How Do Fear-Avoidance and Catastrophizing Pain Beliefs Affect Functional Status and Disease Activity in Axial Spondyloarthritis?
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Assessment
2.3.1. Clinical Outcome Measures
- The Numeric Pain Rating Scale (NPRS) is an 11-point numeric rating scale, where 0 denotes “no pain” and 10 denotes “the maximum pain imaginable”. The minimum clinically important difference (MCID) for this tool was established at 1.5 points, and the minimum detectable change (MDC) was established at 2.6 points in individuals with neck pain. The NPRS is a valid scale with moderate test–retest reliability in this population (intraclass coefficient correlation (ICC): 0.76, 95% CI 0.58 to 0.93) [22].
- The pressure pain threshold (PPT) was assessed at specific pain points in the upper trapezius, lumbar erector spinae at L3–L4, and epicondyle muscles. The epicondyle was included as a distal reference point to serve as a control measure, helping to contrast pressure sensitivity at sites unrelated to the primary area of involvement [23]. A mechanical pressure algometer (Baseline® Fabrication Enterprise, Inc., White Plains, NY, USA) with a 1 cm2 contact area was used. The test measures the minimum amount of pressure required for the sensation to shift from pressure to pain, at which point the participant signals “now”, and the algometer is immediately withdrawn, recording the applied pressure in kg/cm2 [24]. Three measurements were taken at each point with a 2 min rest interval between trials, and the mean of the three measurements was used for analysis. Previous studies have reported moderate-to-high reliability for this procedure (ICC: 0.62–0.81) and a minimal clinically detectable change (MCID) ranging from 1.1 kg/cm2 to 1.5 kg/cm2 [24].
- The cervical range of motion (ROM) was measured using a head goniometer (Enraf-Nonius© BV, Rotterdam, The Netherlands) to assess movements in the sagittal (flexion/extension), frontal (right/left lateral flexion), and transverse planes (right/left rotation). Each movement was performed three times with a 30 s rest period. In individuals with neck pain, the device’s standard error ranges from 2.9° (left rotation) to 4.1° (flexion), with an MDC between 5.9° and 9.6° [25]. The lumbar range of motion was assessed using the modified Schober test, marking 5 cm below and 10 cm above the lumbosacral junction in a standing position to achieve an initial 15 cm distance [26]. The patient then fully flexes forward, and the increase in distance between the marks measures lumbar flexion. This method has an ICC of 0.77 and an MDC of 1.8 cm [26].
- Proprioceptive acuity was assessed using two tests: the cervical joint position sense error (JPSE) and the lumbar repositioning error (LRE). The JPSE test evaluated the ability to reposition the head to its natural posture, providing a measure of cervical proprioception [27]. For this assessment, we used the Motion Guidance Clinic Kit (Motion Guidance LLC, Denver, CO, USA), which is a visual feedback device. The JPSE is a valid and reliable test used in clinical evaluation, with ICCs ranging from 0.30 to 0.78 and an MDC between 0.44° and 0.63° [28]. For the LRE assessment, participants actively flexed their lumbar spine from 0° to 30°, guided by the evaluator. After memorizing the final position for 10 s, they returned to the initial position and were then asked to reproduce the 30° lumbar flexion independently. The lumbar repositioning error (LRE) was measured using an inclinometer (iPhone® smartphone app, Apple Inc., Cupertino, CA, USA) [29].
2.3.2. Psychosocial Outcome Measures
- Pain Catastrophizing Scale (PCS): The Spanish version of the PCS is a self-administered scale (Likert scale) of 13 items and is one of the most used and reliable to assess pain catastrophizing [13,18]. Participants are asked to refer to their past painful experiences and indicate the degree to which they experienced each of the 13 thoughts or feelings: the score ranges from 0 (never) to 4 (always). The Spanish PCS version has demonstrated good validity and reliability (Cronbach’s α = 0.79; ICC = 0.84) [30].
- Tampa Kinesiophobia Scale (TSK-11): The Spanish version of the TSK-11 is used to assess fear of movement and re-injury [31]. It contains 11 items, each rated on a 4-point Likert scale (1 = “strongly disagree” to 4 = “strongly agree”), with total scores ranging from 11 to 44. Higher scores indicate greater fear of pain, movement, and injury. This version has demonstrated good reliability and validity (Cronbach’s alpha: 0.79) [31].
