The Role of Ultrasound as a Predictor of Malignancy in Indeterminate Thyroid Nodules—A Multicenter Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection Procedure
- Baseline data (age and sex).
- Thyroid hormonal status (hyperthyroidism, hypothyroidism, or euthyroid).
- Thyroid function tests: thyroid-stimulating hormone (TSH), free thyroxine (T4), and free triiodothyronine (T3).
- Preoperative ultrasound features of thyroid nodules. The US images were performed by US technicians as per hospital protocols and reported by US-specialized radiologists. Thereafter, during data collection, ultrasound images and reports were reviewed by an endocrinologist certified by the American Association of Clinical Endocrinologists (AACE) through the Endocrine Certification in Neck Ultrasound (ECNU). Based on these findings, nodules were stratified in accordance with the 2015 thyroid ATA classification system into high, intermediate, low, very low suspicion, and benign categories [5]. Nodules were also classified using the Thyroid Imaging Reporting and Data System (TI-RADS) Classification from class 1 to 5 [4].
- Preoperative cytology results based on the Bethesda classification of thyroid FNA cytology [14].
- Postoperative pathology reports, categorized as benign, premalignant, or malignant. In differentiated thyroid cancer cases, histopathological findings were further classified according to the 2015 ATA risk stratification for thyroid cancer recurrence [5].
2.2. Statistical Analysis
3. Results
3.1. Population Demographics and Underlying Thyroid Hormonal Status
3.2. Ultrasound Features of Indeterminate Thyroid Nodules
3.3. Risk of Malignancy and Aggressiveness of Thyroid Cancer in Indeterminate Thyroid Nodules
3.4. Predictors of Malignancy in Indeterminate Thyroid Nodules (Univariate Analysis)
3.5. Predictors of Malignancy in Indeterminate Thyroid Nodules (Multivariate Analysis)
3.6. Diagnostic Performance of Ultrasound Features and Risk Stratification Systems to Predict Malignancy
4. Discussion
5. Conclusions
6. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FNA | Fine-needle aspiration |
ATA | American Thyroid Association |
KFHU | King Fahad Hospital of the University |
KFSH-D | King Fahad Specialist Hospital-Dammam |
KFMMC | King Fahad Military Medical Complex |
QCH | Qatif Central Hospital |
TSH | Thyroid-stimulating hormone |
T4 | Thyroxine |
T3 | Triiodothyronine |
TI-RADS | Thyroid Imaging Reporting and Data System |
Q1 Q3 | First quartile Third quartile |
OR | Odds ratio |
CI | Confidence interval |
ETE | Extra-thyroidal extension |
PTC | Papillary thyroid carcinoma |
FTC | Follicular thyroid carcinoma |
PPV | Positive predictive value |
NPV | Negative predictive value |
References
- Vander, J.B.; Gaston, E.A.; Dawber, T.R. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann. Intern. Med. 1968, 69, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.H.; Gharib, H. Thyroid incidentalomas: Management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann. Intern. Med. 1997, 126, 226–231. [Google Scholar] [CrossRef]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Gharib, H.; Papini, E.; Garber, J.R.; Duick, D.S.; Harrell, R.M.; Hegedüs, L.; Paschke, R.; Valcavi, R.; Vitti, P.; AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, American College of endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the diagnosis and management of thyroid nodules—2016 Update. Endocr. Pract. 2016, 22, 622–639. [Google Scholar] [CrossRef] [PubMed]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
