Electrolyte Imbalance and Its Prognostic Impact on All-Cause Mortality in ICU Patients with Respiratory Failure
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Study Design
2.1.1. Inclusion Criteria
- Patients aged 18 years or older and diagnosed with type 1 or type 2 respiratory failure.
2.1.2. Exclusion Criteria
- Patients younger than 18 years.
- Patients who died within the first 24 h after ICU admission or were transferred to another clinic.
- Patients with incomplete or unsigned informed consent forms.
2.2. Statistical Analysis
- ✓
- If all the cells contained more than 5 patients, the chi-squared test was applied.
- ✓
- If at least one cell contained fewer than 5 patients, Fisher’s exact test was used.
- ✓
- Normally distributed data were analyzed via Student’s t test.
- ✓
- Nonnormally distributed data were assessed via the Mann—Whitney U test.
- ✓
- If the numerical variables followed a normal distribution, one-way ANOVA was used.
- ✓
- If the numerical variables did not follow a normal distribution, the Kruskal—Wallis H test was applied.
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, Y.; Li, L. Lower serum chloride concentrations are associated with increased risk of mortality in critically ill cirrhotic patients: An analysis of the MIMIC-III database. BMC Gastroenterol. 2021, 21, 200. [Google Scholar]
- Chen, Y.; Liang, Q.; Zhou, S.; Li, R.; An, S. Lower serum chloride concentrations are associated with an increased risk of death in ICU patients with acute kidney injury: An analysis of the MIMIC-IV database. Minerva Anestesiol. 2023, 89, 166–174. [Google Scholar]
- Whelan, B.; Bennett, K.; O’Riordan, D.; Silke, B. Serum sodium as a risk factor for in-hospital mortality in acute unselected general medical patients. QJM Mon. J. Assoc. Physicians 2008, 102, 175–182. [Google Scholar]
- Añón, J.; García de Lorenzo, A.; Zarazaga, A.; Gómez-Tello, V.; Garrido, G. Mechanical ventilation of patients on long-term oxygen therapy with acute exacerbations of chronic obstructive pulmonary disease. Intensive Care Med. 1999, 25, 452–457. [Google Scholar] [PubMed]
- Zhang, Y.; Peng, R.; Li, X.; Yu, J.; Chen, X.; Zhou, Z. Serum chloride as a novel marker for adding prognostic information of mortality in chronic heart failure. Clin. Chim. Acta 2018, 483, 112–118. [Google Scholar]
- Van Regenmortel, N.; Verbrugghe, W.; Van den Wyngaert, T.; Jorens, P. Impact of chloride and strong ion difference on ICU and hospital mortality in a mixed intensive care population. Ann. Intensive Care 2016, 6, 91. [Google Scholar]
- Holland, A.; Wilson, J.W.; Kotsimbos, T.; Naughton, M. Metabolic alkalosis contributes to acute hypercapnic respiratory failure in adult cystic fibrosis. Chest 2003, 124, 490–493. [Google Scholar]
- Wang, S.; Li, D.; Wang, Y.; Lu, L.; Hu, X.; Wang, W. L-shaped association between serum chloride levels with 90-day and 365-day all-cause mortality in critically ill patients with COPD: A retrospective cohort study. Sci. Rep. 2024, 14, 15900. [Google Scholar]
- Saha, S.K.; Ali, M.Y.; Islam, M.M.S.U.; Arif, K.M.; Hawlader, M.A.R.; Quader, M.R.; Saha, P. Pattern of Serum Electrolytes Imbalance among Patients with Acute Exacerbation of COPD. Faridpur Med. Coll. J. 2020, 15, 24–27. [Google Scholar]
- Verma, P.; Jain, M.; Sharma, A.; Khippal, N. Electrolyte disturbances in acute exacerbation of chronic obstructive pulmonary disease at SMS Medical College, Jaipur. Glob. J. Res. Anal. 2023, 12, 31–33. [Google Scholar] [CrossRef]