- Fear-Avoidance Beliefs Questionnaire (FABQ): This test is a self-reported measure designed to assess fear-avoidance beliefs related to physical activity and work in individuals with musculoskeletal pain. It consists of two subscales: one for physical activity (FABQ-PA) and another for work-related fear-avoidance (FABQ-W). Each item is rated on a 7-point Likert scale, with higher scores indicating stronger fear-avoidance beliefs. The Spanish version of the FABQ has demonstrated good reliability, with a Cronbach’s alpha of 0.93 and an intraclass correlation coefficient (ICC) of 0.97 [32].
2.3.3. Specific Outcomes in AxSpA
- Bath Ankylosing Spondylitis Metrology Index (BASMI): This is a valid and reliable index designed to measure spinal mobility in individuals with ankylosing spondylitis and other spondyloarthropathies [33]. The BASMI includes five specific measurements: lateral lumbar flexion, tragus-to-wall distance, cervical rotation, lumbar flexion (measured by the modified Schober test), and intermalleolar distance [33]. Each measure is scored on a continuous linear scale from 0 to 10 based on specific formulas, with higher scores indicating greater mobility limitations [33,34].
- Bath Ankylosing Spondylitis Disease Activity Index (BASDAI): This is a self-reported measure of disease activity in ankylosing spondylitis [35]. It includes six items that assess fatigue, spinal pain, joint pain and swelling, and morning stiffness, rated on a 0–10 scale [35]. The BASDAI has shown good reliability (ICC = 0.74, 95% CI: 0.52–0.88) and construct validity [36].
- Bath Ankylosing Spondylitis Functional Index (BASFI): This is a self-administered questionnaire used to assess physical function in patients with ankylosing spondylitis [37]. It includes 10 items that evaluate the patient’s ability to perform daily activities, rated on a 0–10 scale, with higher scores indicating greater functional limitation [37]. The BASFI has demonstrated good reliability (ICC = 0.68, 95% CI: 0.29–0.85) [36].
2.4. Statistical Analysis
2.5. Sample Size Estimation
3. Results
4. Discussion
Clinical Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Redeker, I.; Callhoff, J.; Hoffmann, F.; Marschall, U.; Zink, A.; Albrecht, K. The prevalence and impact of comorbidities on patients with axial spondyloarthritis: Results from a nationwide population-based study. Arthritis Res. Ther. 2020, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Rumyantseva, D.G.; Dubinina, T.V.; Demina, A.B.; Rumyantseva, O.A.; Agafonova, E.M.; Smirnov, A.V.; Erdes, S.F. Ankylosing spondylitis and non-radiographic axial spondyloarthritis: Two stages of disease? Ter. Arkh. 2017, 89, 33–37. [Google Scholar] [CrossRef]
- Burgos-Vargas, R.; Wei, J.C.-C.; Rahman, M.U.; Akkoc, N.; Haq, S.A.; Hammoudeh, M.; Mahgoub, E.; Singh, E.; Llamado, L.J.; Shirazy, K.; et al. The prevalence and clinical characteristics of nonradiographic axial spondyloarthritis among patients with inflammatory back pain in rheumatology practices. Arthritis Res. Ther. 2016, 18, 126. [Google Scholar] [CrossRef]