- Alyousif, H.; Adam, I.; Alamin, N.A.; Sid Ahmed, M.A.; Al Saeed, A.; Hassoni, A.H.; Musa, I.R. The prevalence and associated predictors for Bethesda III-VI for reporting thyroid cytopathology in Royal Commission Hospital, Kingdom of Saudi Arabia. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221122486. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; Hassan, L.; Balalaa, N.; Askar, M.; Alshehhi, H.; Almarzooqi, M. The Incidence of Thyroid Cancer in Bethesda III Thyroid Nodules: A Retrospective Analysis at a Single Endocrine Surgery Center. Diagnostics 2024, 14, 1026. [Google Scholar] [CrossRef]
- Remonti, L.R.; Kramer, C.K.; Leitão, C.B.; Pinto, L.C.; Gross, J.L. Thyroid ultrasound features and risk of carcinoma: A systematic review and meta-analysis of observational studies. Thyroid 2015, 25, 538–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woliński, K.; Szkudlarek, M.; Szczepanek-Parulska, E.; Ruchała, M. Usefulness of different ultrasound features of malignancy in predicting the type of thyroid lesions: A meta-analysis of prospective studies. Pol. Arch. Med. Wewn. 2014, 124, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, A.S.; Alamri, A.S.; Balkhoyor, A.H.; Mahzari, M.M.; Alshieban, S.S.; Majed, P.M. The Prediction of Malignancy Risk in Thyroid Nodules Classified as Bethesda System Category III (AUS/FLUS) and the Role of Ultrasound Finding for Prediction of Malignancy Risk. Cureus 2021, 13, e17924. [Google Scholar] [CrossRef]
- Alqahtani, S.M.; Alanesi, S.F.; Mahmood, W.S.; Moustafa, Y.M.; Moharram, L.M.; Alharthi, N.F.; Alzahrani, A.M.; Alalawi, Y.S. Clinical and ultrasonographic features in cancer risk stratification of indeterminate thyroid nodules. Saudi Med. J. 2022, 43, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.Z.; Baloch, Z.W.; Cochand-Priollet, B.; Schmitt, F.C.; Vielh, P.; VanderLaan, P.A. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2023, 33, 1039–1044. [Google Scholar] [CrossRef]
- Alaraifi, A.K.; Alessa, M.; Hijazi, L.O.; Alayed, A.M.; Alsalem, A.A. TSH level as a risk factor of thyroid malignancy for nodules in euthyroid patients. Acta Otorhinolaryngol. Ital. 2023, 43, 183–188. [Google Scholar] [CrossRef]
- Golbert, L.; de Cristo, A.P.; Faccin, C.S.; Farenzena, M.; Folgierini, H.; Graudenz, M.S.; Maia, A.L. Serum TSH levels as a predictor of malignancy in thyroid nodules: A prospective study. PLoS ONE 2017, 12, e0188123. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, P.A.; Moinie, A.; Michaels, J.; Bance, R.; Vijendren, A.; Mochloulis, G. Indeterminate thyroid nodules (Thy3): Malignancy rate and characteristics in a study of 118 patients. Ann. R. Coll. Surg. Engl. 2023, 105, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Al Dawish, M.; Alwin Robert, A.; Al Shehri, K.; Hawsawi, S.; Mujammami, M.; Al Basha, I.A.; Alrasheed, M.; Asiri, S.; Alzouman, M.; Alkharashi, E. Risk Stratification of Thyroid Nodules with Bethesda III Category: The Experience of a Territorial Healthcare Hospital. Cureus 2020, 12, e8202. [Google Scholar] [CrossRef]
