Current Management and Future Challenges in the Management of Severe Traumatic Brain Injury
Abstract
1. Introduction
2. Current Management
2.1. Surgical Management—Decompressive Craniectomy
2.2. Pharmaceutical Management
2.2.1. Hyperosmolar Therapy
2.2.2. Seizure Prophylaxis
2.2.3. Sedatives
2.2.4. Barbiturate Induced Coma
2.2.5. DVT Prophylaxis
2.3. Medical Management
2.3.1. Prehospital Airway Management
2.3.2. Ventilation
2.3.3. Cerebrospinal Fluid Drainage
2.3.4. Nutrition
2.4. Patient Monitoring
2.4.1. ICP Monitoring and Thresholds
2.4.2. Blood Pressure Thresholds
2.5. Post-TBI Rehabilitation Strategies
3. Future Challenges
3.1. Therapeutic Strategies
3.1.1. Tranexamic Acid
3.1.2. Atorvastatin
3.1.3. Amantadine
3.1.4. Cerebrolysin
3.2. Biomarkers
3.3. Advanced Neuromonitoring and Autoregulation
Cerebral Autoregulation
3.4. Surgical Management
Cisternostomy
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BTF | Brain Trauma Foundation |
CPP | Cerebral Perfusion Pressure |
CSF | Cerebrospinal Fluid |
CT | Computed Tomography |
DC | Decompressive Craniectomy |
DECRA | Decompressive Craniectomy in Patients with Severe Traumatic Brain Injury |
DVT | Deep Vein Thrombosis |
ELD | External Lumbar Drain |
EVD | External Ventricular Drain |
GCS | Glasgow Coma Scale |
GOS | Glasgow Outcome Scale |
GOS-E | Glasgow Outcome Scale-Extended |
GFAP | Glial Fibrillary Acidic Protein |
ICU | Intensive Care Unit |
ICP | Intracranial Pressure |
MRI | Magnetic Resonance Imaging |
MAP | Mean Arterial Pressure |
NPV | Negative Predictive Value |
PaCO2 | Partial Pressure of Carbon Dioxide in Arterial Blood |
PRx | Pulse Reactivity Index |
RCT | Randomized Controlled Trial |
RESCUEicp | Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension |
SIBICC | Seattle International Severe Traumatic Brain Injury Consensus Conference |
SBP | Systolic Blood Pressure |
TXA | Tranexamic Acid |
TBI | Traumatic Brain Injury |
UCH-L1 | Ubiquitin Carboxyl-Terminal Hydrolase L1 |
References
- Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of Severe Traumatic Brain Injury. J. Neurosurg. Sci. 2018, 62, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.K.; Deng, H. Traumatic Brain Injury: Contemporary Challenges and the Path to Progress. J. Clin. Med. 2023, 12, 3283. [Google Scholar] [CrossRef] [PubMed]
- Coronado, V.G.; McGuire, L.C.; Faul, M.; Sugerman, D.E.; Pearson, W.S. Traumatic Brain Injury Epidemiology and Public Health Issues. In Brain Injury Medicine; Springer Publishing Company: New York, NY, USA, 2012. [Google Scholar]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef] [PubMed]
- ACS Releases Revised Best Practice Guidelines in Management of Traumatic Brain Injury. ACS. Available online: https://www.facs.org/for-medical-professionals/news-publications/news-and-articles/acs-brief/october-29-2024-issue/acs-releases-revised-best-practice-guidelines-in-management-of-traumatic-brain-injury/ (accessed on 21 February 2025).