- Sieper, J.; Rudwaleit, M.; Baraliakos, X.; Brandt, J.; Braun, J.; Burgos-Vargas, R.; Dougados, M.; Hermann, K.-G.; Landewé, R.; Maksymowych, W.; et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: A guide to assess spondyloarthritis. Ann Rheum Dis. 2009, 68 (Suppl. 2), ii1–ii44. [Google Scholar] [CrossRef]
- Swinnen, T.W.; Westhovens, R.; Dankaerts, W.; de Vlam, K. Widespread pain in axial spondyloarthritis: Clinical importance and gender differences. Arthritis Res. Ther. 2018, 20, 156. [Google Scholar] [CrossRef]
- Navarro-Compán, V.; Sepriano, A.; El-Zorkany, B.; van der Heijde, D. Axial spondyloarthritis. Ann. Rheum. Dis. 2021, 80, 1511–1521. [Google Scholar] [CrossRef]
- Parkinson, J.T.; Foley, É.M.; Jadon, D.R.; Khandaker, G.M. Depression in patients with spondyloarthritis: Prevalence, incidence, risk factors, mechanisms and management. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20970028. [Google Scholar] [CrossRef]
- Ramiro, S.; Nikiphorou, E.; Sepriano, A.; Ortolan, A.; Webers, C.; Baraliakos, X.; Landewé, R.B.M.; Bosch, F.E.V.D.; Boteva, B.; Bremander, A.; et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 2023, 82, 19–34. [Google Scholar] [CrossRef]
- Garrido-Castro, J.L.; Collantes-Estévez, E.; Alburquerque-Sendín, F.; López-Medina, C. Future Challenges and Critical Approach to Metrology in Patients with Axial Spondyloarthritis. Diagnostics 2021, 11, 1533. [Google Scholar] [CrossRef]
- Mogard, E.; Lindqvist, E.; Bergman, S.; Bremander, A. Spinal Mobility in Axial Spondyloarthritis: A Cross-Sectional Clinical Study. Musculoskelet. Care 2017, 15, 36–48. [Google Scholar] [CrossRef]
- Ozen, T.; Tonga, E.; Polat, M.G.; Bayraktar, D.; Akar, S. Cervical proprioception accuracy is impaired in patients with axial spondyloarthritis. Musculoskelet. Sci. Pract. 2021, 51, 102304. [Google Scholar] [CrossRef]
- Giannoulis, K.; Giannouli, V. Subjective Quality of Life, Religiousness, and Spiritual Experience in Greek Orthodox Christians: Data from Healthy Aging and Patients with Cardiovascular Disease. In GeNeDis 2018. Advances in Experimental Medicine and Biology; Vlamos, P., Ed.; Springer: Cham, Switzerland, 2020; pp. 85–99. [Google Scholar] [CrossRef]
- Wilk, M.; Pripp, A.H.; Korkosz, M.; Haugeberg, G. Exploring pain catastrophizing and its associations with low disease activity in rheumatic inflammatory disorders. Rheumatol. Int. 2023, 43, 687–694. [Google Scholar] [CrossRef]
- Oskay, D.; Tuna, Z.; Düzgün, İ.; Elbasan, B.; Yakut, Y.; Tufan, A. Relationship between kinesiophobia and pain, quality of life, functional status, disease activity, mobility, and depression in patients with ankylosing spondylitis. Turk. J. Med. Sci. 2017, 47, 1340–1347. [Google Scholar] [CrossRef]
- Wertli, M.M.; Rasmussen-Barr, E.; Weiser, S.; Bachmann, L.M.; Brunner, F. The role of fear avoidance beliefs as a prognostic factor for outcome in patients with nonspecific low back pain: A systematic review. Spine J. 2014, 14, 816–836.e4. [Google Scholar] [CrossRef]
- Inman, R.D.; Garrido-Cumbrera, M.; Chan, J.; Cohen, M.; de Brum-Fernandes, A.J.; Gerhart, W.; Haroon, N.; Jovaisas, A.V.; Major, G.; Mallinson, M.G.; et al. Work-Related Issues and Physical and Psychological Burden in Canadian Patients With Axial Spondyloarthritis: Results From the International Map of Axial Spondyloarthritis. J. Rheumatol. 2023, 50, 625–633. [Google Scholar] [CrossRef]
