. J. Leukoc. Biol. 2012, 92, 499–507. [Google Scholar] [CrossRef]
- Verkman, A.S. Role of aquaporin water channels in kidney and lung. Am. J. Med. Sci. 1998, 316, 310–320. [Google Scholar]
- Ishibashi, K.; Hara, S.; Kondo, S. Aquaporin water channels in mammals. Clin. Exp. Nephrol. 2009, 13, 107–117. [Google Scholar] [CrossRef]
- Conner, A.C.; Bill, R.M.; Conner, M.T. An emerging consensus on aquaporin translocation as a regulatory mechanism. Mol. Membr. Biol. 2013, 30, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Bu, J.; Zhang, Q.; Chen, K.; Zhang, J.; Bao, X. Expression pattern of aquaporins in patients with primary nephrotic syndrome with edema. Mol. Med. Rep. 2015, 12, 5625–5632. [Google Scholar] [CrossRef]
- Khalil, M.; Gena, P.; Di Ciaula, A.; Portincasa, P.; Calamita, G. Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting. Int. J. Mol. Sci. 2024, 25, 12133. [Google Scholar] [CrossRef]
- Marinelli, R.A.; Gradilone, S.A.; Carreras, F.I.; Calamita, G.; Lehmann, G.L. Liver aquaporins: Significance in canalicular and ductal bile formation. Ann. Hepatol. 2004, 3, 130–136. [Google Scholar] [CrossRef]
- Azad, A.K.; Raihan, T.; Ahmed, J.; Hakim, A.; Emon, T.H.; Chowdhury, P.A. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front. Genet. 2021, 12, 654865. [Google Scholar] [CrossRef]
- Frazilio, F.O.; Otsuki, D.A.; Noel-Morgan, J.; Maximino, J.R.; Oliveira, G.P.; Chadi, G.; Auler, J.O., Jr.; Fantoni, D.T. Evaluation of neuronal apoptosis precursors in an experimental model of acute normovolemic hemodilution. PLoS ONE 2014, 9, e108366. [Google Scholar] [CrossRef]
- Lv, R.; Zhou, W.; Duan, M.; Ge, Y.; Zhong, T. Ultrastructural changes, nuclear factor-kappaB activation, and tumor necrosis factor-alpha expression in brain after acute normovolemic hemodilution and controlled hypotension in rats. Croat. Med. J. 2008, 49, 22–31. [Google Scholar] [CrossRef]
Antibody | Host | Dilution | Catalog Number | Company * |
---|---|---|---|---|
Anti-AQP1 | Rabbit | 1:1000 | AF5231 | Affinity Biosciences |
Anti-AQP3 | Rabbit | 1:1000 | AF5222 | Affinity Biosciences |
Anti-AQP4 | Rabbit | 1:500 | sc-20812 | Santa Cruz Biotech. |
Anti-Bax | Mouse | 1:1000 | NBP1-28566 | Novus Bio. |
Anti-Bcl-2 | Rabbit | 1:1000 | NB100-56098 | Novus Bio. |
Anti-Cas3pro&cleaved | Rabbit | 1:1000 | AF6879 | Affinity Biosciences |
Anti-NF-κB p65 | Rabbit | 1:1000 | A00284-1 | Boster Bio. Tech. |
Anti-TNF-α | Rabbit | 1:1000 | NB600-587 | Novus Bio. |
Anti-β-actin | Mouse | 1:5000 | MA5-15739 | Thermo/Invitrogen |
Anti-Mouse IgG | Goat | 1:5000 | 31430 | Thermo/Invitrogen |
Anti-Rabbit IgG | Goat | 1:5000 | 31460 | Thermo/Invitrogen |
Control | Sham | ANH | |||
---|---|---|---|---|---|
Min–Max (Median) Mean ± SD | Min–Max (Median) Mean ± SD | Min–Max (Median) Mean ± SD | p Value | ||
Weight (g) | 400–500 (460) | 405–510 (455) | 420–500 (445) | 0.9588 | |
455.00 ± 40.87 | 457.50 ± 38.44 | 455.00 ± 32.71 | |||
Estimated blood volume (mL) | 25.60–32 (27.84) | 25.92–32.64 (30.40) | 26.90–32 (28.50) | 0.4641 | |
28.59 ± 2.55 | 30.03 ± 2.50 | 29.13 ± 2.10 | |||