- Alqahtani, S.M.; Albalawi, H.I.; Alalawi, Y.S.; AlFattani, A.A.; Al-Sobhi, S.S. The impact of nodule size on malignancy risk in indeterminate thyroid nodules. Gland. Surg. 2024, 13, 470–479. [Google Scholar] [CrossRef]
- Ozdemir, A.; Uyan, M.; Kalcan, S.; Çolakoglu, M.K.; Pergel, A. Malignancy rates and risk factors in Bethesda category IV thyroid nodules: Is lobectomy enough in an endemic region? J. Exp. Clin. Med. 2022, 39, 749–754. [Google Scholar] [CrossRef]
- Payne, A.E.; Lefebvre, C.; Minello, M.; Rajab, M.; da Silva, S.D.; Pusztaszeri, M.; Hier, M.P.; Forest, V.I. Molecular Mutations and Clinical Behavior in Bethesda III and IV Thyroid Nodules: A Comparative Study. Cancers 2024, 16, 4249. [Google Scholar] [CrossRef] [PubMed]
- Turkdogan, S.; Pusztaszeri, M.; Forest, V.I.; Hier, M.P.; Payne, R.J. Are Bethesda III Thyroid Nodules More Aggressive than Bethesda IV Thyroid Nodules When Found to Be Malignant? Cancers 2020, 12, 2563. [Google Scholar] [CrossRef]
- Moon, W.J.; Jung, S.L.; Lee, J.H.; Na, D.G.; Baek, J.H.; Lee, Y.H.; Kim, J.; Kim, H.S.; Byun, J.S.; Lee, D.H.; et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008, 247, 762–770. [Google Scholar] [CrossRef]
- Moon, H.J.; Kwak, J.Y.; Kim, E.K.; Kim, M.J. A taller-than-wide shape in thyroid nodules in transverse and longitudinal ultrasonographic planes and the prediction of malignancy. Thyroid 2011, 21, 1249–1253. [Google Scholar] [CrossRef]
- Papapostolou, K.D.; Evangelopoulou, C.C.; Ioannidis, I.A.; Kassi, G.N.; Morfas, K.S.; Karaminas, N.I.; Karga, H.J. Taller-than-wide Thyroid Nodules With Microcalcifications Are at High Risk of Malignancy. In Vivo 2020, 34, 2101–2105. [Google Scholar] [CrossRef]
- Mohamed, H.E.; Mohamed, S.E.; Anwar, M.A.; Al-Qurayshi, Z.; Sholl, A.; Thethi, T.; Khan, A.; Aslam, R.; Kandil, E. The significance of enlarged cervical lymph nodes in diagnosing thyroid cancer. J. Cancer Res. Ther. 2016, 12, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.A.M.; Sarhan, A.A.; Sayouh, A.S. Predictors of Malignancy in Thyroid Nodules. IJMA 2021, 3, 1369–1376. [Google Scholar] [CrossRef]
- Celletti, I.; Fresilli, D.; De Vito, C.; Bononi, M.; Cardaccio, S.; Cozzolino, A.; Durante, C.; Grani, G.; Grimaldi, G.; Isidori, A.M.; et al. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance? Radiol. Med. 2021, 126, 1189–1200. [Google Scholar] [CrossRef]
- Shayganfar, A.; Hashemi, P.; Esfahani, M.M.; Ghanei, A.M.; Moghadam, N.A.; Ebrahimian, S. Prediction of thyroid nodule malignancy using thyroid imaging reporting and data system (TIRADS) and nodule size. Clin. Imaging 2020, 60, 222–227. [Google Scholar] [CrossRef]
- Alqahtani, S.M.; Al-Sobhi, S.S.; Alturiqy, M.A.; Alsalloum, R.I.; Al-Hindi, H.N. The impact of thyroid imaging reporting and data system on the management of Bethesda III thyroid nodules. J. Taibah Univ. Med. Sci. 2022, 18, 506–511. [Google Scholar] [CrossRef]