- Kreis, S.; Molto, A.; Bailly, F.; Dadoun, S.; Fabre, S.; Rein, C.; Hudry, C.; Zenasni, F.; Rozenberg, S.; Pertuiset, E.; et al. Relationship between optimism and quality of life in patients with two chronic rheumatic diseases: Axial spondyloarthritis and chronic low back pain: A cross-sectional study of 288 patients. Health Qual. Life Outcomes 2015, 13, 78. [Google Scholar] [CrossRef]
- Ben Tekaya, A.; Ben Said, H.; Yousfi, I.; Ben Dhia, S.; Bouden, S.; Rouached, L.; Mahmoud, I.; Tekaya, R.; Saidane, O.; Abdelmoula, L. Burden of disease, pain catastrophizing, and central sensitization in relation to work-related issues in young spondyloarthritis patients. Reumatologia 2024, 62, 35–42. [Google Scholar] [CrossRef]
- Redeker, I.; Hoffmann, F.; Callhoff, J.; Haibel, H.; Sieper, J.; Zink, A.; Poddubnyy, D. Determinants of Psychological Well-Being in Axial Spondyloarthritis: An Analysis Based on Linked Claims and Patient-Reported Survey Data. Ann. Rheum. Dis. 2018, 77, 1017–1024. [Google Scholar] [CrossRef]
- Zou, Q.; Jiang, Y.; Mu, F.; Shi, Y.; Fang, Y. Correlation of Axial Spondyloarthritis with Anxiety and Depression. Med. Sci. Monit. 2016, 22, 3202–3208. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Modarresi, S.; Lukacs, M.J.; Ghodrati, M.; Salim, S.; MacDermid, J.C.; Walton, D.M. A Systematic Review and Synthesis of Psychometric Properties of the Numeric Pain Rating Scale and the Visual Analog Scale for Use in People With Neck Pain. Clin. J. Pain 2021, 38, 132–148. [Google Scholar] [CrossRef]
- Bodes Pardo, G.; Lluch Girbés, E.; Roussel, N.A.; Gallego Izquierdo, T.; Jiménez Penick, V.; Pecos Martín, D. Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2018, 99, 338–347. [Google Scholar] [CrossRef]
- Chesterton, L.S.; Sim, J.; Wright, C.C.; Foster, N.E. Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters. Clin. J. Pain 2007, 23, 760–766. [Google Scholar] [CrossRef]
- Fletcher, J.P.; Bandy, W.D. Intrarater reliability of CROM measurement of cervical spine active range of motion in persons with and without neck pain. J. Orthop. Sports Phys. Ther. 2008, 38, 640–645. [Google Scholar] [CrossRef]
- Robinson, H.S.; Mengshoel, A.M. Assessments of lumbar flexion range of motion: Intertester reliability and concurrent validity of 2 commonly used clinical tests. Spine 2014, 39, E270–E275. [Google Scholar] [CrossRef]
- Revel, M.; Andre-Deshays, C.; Minguet, M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch. Phys. Med. Rehabil. 1991, 72, 288–291. [Google Scholar]
- García-Pérez-Juana, D.; Fernández-de-las-Peñas, C.; Arias-Buría, J.L.; Cleland, J.A.; Plaza-Manzano, G.; Ortega-Santiago, R. Changes in Cervicocephalic Kinesthetic Sensibility, Widespread Pressure Pain Sensitivity, and Neck Pain After Cervical Thrust Manipulation in Patients With Chronic Mechanical Neck Pain: A Randomized Clinical Trial. J. Manip. Physiol. Ther. 2018, 41, 551–560. [Google Scholar] [CrossRef]
- Caña-Pino, A.; Espejo-Antúnez, L.; Adsuar, J.C.; Apolo-Arenas, M.D. Test-Retest Reliability of an iPhone® Inclinometer Application to Assess the Lumbar Joint Repositioning Error in Non-Specific Chronic Low Back Pain. Int. J. Environ. Res. Public Health 2021, 18, 2489. [Google Scholar] [CrossRef]