- Hossary, Z.; Eldin, S.; Matar, H.; Askar, I. Risk Factors of Hypocalcemic Patients at Surgical Intensive Care Unit of Zagazig University Hospitals. Egypt. J. Hosp. Med. 2021, 85, 3753–3757. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Petnak, T.; Ghamrawi, R.; Thirunavukkarasu, S.; Chewcharat, A.; Bathini, T.; Vallabhajosyula, S.; Kashani, K.B. The prognostic importance of serum sodium levels at hospital discharge and one-year mortality among hospitalized patients. Int. J. Clin. Pract. 2020, 74, e13581. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N. The data show a U-shaped association of sodium intake with cardiovascular disease and mortality. Am. J. Hypertens. 2015, 28, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Ari, M.; Akinci Ozyurek, B.; Yildiz, M.; Ozdemir, T.; Hosgun, D.; Sahin Ozdemirel, T.; Ensarioglu, K.; Erdogdu, M.H.; Eraslan Doganay, G.; Doganci, M.; et al. Mean Platelet Volume-to-Platelet Count Ratio (MPR) in Acute Exacerbations of Idiopathic Pulmonary Fibrosis: A Novel Biomarker for ICU Mortality. Medicina 2025, 61, 244. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, X.; Wang, H.; Du, F.; Yao, Y.; Wang, X.; Wang, J.; Yang, J.; Xiong, W.; Wang, Q.; et al. Risk factors for hyponatremia in acute exacerbation chronic obstructive pulmonary disease (AECOPD): A multicenter cross-sectional study. BMC Pulm. Med. 2023, 23, 39. [Google Scholar] [CrossRef]
- Ata Sobeih, A.; Abo Elfetoh Elfiky, O.; Abd Elalim, M.A.; Mohammed Zakaria, R. Role of hyponatremia in prediction of outcome in children with severe lower respiratory tract infections. Benha Med. J. 2025, 42, 293–302. [Google Scholar] [CrossRef]
- Turkmenoglu, Y.; Kacar, A.; Bezen, D.; Kırar, H.; Ozdemir, E.M.; İrdem, A.; Petmezci, M.T.; Dursun, H. Study on the relationship between respiratory scores and hyponatremia in children with bronchiolitis. Asian J. Med. Sci. 2021, 12, 47–52. [Google Scholar] [CrossRef]
- Mahapatra, C.; Sharma, V.K.; Singhal, S.; Jangid, R.K.; Laxminath, T.K. Risk factors for hyponatremia in children with lower respiratory tract infection (LRTI). Risk 2021, 8, 479–484. [Google Scholar] [CrossRef]
- Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Winther-Larsen, A. Hyponatremia in lung cancer: Incidence and prognostic value in a Danish population-based cohort study. Lung Cancer 2021, 153, 42–48. [Google Scholar] [CrossRef]
- Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Winther-Larsen, A. Hyponatremia as a prognostic factor in non-small cell lung cancer: A systematic review and meta-analysis. Transl. Lung Cancer Res. 2021, 10, 651. [Google Scholar] [CrossRef]
- Chand, R.; Chand, R.; Goldfarb, D.S. Hypernatremia in the intensive care unit. Curr. Opin. Nephrol. Hypertens. 2022, 31, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.; Chaba, A.; Laupland, K.B.; Ramanan, M.; Tabah, A.; Attokaran, A.G.; Kumar, A.; McCullough, J.; Shekar, K.; Garrett, P.; et al. ICU-acquired hypernatremia: Prevalence, patient characteristics, trajectory, risk factors, and outcomes. Crit. Care Resusc. 2024, 26, 303–310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variable | n (%), Mean ± SD, Median (Min–Max) | |
---|---|---|
Gender | 417 female (37.6%) | 692 male (62.4%) |
Presence of COPD | 738 yes (66.5%) | 371 no (33.5%) |
Age ≥ 65 years | 756 yes (68.2%) | 353 no (31.8%) |
Use of NIMV | 742 yes (66.9%) | 367 no (33.1%) |
Respiratory failure | 858 type 2 (77.4%) | 251 type 1 (22.6%) |
SOFA score | 1.84 ± 1.11 | 2 (1–9) |
APACHE II score | 15.08 ± 4.16 | 15 (3–34) |
Age | 69.42 ± 11.68 | 70 (22–99) |
Parameters | ICU Mortality (+) Mean ± SD Median (Min–Max) | ICU Mortality (−) Mean ± SD Median (Min–Max) | p-Value |
---|---|---|---|
Sodium (mEq/L) | 138 (119–157) | 139 (110–152) | 0.445 a |
Chloride (mEq/L) | 99 (69–114) | 98 (75–114) | 0.589 a |
Potassium (mEq/L) | 4.18 ± 0.76 | 4.39 ± 0.65 | 0.004 *,b |
Magnesium (mg/dl) | 1.9 (0.9–3.3) | 2 (0.6–3.8) | 0.512 a |
Calcium (mg/dl) | 8.3 (6.3–12.7) | 8.7 (5.3–12.2) | <0.001 *,a |
Parameters | ICU Mortality (+) n (%) | ICU Mortality (−) n (%) | p-Value |
---|---|---|---|