- Spaite, D.W.; Bobrow, B.J.; Keim, S.M.; Barnhart, B.; Chikani, V.; Gaither, J.B.; Sherrill, D.; Denninghoff, K.R.; Mullins, T.; Adelson, P.D.; et al. Association of Statewide Implementation of the Prehospital Traumatic Brain Injury Treatment Guidelines with Patient Survival Following Traumatic Brain Injury: The Excellence in Prehospital Injury Care (EPIC) Study. JAMA Surg. 2019, 154, e191152. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Rubiano, A.M.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Shutter, L.; et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020, 87, 427–434. [Google Scholar] [CrossRef]
- Al-Jishi, A.; Saluja, R.S.; Al-Jehani, H.; Lamoureux, J.; Maleki, M.; Marcoux, J. Primary or Secondary Decompressive Craniectomy: Different Indication and Outcome. Can. J. Neurol. Sci. 2011, 38, 612–620. [Google Scholar] [CrossRef]
- Cooper, D.J.; Rosenfeld, J.V.; Murray, L.; Arabi, Y.M.; Davies, A.R.; D’Urso, P.; Kossmann, T.; Ponsford, J.; Seppelt, I.; Reilly, P.; et al. Decompressive Craniectomy in Diffuse Traumatic Brain Injury. N. Engl. J. Med. 2011, 364, 1493–1502. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; Kolias, A.G.; Timofeev, I.S.; Corteen, E.A.; Czosnyka, M.; Timothy, J.; Anderson, I.; Bulters, D.O.; Belli, A.; Eynon, C.A.; et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N. Engl. J. Med. 2016, 375, 1119–1130. [Google Scholar] [CrossRef]
- Jung, M.-K.; Hoon Roh, T.; Kim, H.; Jin Ha, E.; Yoon, D.; Min Park, C.; Kim, S.-H.; You, N.; Kim, D.-J. Hyperosmolar Therapy Response in Traumatic Brain Injury: Explainable Artificial Intelligence Based Long-Term Time Series Forecasting Ap-proach. Expert Syst. Appl. 2024, 255, 124795. [Google Scholar] [CrossRef]
- Roquilly, A.; Moyer, J.D.; Huet, O.; Lasocki, S.; Cohen, B.; Dahyot-Fizelier, C.; Chalard, K.; Seguin, P.; Jeantrelle, C.; Vermeersch, V.; et al. Effect of Continuous Infusion of Hypertonic Saline vs Standard Care on 6-Month Neurological Outcomes in Patients with Traumatic Brain Injury: The COBI Randomized Clinical Trial: The COBI Randomized Clinical Trial. JAMA 2021, 325, 2056–2066. [Google Scholar] [CrossRef]
- Jagannatha, A.T.; Sriganesh, K.; Devi, B.I.; Rao, G.S.U. An Equiosmolar Study on Early Intracranial Physiology and Long Term Outcome in Severe Traumatic Brain Injury Comparing Mannitol and Hypertonic Saline. J. Clin. Neurosci. 2016, 27, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Gupta, R. A Comparative Study of Bolus Dose of Hypertonic Saline, Mannitol, and Mannitol plus Glycerol Combination in Patients with Severe Traumatic Brain Injury. World Neurosurg. 2019, 125, e221–e228. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.A.; Devi, B.I.; Reddy, M.; Shukla, D. Comparison of Equiosmolar Dose of Hyperosmolar Agents in Reducing Intracranial Pressure-a Randomized Control Study in Pediatric Traumatic Brain Injury. Child’s Nerv. Syst. 2019, 35, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- McGinn, R.J.; Aljoghaiman, M.S.; Sharma, S.V. Levetiracetam vs Phenytoin Prophylaxis in Severe Traumatic Brain Injury: Systematic Review and Meta-Analysis. Interdiscip. Neurosurg. 2022, 27, 101394. [Google Scholar] [CrossRef]
- Khan, S.A.; Bhatti, S.N.; Khan, A.A.; Khan Afridi, E.A.; Muhammad, G.; Gul, N.; Zadran, K.K.; Alam, S.; Aurangzeb, A. Comparison of Efficacy of Phenytoin and Levetiracetam for Prevention of Early Post Traumatic Seizures. J. Ayub Med. Coll. Abbottabad 2016, 28, 455–460. [Google Scholar]
- Szaflarski, J.P.; Sangha, K.S.; Lindsell, C.J.; Shutter, L.A. Prospective, Randomized, Single-Blinded Comparative Trial of Intravenous Levetiracetam versus Phenytoin for Seizure Prophylaxis. Neurocrit. Care 2010, 12, 165–172. [Google Scholar] [CrossRef]
