Decoding Inflammation: The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Critical Outcomes in COVID-19 Patients
Abstract
1. Introduction
2. Materials and Methods
Data Collection
- 1.
- Study setting and population
- 2.
- Inclusion and Exclusion Criteria
- 3.
- Methods of Data Collection
- 4.
- Ethical Considerations
- 5.
- Type of Data Collected
- 6.
- Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, B.A.; Jones, C.H.; Welch, V.; True, J.M. Outlook of pandemic preparedness in a post-COVID-19 world. Npj Vaccines 2023, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Scholz, C.; Schauer, S.; Latzenhofer, M. The emergence of new critical infrastructures. Is the COVID-19 pandemic shifting our perspective on what critical infrastructures are? Int. J. Disaster Risk Reduct. 2022, 83, 103419. [Google Scholar] [CrossRef]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, Y.; Wang, T.; Xie, F. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Front. Immunol. 2022, 13, 1053437. [Google Scholar] [CrossRef]
- Ribeiro, T.F.; Domingos, C.R.B.; Rodrigues, T.D.S.; Borin, F.H. Neutrophil-to-Lymphocyte Ratio (NLR) in COVID-19 Patients. Hematol. Transfus. Cell Ther. 2023, 45, S82. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic thrombocytopenia. Trends Cardiovasc. Med. 2022, 32, 1–9. [Google Scholar]
- Pelle, M.C.; Zaffina, I.; Lucà, S.; Forte, V.; Trapanese, V.; Melina, M.; Giofrè, F.; Arturi, F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life 2022, 12, 1605. [Google Scholar] [CrossRef]
- Barrett, T.J.; Bilaloglu, S.; Cornwell, M.; Burgess, H.M.; Virginio, V.W.; Drenkova, K.; Ibrahim, H.; Yuriditsky, E.; Aphinyanaphongs, Y.; Lifshitz, M.; et al. Platelets contribute to disease severity in COVID-19. J. Thromb. Haemost. 2021, 19, 3139–3153. [Google Scholar] [CrossRef]
- Scalise, E.; Costa, D.; Bolboacă, S.D.; Ielapi, N.; Bevacqua, E.; Cristodoro, L.; Faga, T.; Michael, A.; Andreucci, M.; Bracale, U.M.; et al. The role of inflammation biomarkers in carotid artery stenosis procedures. Ann. Vasc. Surg. 2025, 110 Pt A, 34–46. [Google Scholar] [CrossRef]
- Islam, M.M.; Satici, M.O.; Eroglu, S.E. Unraveling the clinical significance and prognostic value of the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune-inflammation index, systemic inflammation response index, and delta neutrophil index: An extensive literature review. Turk. J. Emerg. Med. 2024, 24, 8–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, M.; Qian, X.; Guo, X.; Wang, H.; Ni, Q.; Zhao, Y.; Xue, G.; Deng, H.; Zhang, L. Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio Predict Severity and Prognosis of Lower Limb Arteriosclerosis Obliterans. Ann. Vasc. Surg. 2020, 64, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Larmann, J.; Handke, J.; Scholz, A.S.; Dehne, S.; Arens, C.; Gillmann, H.J.; Uhle, F.; Motsch, J.; Weigand, M.A.; Janssen, H. Preoperative neutrophil to lymphocyte ratio and platelet to lymphocyte ratio are associated with major adverse cardiovascular and cerebrovascular events in coronary heart disease patients undergoing non-cardiac surgery. BMC Cardiovasc. Disord. 2020, 20, 230. [Google Scholar] [CrossRef]
- Nalbant, A.; Kaya, T.; Varim, C.; Yaylaci, S.; Tamer, A.; Cinemre, H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev. Assoc. Médica Bras. 2020, 66, 907–913. [Google Scholar] [CrossRef]
- Chan, A.S.; Rout, A. Use of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19. J. Clin. Med. Res. 2020, 12, 448–453. [Google Scholar] [CrossRef]