- Alsibani, A.; Alessa, M.; Alwadi, F.; Alotaibi, S.; Alfaleh, H.; Moshibah, A.M.; Alqahtani, A.M.; AlQahtani, A.; Almayouf, M.; Aldhahri, S.F.; et al. Evaluation of ACR TI-RADS for Predicting Malignancy in Thyroid Nodules: Insights from Fine-Needle Aspiration Cytology and Histopathology Results. J. Oman Med. Assoc. 2024, 1, 61–68. [Google Scholar] [CrossRef]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur. Thyroid. J. 2023, 12, e230067. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Hier, J.; Payne, K.E.; Abdulhaleem, M.; Dimitstein, O.; Eisenbach, N.; Forest, V.I.; Payne, R.J. Impact of Molecular Testing on Surgical Decision-Making in Indeterminate Thyroid Nodules: A Systematic Review and Meta-Analysis of Recent Advancements. Cancers 2025, 17, 1156. [Google Scholar] [CrossRef] [PubMed]
Total Frequency (Percentage) | Bethesda III Frequency (Percentage) | Bethesda IV Frequency (Percentage) | p Value | ||
---|---|---|---|---|---|
Age (years) Median (Q1–Q3) 42 (35–52) | 18–40 | 88 (42.7%) | 48 (41.4%) | 40 (44.4%) | 0.824 |
41–60 | 92 (44.7%) | 54 (46.6%) | 38 (42.2%) | ||
61–80 | 26 (12.6%) | 14 (12.1%) | 12 (13.3%) | ||
Sex | Male | 24 (11.7%) | 14 (12.1%) | 10 (11.1%) | 0.83 |
Female | 182 (88.3%) | 102 (87.9%) | 80 (88.9%) | ||
Underlying thyroid hormonal status | Hyperthyroidism | 3 (1.5%) | 2 (1.7%) | 1 (1.2%) | 0.7 |
Hypothyroidism | 10 (4.9%) | 6 (4.96%) | 4 (4.7%) | 0.93 | |
Euthyroid | 193 (93.6%) | 113 (93.4%) | 80 (94.1%) | 0.83 | |
Size of thyroid nodules | <4.0 cm | 171 (76.7%) | 104 (80%) | 67 (72.04%) | 0.166 |
≥4.0 cm | 52 (23.3%) | 26 (20%) | 26 (27.96%) | ||
Thyroid function test Median (Q1–Q3) | TSH (uIU/mL) | 1.3 (0.9–2.7) | 1.2 (0.85–2.3) | 2 (0.88–3) | 0.076 |
Free T4 (ng/dL) | 9.7 (1.2–12.5) | 2.9 (1.06–12) | 11.01 (2.8–13) | 0.001 | |
Free T3 (pg/mL) | 3.3 (2.5–4.2) | 3.0 (2–3.74) | 3.8 (2.8–4.4) | 0.001 |
Total Frequency (Percentage) | Bethesda III Frequency (Percentage) | Bethesda IV Frequency (Percentage) | p Value | |
---|---|---|---|---|
Ultrasound features | ||||
Number of nodules | ||||
Single nodule | 147 (65.9%) | 97 (74.6%) | 50 (53.8%) | 0.001 |
Multiple nodules | 76 (34.1%) | 33 (42.3%) | 43 (61.4%) | 0.02 |
Nodule type | ||||
Solid | 133 (59.6%) | 69 (53.1%) | 64 (68.8%) | 0.018 |
Cystic | 36 (16.1%) | 25 (19.2%) | 11 (11.8%) | 0.138 |
Mixed | 54 (24.2%) | 38 (29.2%) | 16 (17.2%) | 0.039 |
Nodule echogenicity | ||||
Hypoechoic | 89 (39.9%) | 54 (41.5%) | 35 (37.6%) | 0.5 |
Hyperechoic | 80 (35.9%) | 43 (33.1%) | 37 (39.8%) | 0.45 |
Isoechoic | 54 (24.2%) | 33 (25.4%) | 21 (22.6%) | 0.65 |
Other high-risk features | ||||
Solid and hypoechoic | 57 (25.6%) | 36 (27.7%) | 21 (22.6%) | 0.388 |
Microcalcifications | 57 (25.6%) | 38 (29.2%) | 19 (20.4%) | 0.12 |
Taller than wide | 14 (6.3%) | 7 (5.4%) | 7 (7.5%) | 0.52 |
Irregular margins | 3 (1.3%) | 3 (2.3%) | 0 (0%) | 0.51 |
Extra-thyroid extension | 12 (5.4%) | 12 (9.2%) | 0 (0%) | 0.003 |
Lymph nodes | 47 (21.1%) | 30 (23.1%) | 17 (18.3%) | 0.36 |
Ultrasound risk classification systems | ||||
ATA risk classification | ||||
Benign | 1 (0.4%) | 0 (0%) | 1 (1.1%) | 0.65 |
Very low suspicion | 16 (7.2%) | 14 (10.8%) | 2 (2.2%) | 0.01 |