- Inaba, K.; Menaker, J.; Branco, B.C.; Gooch, J.; Okoye, O.T.; Herrold, J.; Scalea, T.M.; Dubose, J.; Demetriades, D. A Prospective Multicenter Comparison of Levetiracetam versus Phenytoin for Early Posttraumatic Seizure Prophylaxis. J. Trauma Acute Care Surg. 2013, 74, 766–771; discussion 771–773. [Google Scholar] [CrossRef]
- Russo, G.; Harrois, A.; Anstey, J.; Van Der Jagt, M.; Taccone, F.; Udy, A.; Citerio, G.; Duranteau, J.; Ichai, C.; Badenes, R.; et al. Early Sedation in Traumatic Brain Injury: A Multicentre International Observational Study. Crit. Care Resusc. 2022, 24, 319–329. [Google Scholar] [CrossRef]
- Tanguy, M.; Seguin, P.; Laviolle, B.; Bleichner, J.-P.; Morandi, X.; Malledant, Y. Cerebral Microdialysis Effects of Propofol versus Midazolam in Severe Traumatic Brain Injury. J. Neurotrauma 2012, 29, 1105–1110. [Google Scholar] [CrossRef]
- Ghori, K.A.; Harmon, D.C.; Elashaal, A.; Butler, M.; Walsh, F.; O’Sullivan, M.G.J.; Shorten, G.D. Effect of Midazolam versus Propofol Sedation on Markers of Neurological Injury and Outcome after Isolated Severe Head Injury: A Pilot Study. Crit. Care Resusc. 2007, 9, 166–171. [Google Scholar] [CrossRef]
- Kurni, M.; Kaloria, N.; Hazarika, A.; Jain, K.; Gupta, S.K.; Walia, R. Comparison of Midazolam and Propofol Infusion to Suppress Stress Response in Patients with Severe Traumatic Brain Injury: A Prospective, Randomized Controlled Trial. Korean J. Neurotrauma 2023, 19, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Izquierdo-Riera, J.A.; Caballero-Cubedo, R.E.; Perez-Vela, J.L.; Ambros-Checa, A.; Cantalapiedra-Santiago, J.A.; Alted-Lopez, E. Propofol versus Midazolam: Safety and Efficacy for Sedating the Severe Trauma Patient. Anesth. Analg. 1998, 86, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Sandiumenge Camps, A.; Sanchez-Izquierdo Riera, J.A.; Toral Vazquez, D.; Sa Borges, M.; Peinado Rodriguez, J.; Alted Lopez, E. Midazolam and 2% Propofol in Long-Term Sedation of Traumatized Critically Ill Patients: Efficacy and Safety Comparison. Crit. Care Med. 2000, 28, 3612–3619. [Google Scholar] [CrossRef]
- Peters, A.J.; Khan, S.A.; Koike, S.; Rowell, S.; Schreiber, M. Outcomes and Physiologic Responses Associated with Ketamine Administration after Traumatic Brain Injury in the United States and Canada: A Retrospective Analysis. J. Trauma Inj. 2023, 36, 354–361. [Google Scholar] [CrossRef]
- Deng, Z.; Gu, Y.; Luo, L.; Deng, L.; Li, Y.; Huang, W. The Effect of Dexmedetomidine on the Postoperative Recovery of Patients with Severe Traumatic Brain Injury Undergoing Craniotomy Treatment: A Retrospective Study. Eur. J. Med. Res. 2024, 29, 256. [Google Scholar] [CrossRef]
- Roberts, I.; Sydenham, E. Barbiturates for Acute Traumatic Brain Injury. Cochrane Database Syst. Rev. 2012, 12, CD000033. [Google Scholar] [CrossRef]
- Pérez-Bárcena, J.; Llompart-Pou, J.A.; Homar, J.; Abadal, J.M.; Raurich, J.M.; Frontera, G.; Brell, M.; Ibáñez, J.; Ibáñez, J. Pentobarbital versus Thiopental in the Treatment of Refractory Intracranial Hypertension in Patients with Traumatic Brain Injury: A Randomized Controlled Trial. Crit. Care 2008, 12, R112. [Google Scholar] [CrossRef]
- Eisenberg, H.M.; Frankowski, R.F.; Contant, C.F.; Marshall, L.F.; Walker, M.D. High-Dose Barbiturate Control of Elevated Intracranial Pressure in Patients with Severe Head Injury. J. Neurosurg. 1988, 69, 15–23. [Google Scholar] [CrossRef]
- Ward, J.D.; Becker, D.P.; Miller, J.D.; Choi, S.C.; Marmarou, A.; Wood, C.; Newlon, P.G.; Keenan, R. Failure of Prophylactic Barbiturate Coma in the Treatment of Severe Head Injury. J. Neurosurg. 1985, 62, 383–388. [Google Scholar] [CrossRef]