- García Campayo, J.; Rodero, B.; Alda, M.; Sobradiel, N.; Montero, J.; Moreno, S. Validation of the Spanish version of the Pain Catastrophizing Scale in fibromyalgia. Med. Clin. 2008, 131, 487–492. [Google Scholar] [CrossRef]
- Gómez-Pérez, L.; López-Martínez, A.E.; Ruiz-Párraga, G.T. Psychometric Properties of the Spanish Version of the Tampa Scale for Kinesiophobia (TSK). J. Pain 2011, 12, 425–435. [Google Scholar] [CrossRef]
- Kovacs, F.M.; Muriel, A.; Medina, J.M.; Abraira, V.; Castillo Sánchez, M.D.; Olabe Jaúregui, J.; Spanish Back Pain Research Network. Psychometric characteristics of the Spanish version of the FAB questionnaire. Spine 2006, 31, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, T.R.; Mallorie, P.A.; Whitelock, H.C.; Kennedy, L.G.; Garrett, S.L.; Calin, A. Defining spinal mobility in ankylosing spondylitis (AS). The Bath AS Metrology Index. J. Rheumatol. 1994, 21, 1694–1698. [Google Scholar]
- Castro Villegas, M.D.C.; Batlle Gualda, E. Measuring spondyloarthritis. Reumatol Clin. 2010, 6 (Suppl. 1), 11–17. [Google Scholar] [CrossRef]
- Garrett, S.; Jenkinson, T.; Kennedy, L.G.; Whitelock, H.; Gaisford, P.; Calin, A. A new approach to defining disease status in ankylosing spondylitis: The Bath Ankylosing Spondylitis Disease Activity Index. J. Rheumatol. 1994, 21, 2286–2291. [Google Scholar] [PubMed]
- Cardiel, M.H.; Londoño, J.D.; Gutiérrez, E.; Pacheco-Tena, C.; Vázquez-Mellado, J.; Burgos-Vargas, R. Translation, cross-cultural adaptation, and validation of the Bath Ankylosing Spondylitis Functional Index (BASFI), the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and the Dougados Functional Index (DFI) in a Spanish speaking population with spondyloarthropathies. Clin. Exp. Rheumatol. 2003, 21, 451–458. [Google Scholar]
- Calin, A.; Garrett, S.; Whitelock, H.; Kennedy, L.G.; O’Hea, J.; Mallorie, P. A new approach to defining functional ability in ankylosing spondylitis: The development of the Bath Ankylosing Spondylitis Functional Index. J. Rheumatol. 1994, 21, 2281–2285. [Google Scholar] [PubMed]
- Kauther, M.D.; Piotrowski, M.; Hussmann, B.; Lendemans, S.; Wedemeyer, C. Cervical range of motion and strength in 4,293 young male adults with chronic neck pain. Eur. Spine J. 2012, 21, 1522–1527. [Google Scholar] [CrossRef]
- Hidalgo, B.; Gobert, F.; Bragard, D.; Detrembleur, C. Effects of proprioceptive disruption on lumbar spine repositioning error in a trunk forward bending task. J. Back Musculoskelet. Rehabil. 2013, 26, 381–387. [Google Scholar] [CrossRef]
- Leeuw, M.; Goossens, M.E.J.B.; Linton, S.J.; Crombez, G.; Boersma, K.; Vlaeyen, J.W.S. The Fear-Avoidance Model of Musculoskeletal Pain: Current State of Scientific Evidence. J. Behav. Med. 2007, 30, 77–94. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.; Linton, S.J. Fear-avoidance and its consequences in chronic musculoskeletal pain: A state of the art. Pain 2000, 85, 317–332. [Google Scholar] [CrossRef]