Low suspicion | 83 (37.2%) | 56 (43.1%) | 27 (29.0%) | 0.03 |
Intermediate suspicion | 83 (37.2%) | 34 (26.2%) | 49 (52.7%) | 0.001 |
High suspicion | 40 (17.9%) | 26 (20.0%) | 14 (15.1%) | 0.28 |
TI-RADS classification | ||||
TI-RADS 1 | 4 (1.8%) | 7 (5.4%) | 0 (0%) | 0.02 |
TI-RADS 2 | 23 (10.3%) | 2 (1.5%) | 2 (2.2%) | 0.69 |
TI-RADS 3 | 66 (29.6%) | 11 (8.5%) | 12 (12.9%) | 0.28 |
TI-RADS 4 | 97 (43.5%) | 42 (32.3%) | 24 (25.8%) | 0.29 |
TI-RADS 5 | 26 (11.7%) | 52 (40%) | 45 (48.4%) | 0.23 |
Total Frequency (Percentage) | Bethesda III Frequency (Percentage) | Bethesda IV Frequency (Percentage) | p Value | |
---|---|---|---|---|
Risk of malignancy | ||||
Malignant | 104 (46.6%) | 54 (41.5%) | 50 (53.8%) | 0.07 |
Benign | 113 (50.7%) | 74 (56.9%) | 39 (41.9%) | 0.02 |
Pre-malignant (NIFTP) | 6 (2.7%) | 2 (1.5%) | 4 (4.3%) | 0.2 |
Postoperative pathology | ||||
Type of thyroid cancer | ||||
PTC | 97 (93.3%) | 52 (96.3%) | 45 (90.0%) | 0.2 |
FTC | 6 (5.8%) | 1 (1.9%) | 5 (10.0%) | 0.08 |
MTC | 1 (0.9%) | 1 (1.9%) | 0 (0%) | 0.32 |
PTC variants | ||||
Classic | 49 (50.5%) | 28 (53.8%) | 21 (46.7%) | 0.48 |
Follicular | 42 (43.3%) | 20 (38.5%) | 22 (48.9%) | 0.3 |
Tall cell | 2 (2.1%) | 1 (1.9%) | 1 (2.2%) | 0.92 |
Others | 4 (4.1%) | * 3 (5.8%) | † 1 (2.2%) | 0.37 |
Other high-risk features | ||||
High-risk variant | 6 (2.7%) | 4 (3.1%) | 2 (2.2%) | 0.7 |
Unifocal | 57 (25.1%) | 31 (23.8%) | 26 (28.0%) | 0.41 |
Multifocal | 47 (20.6%) | 23 (17.7%) | 24 (25.8%) | 0.2 |
Extra-thyroid extension | 3 (1.3%) | 1 (0.8%) | 2 (2.2%) | 0.21 |
Lympho-vascular invasion | 10 (4.5%) | 3 (2.3%) | 7 (7.5%) | 0.065 |
Perineural invasion | 2 (0.9%) | 1 (0.8%) | 1 (1.1%) | 0.32 |
Lymph nodes | 11 (4.9%) | 7 (5.4%) | 4 (4.3%) | 0.71 |
ATA classification for recurrence risk of differentiated thyroid cancer | ||||
Low | 72 (69.9%) | 35 (66.0%) | 37 (74.0%) | 0.378 |
Intermediate | 26 (26.8%) | 16 (30.8%) | 10 (22.2%) | 0.189 |
High | 5 (5.2%) | 2 (3.8%) | 3 (6.7%) | 0.42 |
Malignant Frequency (Percentage) | Benign Frequency (Percentage) | p Value | |
---|---|---|---|
* Age (years) | 42 (35–51) | 43 (36.5–54.5) | 0.234 |
Sex | |||
Male | 12 (12.6%) | 10 (9.5%) | 0.48 |
Female | 83 (87.4%) | 95 (90.5%) | |
Underlying thyroid hormonal status | |||
Hypothyroidism | 4 (4.0%) | 5 (4.7%) | 0.79 |
Hyperthyroidism | 1 (1.0%) | 2 (1.9%) | 0.55 |
Euthyroid | 93 (94.9%) | 95 (93.2%) | 0.60 |
* TSH level (uIU/mL) | 1.3 (0.8–2.3) | 1.4 (0.9–2.6) | 0.34 |
Ultrasound features | |||
Nodule type | |||
Solid | 68 (65.4%) | 61 (54.0%) | 0.08 |
Cystic | 18 (17.3%) | 16 (14.2%) | 0.524 |
Mixed | 18 (17.3%) | 36 (31.9%) | 0.012 |
Nodule echogenicity | |||
Hypoechoic | 48 (46.2%) | 38 (33.6%) | 0.059 |
Hyperechoic | 32 (30.8%) | 46 (40.7%) | 0.12 |
Isoechoic | 24 (23.1%) | 29 (25.7%) | 0.65 |
Other high-risk features | |||
Solid and hypoechoic | 34 (32.7%) | 20 (17.7%) | 0.01 |
Microcalcifications | 39 (37.5%) | 18 (15.9%) | 0.003 |
Taller than wide | 11 (10.6%) | 3 (2.7%) | 0.018 |
Irregular margins | 1 (1.0%) | 2 (1.8%) | 0.58 |
Extra-thyroid extension | 6 (5.8%) | 6 (5.3%) | 0.9 |
Lymph nodes | 31 (29.8%) | 14 (12.4%) | 0.002 |
Ultrasound risk classification systems | |||
ATA risk classification | |||