- Schwartz, M.L.; Tator, C.H.; Rowed, D.W.; Reid, S.R.; Meguro, K.; Andrews, D.F. The University of Toronto Head Injury Treatment Study: A Prospective, Randomized Comparison of Pentobarbital and Mannitol. Can. J. Neurol. Sci. 1984, 11, 434–440. [Google Scholar] [CrossRef]
- Marín-Caballos, A.J.; Murillo-Cabezas, F.; Domínguez-Roldan, J.M.; Leal-Noval, S.R.; Rincón-Ferrari, M.D.; Muñoz-Sánchez, M.Á. Monitorización de la presión tisular de oxígeno (PtiO2) en la hipoxia cerebral: Aproximación diagnóstica y terapéutica. Med. Intensiv. 2008, 32, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Godoy, D.A.; Murillo-Cabezas, F.; Suarez, J.I.; Badenes, R.; Pelosi, P.; Robba, C. “THE MANTLE” bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit. Care 2023, 27, 13. [Google Scholar] [CrossRef] [PubMed]
- Badjatia, N.; Carney, N.; Crocco, T.J.; Fallat, M.E.; Hennes, H.M.; Jagoda, A.S.; Jernigan, S.; Letarte, P.B.; Lerner, E.B.; Moriarty, T.M.; et al. Guidelines for prehospital management of traumatic brain injury 2nd edition. Prehosp. Emerg. Care 2008, 12 (Suppl. 1), S1–S52. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.D.; Lazaridis, C.; Chalela, J.A. The Role of Mechanical Ventilation in Acute Brain Injury. Neurol. Clin. 2008, 26, 543–563. [Google Scholar] [CrossRef]
- Esnault, P.; Roubin, J.; Cardinale, M.; D’Aranda, E.; Montcriol, A.; Cungi, P.-J.; Goutorbe, P.; Joubert, C.; Dagain, A.; Meaudre, E. Spontaneous Hyperventilation in Severe Traumatic Brain Injury: Incidence and Association with Poor Neurological Outcome. Neurocrit. Care 2019, 30, 405–413. [Google Scholar] [CrossRef]
- Rangel-Castilla, L.; Gopinath, S.; Robertson, C.S. Management of Intracranial Hypertension. Neurol. Clin. 2008, 26, 521–541. [Google Scholar] [CrossRef]
- Lee, H.Y.; Oh, B.-M. Nutrition Management in Patients with Traumatic Brain Injury: A Narrative Review. Brain Neurorehabilit. 2022, 15, e4. [Google Scholar] [CrossRef]
- Chesnut, R.M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J.; et al. A Trial of Intracranial-Pressure Monitoring in Traumatic Brain Injury. N. Engl. J. Med. 2012, 367, 2471–2481. [Google Scholar] [CrossRef]
- Kostić, A.; Stefanović, I.; Novak, V.; Veselinović, D.; Ivanov, G.; Veselinović, A. Prognostic Significance of Intracranial Pressure Monitoring and Intracranial Hypertension in Severe Brain Trauma Patients. Med. Pregl. 2011, 64, 461–465. [Google Scholar] [CrossRef]
- Castaño-Leon, A.M.; Gomez, P.A.; Jimenez-Roldan, L.; Paredes, I.; Munarriz, P.M.; Perez, I.P.; Eiriz Fernandez, C.; García-Pérez, D.; Moreno Gomez, L.M.; Sinovas, O.E.; et al. Intracranial Pressure Monitoring in Patients with Severe Traumatic Brain Injury: Extension of the Recommendations and the Effect on Outcome by Propensity Score Matching. Neurosurgery 2022, 91, 437–449. [Google Scholar] [CrossRef]
- Yang, C.; Ma, Y.; Xie, L.; Wu, X.; Hui, J.; Jiang, J.; Gao, G.; Feng, J. Intracranial Pressure Monitoring in the Intensive Care Unit for Patients with Severe Traumatic Brain Injury: Analysis of the CENTER-TBI China Registry. Neurocrit. Care 2022, 37, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Al Saiegh, F.; Philipp, L.; Mouchtouris, N.; Chalouhi, N.; Khanna, O.; Shah, S.O.; Jallo, J. Comparison of Outcomes of Severe Traumatic Brain Injury in 36,929 Patients Treated with or without Intracranial Pressure Monitoring in a Mature Trauma System. World Neurosurg. 2020, 136, e535–e541. [Google Scholar] [CrossRef] [PubMed]
- Rønning, P.; Helseth, E.; Skaga, N.-O.; Stavem, K.; Langmoen, I.A. The Effect of ICP Monitoring in Severe Traumatic Brain Injury: A Propensity Score–Weighted and Adjusted Regression Approach. J. Neurosurg. 2019, 131, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.; Raghavendran, K.; Schaubel, D.E.; Mishra, M.C.; Rajajee, V. A Propensity Score Analysis of the Impact of Invasive Intracranial Pressure Monitoring on Outcomes after Severe Traumatic Brain Injury. J. Neurotrauma 2016, 33, 853–858. [Google Scholar] [CrossRef]