- Macías-Toronjo, I.; Rojas-Ocaña, M.J.; Sánchez-Ramos, J.L.; García-Navarro, E.B. Pain catastrophizing, kinesiophobia and fear-avoidance in non-specific work-related low-back pain as predictors of sickness absence. PLoS ONE 2020, 15, e0242994. [Google Scholar] [CrossRef]
- Al-Obaidi, S.M.; Nelson, R.M.; Al-Awadhi, S.; Al-Shuwaie, N. The role of anticipation and fear of pain in the persistence of avoidance behavior in patients with chronic low back pain. Spine 2000, 25, 1126–1131. [Google Scholar] [CrossRef]
- Louw, A.; Zimney, K.; Puentedura, E.J.; Diener, I. The efficacy of pain neuroscience education on musculoskeletal pain: A systematic review of the literature. Physiother. Theory Pract. 2016, 32, 332–355. [Google Scholar] [CrossRef]
- Mogard, E.; Olofsson, T.; Bergman, S.; Bremander, A.; Kristensen, L.E.; Olsen, J.K.; Wallman, J.K.; Lindqvist, E. Chronic Pain and Assessment of Pain Sensitivity in Patients With Axial Spondyloarthritis: Results from the SPARTAKUS Cohort. J. Rheumatol. 2021, 48, 1672–1679. [Google Scholar] [CrossRef]
- Walton, D.M.; Levesque, L.; Payne, M.; Schick, J. Clinical Pressure Pain Threshold Testing in Neck Pain: Comparing Protocols, Responsiveness, and Association with Psychological Variables. Phys. Ther. 2014, 94, 827–837. [Google Scholar] [CrossRef]
- Lee, Y.C.; Bingham, C.O.; Edwards, R.R.; Marder, W.; Phillips, K.; Bolster, M.B.; Clauw, D.J.; Moreland, L.W.; Lu, B.; Wohlfahrt, A.; et al. Association Between Pain Sensitization and Disease Activity in Patients With Rheumatoid Arthritis: A Cross-Sectional Study. Arthritis Care Res. 2018, 70, 197–204. [Google Scholar] [CrossRef]
- Mirza, Y.; Anaforoğlu, B.; Düger, T.; Küçük, A. Trunk position sense, spine posture and static postural sway in axial spondyloarthritis patients: Relation to disease metrology, activity and functional status. Egypt. Rheumatol. 2024, 46, 142–146. [Google Scholar] [CrossRef]
- Oz, H.E.; Duran, G.; Bayraktar, D.; Kara, M.; Solmaz, D.; Akar, S. Effect of cervical stabilization exercises on cervical position error in patients with axial spondyloarthritis: A randomized controlled pilot study. Z. Rheumatol. 2024, 83 (Suppl. 1), 48–54. [Google Scholar] [CrossRef]
Total Sample (n = 28) | |||
---|---|---|---|
Variable | Mean (SD) | Median (IQR) | Min–Max |
Age (years) | 54.33 (8.76) | 54.00 (15) | 42–72 |
Height (cm) | 168.63 (10.67) | 173.00 (20) | 149–183 |
Weight (kg) | 74.92 (14.71) | 74.50 (22) | 52–102 |
BMI (kg/m2) | 0.26 (0.04) | 0.25 (0.06) | 0.20–0.33 |
NPRS (0–10) | 6.57 (2.16) | 6.88 (2.00) | 3.00–10.00 |
Pressure Pain Threshold (PPT) | |||
PPT L3–L4 Left (kg/cm2) | 2.39 (1.14) | 2.15 (1.69) | 0.78–5.00 |
PPT L3–L4 Right (kg/cm2) | 2.27 (0.86) | 2.00 (0.86) | 1.05–5.00 |
PPT Trapezius Left (kg/cm2) | 1.75 (1.53) | 1.37 (0.92) | 0.25–5.75 |
PPT Trapezius Right (kg/cm2) | 1.34 (0.75) | 1.26 (0.48) | 0.45–3.95 |
PPT Epicondyle Left (kg/cm2) | 1.80 (0.98) | 1.49 (1.03) | 0.67–5.00 |
PPT Epicondyle Right (kg/cm2) | 1.71 (0.99) | 1.54 (0.76) | 0.50–5.00 |
Cervical Range of Motion (CRoM) | |||
Flexion (°) | 30.96 (14.63) | 32.00 (25.5) | 7.0–50.0 |
Extension (°) | 34.83 (13.63) | 32.50 (14.00) | 18.00–71.00 |
Left Lateral Flexion (°) | 25.06 (13.57) | 21.75 (14.1) | 8.0–55.5 |
Right Lateral Flexion (°) | 23.56 (13.32) | 22.00 (19.8) | 4.0–52.5 |