Sodium Q1 | 37 (11%) | 299 (89%) | <0.001 *,c |
Sodium Q2 | 13 (5.6%) | 219 (94.4%) | |
Sodium Q3 | 11 (3.5%) | 307 (96.5%) | |
Sodium Q4 | 24 (10.8%) | 199 (89.2%) | |
Chloride Q1 | 25 (8.5%) | 270 (91.5%) | 0.398 c |
Chloride Q2 | 17 (5.5%) | 294 (94.5%) | |
Chloride Q3 | 21 (8.6%) | 222 (91.4%) | |
Chloride Q4 | 22 (8.5%) | 238 (91.5%) | |
Magnesium Q1 | 35 (9.4%) | 338 (90.6%) | 0.265 c |
Magnesium Q2 | 18 (5.8%) | 295 (94.2%) | |
Magnesium Q3 | 14 (6.5%) | 203 (93.5%) | |
Magnesium Q4 | 18 (8.7%) | 188 (91.3%) |
Variable | B | SE | Wald | df | Sig. (p) | HR (Exp(B)) | 95% CI (Lower–Upper) |
---|---|---|---|---|---|---|---|
APACHE II | 0.1 | 0.024 | 17.082 | 1 | <0.001 * | 1.105 | (1.054–1.159) |
SOFA | 0.36 | 0.079 | 20.712 | 1 | <0.001 * | 1.433 | (1.227–1.674) |
Q3 (Reference) | 9.611 | 3 | 0.022 * | ||||
Q1 (Low Sodium) | 0.812 | 0.289 | 7.913 | 1 | 0.005 * | 2.252 | (1.279–3.964) |
Q2 (Mid–Low Sodium) | 0.018 | 0.473 | 0.001 | 1 | 0.970 | 1.018 | (0.403–2.573) |
Q4 (High Sodium) | 0.607 | 0.323 | 3.542 | 1 | 0.060 | 1.836 | (0.975–3.456) |
Sodium Status | Alive (n) | Deceased (n) | Total (n) | Mortality Rate (%) | p-Value (Test Used) |
---|---|---|---|---|---|
Normonatremia | 848 | 60 | 908 | 6.6% | p = 0.002 (Chi-square, Monte Carlo) |
Hyponatremia | 128 | 14 | 142 | 9.9% | |
Hypernatremia | 48 | 11 | 59 | 18.6% |
Statistical Test | Value | df | Asymptotic p-Value | Monte Carlo p Value (2-Sided) | 95% CI (Monte Carlo) |
---|---|---|---|---|---|
Pearson chi-squared | 12.449 | 2 | 0.002 | 0.002 | [0.000–0.004] |
Likelihood ratio | 9.793 | 2 | 0.007 | 0.014 | [0.007–0.020] |
Fisher–Freeman–Halton exact test | 10.675 | - | - | 0.004 | [0.000–0.007] |
Linear-by-linear association | 11.502 | 1 | <0.001 | <0.001 | [0.000–0.003] |
Variable | B | SE | Wald | df | p-Value | Exp(B) (OR) |
---|---|---|---|---|---|---|
Age | 0.008 | 0.011 | 0.588 | 1 | 0.443 | 1.008 |
Hyponatremia vs. normonatremia | 0.3 | 0.337 | 0.79 | 1 | 0.374 | 1.349 |
Hypernatremia vs. normonatremia | 0.454 | 0.428 | 1.128 | 1 | 0.288 | 1.575 |
APACHE II | 0.095 | 0.028 | 11.316 | 1 | 0.001 | 1.099 |
SOFA | 0.335 | 0.092 | 13.294 | 1 | 0.0 | 1.398 |
Respiratory failure type (type 2 present) | −0.293 | 0.27 | 1.178 | 1 | 0.278 | 0.746 |
COPD (present) | −1.1 | 0.266 | 17.084 | 1 | 0.0 | 0.333 |
Potassium | −0.157 | 0.185 | 0.717 | 1 | 0.397 | 0.855 |
Calcium | −0.177 | 0.161 | 1.21 | 1 | 0.271 | 0.837 |
Constant | −2.891 | 1.691 | 2.923 | 1 | 0.087 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menteş, O.; Çelik, D.; Yildiz, M.; Kahraman, A.; Cirik, M.Ö.; Eraslan Doğanay, G.; Ensarioğlu, K.; Babayiğit, M.; Kizilgöz, D. Electrolyte Imbalance and Its Prognostic Impact on All-Cause Mortality in ICU Patients with Respiratory Failure. Medicina 2025, 61, 642. https://doi.org/10.3390/medicina61040642
Menteş O, Çelik D, Yildiz M, Kahraman A, Cirik MÖ, Eraslan Doğanay G, Ensarioğlu K, Babayiğit M, Kizilgöz D. Electrolyte Imbalance and Its Prognostic Impact on All-Cause Mortality in ICU Patients with Respiratory Failure. Medicina. 2025; 61(4):642. https://doi.org/10.3390/medicina61040642
Chicago/Turabian StyleMenteş, Oral, Deniz Çelik, Murat Yildiz, Abdullah Kahraman, Mustafa Özgür Cirik, Güler Eraslan Doğanay, Kerem Ensarioğlu, Munire Babayiğit, and Derya Kizilgöz. 2025. "Electrolyte Imbalance and Its Prognostic Impact on All-Cause Mortality in ICU Patients with Respiratory Failure" Medicina 61, no. 4: 642. https://doi.org/10.3390/medicina61040642
APA StyleMenteş, O., Çelik, D., Yildiz, M., Kahraman, A., Cirik, M. Ö., Eraslan Doğanay, G., Ensarioğlu, K., Babayiğit, M., & Kizilgöz, D. (2025). Electrolyte Imbalance and Its Prognostic Impact on All-Cause Mortality in ICU Patients with Respiratory Failure. Medicina, 61(4), 642. https://doi.org/10.3390/medicina61040642