- Alali, A.S.; Fowler, R.A.; Mainprize, T.G.; Scales, D.C.; Kiss, A.; de Mestral, C.; Ray, J.G.; Nathens, A.B. Intracranial Pressure Monitoring in Severe Traumatic Brain Injury: Results from the American College of Surgeons Trauma Quality Improvement Program. J. Neurotrauma 2013, 30, 1737–1746. [Google Scholar] [CrossRef]
- Farahvar, A.; Gerber, L.M.; Chiu, Y.-L.; Carney, N.; Härtl, R.; Ghajar, J. Increased Mortality in Patients with Severe Traumatic Brain Injury Treated without Intracranial Pressure Monitoring: Clinical Article. J. Neurosurg. 2012, 117, 729–734. [Google Scholar] [CrossRef]
- Lee, J.W.; Wang, W.; Rezk, A.; Mohammed, A.; Macabudbud, K.; Englesakis, M.; Lele, A.; Zeiler, F.A.; Chowdhury, T. Hypotension and Adverse Outcomes in Moderate to Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2444465. [Google Scholar] [CrossRef]
- Kreitzer, N.; Rath, K.; Kurowski, B.G.; Bakas, T.; Hart, K.; Lindsell, C.J.; Adeoye, O. Rehabilitation Practices in Patients with Moderate and Severe Traumatic Brain Injury. J. Head Trauma Rehabil. 2019, 34, E66–E72. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Board on Health Sciences Policy; Committee on Accelerating Progress; Matney, C.; Bowman, K.; Berwick, D. Rehabilitation and Long-Term Care Needs After Traumatic Brain Injury; National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- CRASH-3 trial collaborators. Effects of Tranexamic Acid on Death, Disability, Vascular Occlusive Events and Other Morbidities in Patients with Acute Traumatic Brain Injury (CRASH-3): A Randomised, Placebo-Controlled Trial. Lancet 2019, 394, 1713–1723. [Google Scholar] [CrossRef]
- Roberts, I.; Shakur, H.; Coats, T.; Hunt, B.; Balogun, E.; Barnetson, L.; Cook, L.; Kawahara, T.; Perel, P.; Prieto-Merino, D.; et al. The CRASH-2 Trial: A Randomised Controlled Trial and Economic Evaluation of the Effects of Tranexamic Acid on Death, Vascular Occlusive Events and Transfusion Requirement in Bleeding Trauma Patients. Health Technol. Assess. 2013, 17, 1–79. [Google Scholar] [CrossRef]
- Rowell, S.E.; Meier, E.N.; McKnight, B.; Kannas, D.; May, S.; Sheehan, K.; Bulger, E.M.; Idris, A.H.; Christenson, J.; Morrison, L.J.; et al. Effect of Out-of-Hospital Tranexamic Acid vs Placebo on 6-Month Functional Neurologic Outcomes in Patients with Moderate or Severe Traumatic Brain Injury. JAMA 2020, 324, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Pordel, S.; McCloskey, A.P.; Almahmeed, W.; Sahebkar, A. The Protective Effects of Statins in Traumatic Brain Injury. Pharmacol. Rep. 2024, 76, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Farzanegan, G.R.; Derakhshan, N.; Khalili, H.; Ghaffarpasand, F.; Paydar, S. Effects of Atorvastatin on Brain Contusion Volume and Functional Outcome of Patients with Moderate and Severe Traumatic Brain Injury; a Randomized Double-Blind Placebo-Controlled Clinical Trial. J. Clin. Neurosci. 2017, 44, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Zhao, S.; Wang, R.; Feng, H.; Zhang, J.; Li, X.; Mao, Y.; Yuan, X.; Fei, Z.; Zhao, Y.; et al. Safety and Efficacy of Atorvastatin for Chronic Subdural Hematoma in Chinese Patients: A Randomized ClinicalTrial: A Randomized ClinicalTrial. JAMA Neurol. 2018, 75, 1338–1346. [Google Scholar] [CrossRef]
- TRACK-TBI NET Launches Novel TBI Adaptive Platform Trial. Ucsf.edu. Available online: https://tracktbi.ucsf.edu/news/track-tbi-net-launches-novel-tbi-adaptive-platform-trial (accessed on 21 February 2025).