Benign | 0 (0%) | 1 (0.9%) | 0.33 |
Very low–low suspicion | 38 (36.5%) | 59 (52.7%) | 0.02 |
Intermediate–high suspicion | 66 (63.5%) | 53 (47.3%) | 0.017 |
TI-RADS classification | |||
TI-RADS 1 | 2 (1.9%) | 2 (1.8%) | 0.9 |
TI-RADS 2–3 | 32 (32.0%) | 56 (52.8%) | 0.0026 |
TI-RADS 4–5 | 68 (68.0%) | 50 (47.2%) | 0.002 |
ORs (95% CI) | p Value | |
---|---|---|
Age | 1.5 (0.59–3.84) | 0.4 |
Male sex | 0.99 (0.97–1.01) | 0.38 |
Hypothyroidism | 1.8 (0.11–18.62) | 0.799 |
Hyperthyroidism | 1.6 (0.1–24.7) | 0.736 |
TSH level | 0.9 (0.8–1.1) | 0.28 |
Ultrasound features | ||
Nodule Type | ||
Solid | 1.43 (0.8–2.57) | 0.23 |
Cystic | 1.49 (0.7–3.17) | 0.302 |
Mixed | 0.62 (0.31–1.24) | 0.176 |
Nodule Echogenicity | ||
Hypoechoic | 1.69 (0.98–2.93) | 0.06 |
Hyperechoic | 0.55 (0.3–1.02) | 0.059 |
Isoechoic | 0.66 (0.33–1.3) | 0.228 |
Other high-risk features | ||
Solid and hypoechoic | 2.26 (1.2–4.26) | 0.012 |
Microcalcifications | 3.07 (1.52–6.19) | 0.002 |
Taller-than-wide shape | 2.81 (0.7–11.26) | 0.144 |
Irregular margins | 0.42 (0.03–5.2) | 0.499 |
Extra-thyroid extension | 0.83 (0.23–3.01) | 0.776 |
Lymph nodes | 2.43 (1.14–5.18) | 0.021 |
Ultrasound risk classification systems | ||
ATA risk classification | ||
Intermediate–high suspicion | 1.9 (1.1–3.3) | 0.018 |
TI-RADS classification | ||
TI-RADS 4–5 | 2.3 (1.3–4.2) | 0.003 |
Ultrasound Feature/Risk Stratification Category | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
Solid and hypoechoic | 32.7% | 82.3% | 63.0% | 57.1% |
Microcalcifications | 37.5% | 84.1% | 68.4% | 59.4% |
Lymph nodes | 29.8% | 87.6% | 68.9% | 57.6% |
ATA intermediate-high suspicion | 63.5% | 53.1% | 55.5% | 61.2% |
TI-RADS 4–5 | 68.0% | 52.8% | 57.6% | 63.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Argan, R.J.; Alkhafaji, D.M.; Almajid, F.M.; Alkhaldi, N.K.; Al Ghareeb, Z.A.; Osman, M.F.; Hasan, M.A.; Alqatari, S.G.; Alwaheed, A.J.; Ismaeel, F.E.; et al. The Role of Ultrasound as a Predictor of Malignancy in Indeterminate Thyroid Nodules—A Multicenter Study. Medicina 2025, 61, 1082. https://doi.org/10.3390/medicina61061082
Al Argan RJ, Alkhafaji DM, Almajid FM, Alkhaldi NK, Al Ghareeb ZA, Osman MF, Hasan MA, Alqatari SG, Alwaheed AJ, Ismaeel FE, et al. The Role of Ultrasound as a Predictor of Malignancy in Indeterminate Thyroid Nodules—A Multicenter Study. Medicina. 2025; 61(6):1082. https://doi.org/10.3390/medicina61061082
Chicago/Turabian StyleAl Argan, Reem J., Dania M. Alkhafaji, Feras M. Almajid, Njoud K. Alkhaldi, Zahra A. Al Ghareeb, Moutaz F. Osman, Manal A. Hasan, Safi G. Alqatari, Abrar J. Alwaheed, Fatima E. Ismaeel, and et al. 2025. "The Role of Ultrasound as a Predictor of Malignancy in Indeterminate Thyroid Nodules—A Multicenter Study" Medicina 61, no. 6: 1082. https://doi.org/10.3390/medicina61061082
APA StyleAl Argan, R. J., Alkhafaji, D. M., Almajid, F. M., Alkhaldi, N. K., Al Ghareeb, Z. A., Osman, M. F., Hasan, M. A., Alqatari, S. G., Alwaheed, A. J., Ismaeel, F. E., & AlSulaiman, R. S. (2025). The Role of Ultrasound as a Predictor of Malignancy in Indeterminate Thyroid Nodules—A Multicenter Study. Medicina, 61(6), 1082. https://doi.org/10.3390/medicina61061082