Collected blood volume (mL) | - | - | 10.76–12.80 (11.46) | - | |
11.67 ± 0.83 | |||||
Blood Electrolytes and Metabolites | |||||
Na (mmol/L) | TBV | 133–145 (139.5) | 134–150 (141.5) | 135–142 (139) | 0.4168 |
139.50 ± 4.68 | 142.30 ± 6.59 | 138.67 ± 2.50 | |||
T2 | 135–143 (137.5) | 129–145 (138.5) | 137–145 (141) | 0.3351 | |
138.30 ± 3.45 | 137.30 ± 5.61 | 141.00 ± 3.41 | |||
p Value | 0.6335 | 0.1875 | 0.2061 | ||
K (mmol/L) | TBV | 3.90–5.20 (4.20) | 3.50–4.60 (4.20) | 3.40–4.50 (4.00) | 0.3039 |
4.33 ± 0.54 | 4.15 ± 0.41 | 4.02 ± 0.42 | |||
T2 | 4.00–5.00 (4.35) | 3.70–4.80 (4.40) | 4.20–5.60 (4.85) | 0.1297 | |
4.40 ± 40.87 | 4.35 ± 0.41 | 4.83 ± 0.50 | |||
p Value | 0.9011 | 0.4164 | 0.0121 * | ||
Ca (mmol/L) | TBV | 0.90–1.35 (1.18) 1.16 ± 0.16 | 1.25–1.32 (1.30) 1.29 ± 0.02 | 1.15–1.30 (1.20) 1.22 ± 0.06 | 0.1139 |
T2 | 0.80–1.50 (1.05) 1.16 ± 0.16 | 1.08–1.38 (1.19) 1.20 ± 0.12 | 1.20–1.45 (1.30) 1.31 ± 0.10 | 0.1827 | |
p Value | 0.7263 | 0.1068 | 0.1050 | ||
Cl (mmol/L) | TBV | 98–110 (101) 102.00 ± 4.29 | 101–107 (103) 103.30 ± 2.07 | 98–106 (101.5) 102.00 ± 3.03 | 0.7207 |
T2 | 97–105 (102) 101.30 ± 2.94 | 99–104 (101.5) 101.70 ± 2.07 | 95–108 (103.5) 102.20 ± 4.88 | 0.9178 | |
p Value | 0.7601 | 0.1925 | 0.9447 | ||
Glucose (mg/dL) | TBV | 99–203 (129) 142.30 ± 42.18 | 114–181 (138) 140.70 ± 23.17 | 102–185 (141) 140.80 ± 33.68 | 0.9956 |
T2 | 117–185 (137) 143.80 ± 25.34 | 124–205 (134.5) 148.00 ± 30.15 | 102–204 (105) 136.30 ± 50.14 | 0.8580 | |
p Value | 0.9419 | 0.6468 | 0.8588 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erkalp, K.; Demirgan, S.; Şengelen, A.; Oran, D.S.; Öğütcü, İ.; Gencel-Güler, C.; Erkalp, S.; Demirgan, E.B.; Kumaş-Solak, S.; Yelmen, N.; et al. Acute Normovolemic Hemodilution Changes the Aquaporin Expression Profile in Specific Tissues and Induces Apoptotic and Inflammatory Processes in a Rat Model. Medicina 2025, 61, 1506. https://doi.org/10.3390/medicina61091506
Erkalp K, Demirgan S, Şengelen A, Oran DS, Öğütcü İ, Gencel-Güler C, Erkalp S, Demirgan EB, Kumaş-Solak S, Yelmen N, et al. Acute Normovolemic Hemodilution Changes the Aquaporin Expression Profile in Specific Tissues and Induces Apoptotic and Inflammatory Processes in a Rat Model. Medicina. 2025; 61(9):1506. https://doi.org/10.3390/medicina61091506
Chicago/Turabian StyleErkalp, Kerem, Serdar Demirgan, Aslıhan Şengelen, Duygu Sultan Oran, İrem Öğütcü, Ceren Gencel-Güler, Sezin Erkalp, Ebru Burcu Demirgan, Sezen Kumaş-Solak, Nermin Yelmen, and et al. 2025. "Acute Normovolemic Hemodilution Changes the Aquaporin Expression Profile in Specific Tissues and Induces Apoptotic and Inflammatory Processes in a Rat Model" Medicina 61, no. 9: 1506. https://doi.org/10.3390/medicina61091506
APA StyleErkalp, K., Demirgan, S., Şengelen, A., Oran, D. S., Öğütcü, İ., Gencel-Güler, C., Erkalp, S., Demirgan, E. B., Kumaş-Solak, S., Yelmen, N., & Önay-Uçar, E. (2025). Acute Normovolemic Hemodilution Changes the Aquaporin Expression Profile in Specific Tissues and Induces Apoptotic and Inflammatory Processes in a Rat Model. Medicina, 61(9), 1506. https://doi.org/10.3390/medicina61091506