- Ghalaenovi, H.; Fattahi, A.; Koohpayehzadeh, J.; Khodadost, M.; Fatahi, N.; Taheri, M.; Azimi, A.; Rohani, S.; Rahatlou, H. The Effects of Amantadine on Traumatic Brain Injury Outcome: A Double-Blind, Randomized, Controlled, Clinical Trial. Brain Inj. 2018, 32, 1050–1055. [Google Scholar] [CrossRef]
- Shimia, M.; Iranmehr, A.; Valizadeh, A.; Mirzaei, F.; Namvar, M.; Rafiei, E.; Rahimi, A.; Khadivi, A.; Aeinfar, K. A Placebo-Controlled Randomized Clinical Trial of Amantadine Hydrochloride for Evaluating the Functional Improvement of Patients Following Severe Acute Traumatic Brain Injury. J. Neurosurg. Sci. 2023, 67, 598–604. [Google Scholar] [CrossRef]
- Giacino, J.T.; Whyte, J.; Bagiella, E.; Kalmar, K.; Childs, N.; Khademi, A.; Eifert, B.; Long, D.; Katz, D.I.; Cho, S.; et al. Placebo-Controlled Trial of Amantadine for Severe Traumatic Brain Injury. N. Engl. J. Med. 2012, 366, 819–826. [Google Scholar] [CrossRef]
- Abbasivash, R.; Valizade Hasanloei, M.A.; Kazempour, A.; Mahdkhah, A.; Shaaf Ghoreishi, M.M.; Akhavan Masoumi, G. The Effect of Oral Administration of Amantadine on Neurological Outcome of Patients with Diffuse Axonal Injury in ICU. J. Exp. Neurosci. 2019, 13, 1179069518824851. [Google Scholar] [CrossRef]
- Shafiee, S.; Ehteshami, S.; Moosazadeh, M.; Aghapour, S.; Haddadi, K. Placebo-Controlled Trial of Oral Amantadine and Zolpidem Efficacy on the Outcome of Patients with Acute Severe Traumatic Brain Injury and Diffuse Axonal Injury. Caspian J. Intern. Med. 2022, 13, 113–121. [Google Scholar] [CrossRef]
- Poon, W.; Matula, C.; Vos, P.E.; Muresanu, D.F.; von Steinbüchel, N.; von Wild, K.; Hömberg, V.; Wang, E.; Lee, T.M.C.; Strilciuc, S.; et al. Safety and Efficacy of Cerebrolysin in Acute Brain Injury and Neurorecovery: CAPTAIN I-a Randomized, Placebo-Controlled, Double-Blind, Asian-Pacific Trial. Neurol. Sci. 2020, 41, 281–293. [Google Scholar] [CrossRef]
- Muresanu, D.F.; Florian, S.; Hömberg, V.; Matula, C.; von Steinbüchel, N.; Vos, P.E.; von Wild, K.; Birle, C.; Muresanu, I.; Slavoaca, D.; et al. Efficacy and Safety of Cerebrolysin in Neurorecovery after Moderate-Severe Traumatic Brain Injury: Results from the CAPTAIN II Trial. Neurol. Sci. 2020, 41, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Gunnar Brolinson, P.; Büki, A.; Chen, J.Y.; Christenson, R.H.; et al. Serum GFAP and UCH-L1 for Prediction of Absence of Intracranial Injuries on Head CT (ALERT-TBI): A Multicentre Observational Study. Lancet Neurol. 2018, 17, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Helmrich, I.R.A.R.; Czeiter, E.; Amrein, K.; Büki, A.; Lingsma, H.F.; Menon, D.K.; Mondello, S.; Steyerberg, E.W.; von Steinbüchel, N.; Wang, K.K.W.; et al. Incremental Prognostic Value of Acute Serum Biomarkers for Functional Outcome after Traumatic Brain Injury (CENTER-TBI): An Observational Cohort Study. Lancet Neurol. 2022, 21, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Khellaf, A.; Khan, D.Z.; Helmy, A. Recent Advances in Traumatic Brain Injury. J. Neurol. 2019, 266, 2878–2889. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Aguilera, S.; Buki, A.; Bulger, E.; Citerio, G.; Cooper, D.J.; Arrastia, R.D.; Diringer, M.; Figaji, A.; Gao, G.; et al. A Management Algorithm for Patients with Intracranial Pressure Monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019, 45, 1783–1794. [Google Scholar] [CrossRef]