Right Cervical Rotation (°) | 47.19 (13.75) | 47.00 (21.6) | 18.0–68.0 |
Left Cervical Rotation (°) | 46.39 (10.25) | 46.00 (16.25) | 29.00–65.00 |
Cervical JPSE (°) | 4.90 (0.77) | 4.83 (0.69) | 3.00–6.00 |
Lumbar LRE (°) | 3.61 (3.15) | 2.17 (4.59) | 0.33–12.00 |
PCS (0–52) | 25.42 (11.24) | 26.00 (12) | 0–46 |
TSK-11 (11–44) | 37.13 (10.02) | 38.00 (15) | 18–54 |
FABQ (0–96) | 46.13 (25.02) | 49.00 (50) | 0–77 |
Modified Schober (cm) | 5.18 (2.69) | 6.00 (4.00) | 0.00–8.70 |
Total Sample (n = 28) | |||
---|---|---|---|
Variable | Mean (SD) | Median (IQR) | Min–Max |
BASMI linear (0–10) | 4.73 (1.47) | 4.46 (2.11) | 2.41–7.96 |
Lateral Flexion (cm) | 12.84 (9.15) | 11.00 (9.74) | 2.63–47.38 |
(0–10) | 4.49 (2.74) | 4.45 (3.86) | 0.00–9.29 |
Tragion-to-Wall Distance (cm) | 13.69 (4.79) | 12.00 (1.4) | 8.75–27.00 |
(0–10) | 1.81 (1.49) | 1.33 (0.35) | 0.25–6.33 |
Modified Schober (cm) | 5.18 (2.69) | 6.00 (4.00) | 0.00–8.70 |
(0–10) | 3.58 (3.45) | 2.57 (5.97) | 0.00–10.00 |
Intermalleolar Distance (cm) | 29.08 (22.45) | 32.00 (47.10) | 0.90–64.50 |
(0–10) | 8.88 (1.39) | 9.77 (2.53) | 6.00–10.00 |
Cervical Rotation (°) | 46.06 (11.28) | 43.00 (22.22) | 29.0–65.0 |
(0–10) | 5.06 (1.25) | 5.39 (2.39) | 2.86–7.09 |
BASDAI (0–10) | 5.87 (1.63) | 6 (1.7) | 0.4–8.3 |
BASFI (0–10) | 5.40 (2.34) | 5.20 (3.8) | 0.0–8.9 |
Total Sample (n = 28) | ||||
---|---|---|---|---|
NPRS | PCS | FABQ | TSK-11 | |
BASMI | 0.058 | −0.011 | −0.002 | 0.067 |
BASDAI | 0.569 ** | 0.622 ** | 0.723 ** | −0.100 |
BASFI | 0.376 * | 0.663 ** | 0.719 ** | −0.171 |
Total Sample (n = 28) | ||||
---|---|---|---|---|
R2 | β | t | p-Value | |
BASDAI | ||||
NPRS × PCS | 0.457 | 0.676 | 4.675 | <0.001 |
NPRS × FABQ | 0.521 | 0.722 | 5.315 | <0.001 |
PCS × FABQ | 0.381 | 0.618 | 4.003 | <0.001 |
BASFI | ||||
NPRS × PCS | 0.405 | 0.636 | 4.205 | <0.001 |
NPRS × FABQ | 0.455 | 0.674 | 4.657 | <0.001 |
PCS × FABQ | 0.452 | 0.672 | 4.631 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Morales, C.; Cardero-Durán, M.d.l.Á.; Albornoz-Cabello, M.; Espejo-Antúnez, L. How Do Fear-Avoidance and Catastrophizing Pain Beliefs Affect Functional Status and Disease Activity in Axial Spondyloarthritis? Medicina 2025, 61, 1039. https://doi.org/10.3390/medicina61061039
Fernández-Morales C, Cardero-Durán MdlÁ, Albornoz-Cabello M, Espejo-Antúnez L. How Do Fear-Avoidance and Catastrophizing Pain Beliefs Affect Functional Status and Disease Activity in Axial Spondyloarthritis? Medicina. 2025; 61(6):1039. https://doi.org/10.3390/medicina61061039
Chicago/Turabian StyleFernández-Morales, Carlos, María de los Ángeles Cardero-Durán, Manuel Albornoz-Cabello, and Luis Espejo-Antúnez. 2025. "How Do Fear-Avoidance and Catastrophizing Pain Beliefs Affect Functional Status and Disease Activity in Axial Spondyloarthritis?" Medicina 61, no. 6: 1039. https://doi.org/10.3390/medicina61061039
APA StyleFernández-Morales, C., Cardero-Durán, M. d. l. Á., Albornoz-Cabello, M., & Espejo-Antúnez, L. (2025). How Do Fear-Avoidance and Catastrophizing Pain Beliefs Affect Functional Status and Disease Activity in Axial Spondyloarthritis? Medicina, 61(6), 1039. https://doi.org/10.3390/medicina61061039