- Tas, J.; Beqiri, E.; van Kaam, R.C.; Czosnyka, M.; Donnelly, J.; Haeren, R.H.; van der Horst, I.C.C.; Hutchinson, P.J.; van Kuijk, S.M.J.; Liberti, A.L.; et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. J. Neurotrauma 2021, 38, 2790–2800. [Google Scholar] [CrossRef]
- Oddo, M.; Levine, J.M.; Mackenzie, L.; Frangos, S.; Feihl, F.; Kasner, S.E.; Katsnelson, M.; Pukenas, B.; Macmurtrie, E.; Maloney-Wilensky, E.; et al. Brain Hypoxia Is Associated with Short-Term Outcome after Severe Traumatic Brain Injury Independently of Intracranial Hypertension and Low Cerebral Perfusion Pressure. Neurosurgery 2011, 69, 1037–1045; discussion 1045. [Google Scholar] [CrossRef]
- Okonkwo, D.O.; Shutter, L.A.; Moore, C.; Temkin, N.R.; Puccio, A.M.; Madden, C.J.; Andaluz, N.; Chesnut, R.M.; Bullock, M.R.; Grant, G.A.; et al. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial. Crit. Care Med. 2017, 45, 1907–1914. [Google Scholar] [CrossRef]
- Bernard, F.; Barsan, W.; Diaz-Arrastia, R.; Merck, L.H.; Yeatts, S.; Shutter, L.A. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): A Multicentre, Randomised, Blinded-Endpoint, Comparative Effectiveness Study of Brain Tissue Oxygen and Intracranial Pressure Monitoring versus Intracranial Pressure Alone. BMJ Open 2022, 12, e060188. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; Adams, H.; Mohan, M.; Devi, B.I.; Uff, C.; Hasan, S.; Mee, H.; Wilson, M.H.; Gupta, D.K.; Bulters, D.; et al. Decompressive Craniectomy versus Craniotomy for Acute Subdural Hematoma. N. Engl. J. Med. 2023, 388, 2219–2229. [Google Scholar] [CrossRef]
- Kumari, S.; Jaiswal, M.; Ojha, B.K. Is Basal Cisternostomy in Traumatic Brain Injury a Need of Hour or White Elephant—A Randomized Trial to Answer. Surg. Neurol. Int. 2023, 14, 412. [Google Scholar] [CrossRef]
- Chandra, V.V.R.; Mowliswara Prasad, B.C.; Banavath, H.N.; Chandrasekhar Reddy, K. Cisternostomy versus Decompressive Craniectomy for the Management of Traumatic Brain Injury: A Randomized Controlled Trial. World Neurosurg. 2022, 162, e58–e64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, L.; Kazmi, A.; Ahmed, N. Current Management and Future Challenges in the Management of Severe Traumatic Brain Injury. Medicina 2025, 61, 738. https://doi.org/10.3390/medicina61040738
Russo L, Kazmi A, Ahmed N. Current Management and Future Challenges in the Management of Severe Traumatic Brain Injury. Medicina. 2025; 61(4):738. https://doi.org/10.3390/medicina61040738
Chicago/Turabian StyleRusso, Larissa, Aasim Kazmi, and Nasim Ahmed. 2025. "Current Management and Future Challenges in the Management of Severe Traumatic Brain Injury" Medicina 61, no. 4: 738. https://doi.org/10.3390/medicina61040738
APA StyleRusso, L., Kazmi, A., & Ahmed, N. (2025). Current Management and Future Challenges in the Management of Severe Traumatic Brain Injury. Medicina, 61(4), 738. https://doi.org/10.3390/medicina61040738