- Yang, A.-P.; Liu, J.-P.; Tao, W.-Q.; Li, H.-M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Salas-Tello, W.I.; Al-Kassab-Córdova, A.; Alarcón-Braga, E.A.; Benites-Zapata, V.A.; Maguiña, J.L.; Hernandez, A.V. Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 patients: A systematic review and meta-analysis. Int. J. Clin. Pract. 2021, 75, e14596. [Google Scholar] [CrossRef]
- Drăgoescu, A.N.; Pădureanu, V.; Stănculescu, A.D.; Chiuțu, L.C.; Tomescu, P.; Geormăneanu, C.; Pădureanu, R.; Iovănescu, V.F.; Ungureanu, B.S.; Pănuș, A.; et al. Neutrophil to Lymphocyte Ratio (NLR)-A Useful Tool for the Prognosis of Sepsis in the ICU. Biomedicines 2021, 10, 75. [Google Scholar] [CrossRef]
- Mathur, K.; Kurbanova, N.; Qayyum, R. Platelet-lymphocyte ratio (PLR) and all-cause mortality in general population: Insights from national health and nutrition education survey. Platelets 2019, 30, 1036–1041. [Google Scholar] [CrossRef]
- Proctor, M.J.; Morrison, D.S.; Talwar, D.; Balmer, S.M.; Fletcher, C.D.; O’Reilly, D.S.J.; Foulis, A.K.; Horgan, P.G.; McMillan, D.C. A comparison of inflammation-based prognostic scores in patients with cancer. A Glasgow Inflammation Outcome Study. Eur. J. Cancer 2011, 47, 2633–2641. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Esposito, V.; Caruso, C.; Nicolosi, G.L.; Bianchi, S.; Lombardo, M.; Gensini, G.F.; Ambrosio, G. Association between neutrophil to lymphocyte ratio and carotid artery wall thickness in healthy pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 98–104. [Google Scholar] [CrossRef]
- Russell, C.D.; Parajuli, A.; Gale, H.J.; Bulteel, N.S.; Schuetz, P.; de Jager, C.P.C.; Loonen, A.J.M.; Merekoulias, G.I.; Baillie, J.K. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. J. Infect. 2019, 78, 339–348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosidło, J.W.; Wolszczak-Biedrzycka, B.; Matowicka-Karna, J.; Dymicka-Piekarska, V.; Dorf, J. Clinical Significance and Diagnostic Utility of NLR, LMR, PLR and SII in the Course of COVID-19: A Literature Review. J. Inflamm. Res. 2023, 16, 539–562. [Google Scholar] [CrossRef] [PubMed]
- Tzikos, G.; Alexiou, I.; Tsagkaropoulos, S.; Menni, A.E.; Chatziantoniou, G.; Doutsini, S.; Papavramidis, T.; Grosomanidis, V.; Stavrou, G.; Kotzampassi, K. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Predictive Factors for Mortality and Length of Hospital Stay after Cardiac Surgery. J. Pers. Med. 2023, 13, 473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Zhou, Y.-S.; Lian, J.Q.; Zhang, Z.; Du, P.; Gong, L.; Zhang, Y.; Cui, H.Y.; Geng, J.J.; et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef]
- Perdersen, S.F.; Ho, Y.C. SARS-CoV-2: A storm is raging. J. Clin. Investig. 2020, 130, 2202–2205. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. medRxiv 2020. [Google Scholar] [CrossRef]
- McElvaney, O.; McEvoy, N.; McElvaney, O.; Carroll, T.; Murphy, M.; Dunlea, D.; Ní Choileáin, O.; Clarke, J.; O’Connor, E.; Hogan, G.; et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am. J. Respir. Crit. Care Med. 2020, 202, 812–821. [Google Scholar] [CrossRef]
- Hemmat, N.; Derakhshani, A.; Baghi, H.; Silvestris, N.; Baradaran, B.; De Summa, S. Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study. Front. Genet. 2020, 11, 641. [Google Scholar] [CrossRef]
- Haick, A.; Rzepka, J.; Brandon, E.; Balemba, O.; Miura, T. Neutrophils are Needed for an Effective Immune Response Against Pulmonary Rat Coronavirus Infection, But Also Contribute to Pathology. J. Gen. Virol. 2014, 95, 578–590. [Google Scholar] [CrossRef] [PubMed]
- McKenna, E.; Wubben, R.; Isaza-Correa, J.M.; Melo, A.M.; Mhaonaigh, A.U.; Conlon, N.; O’Donnell, J.S.; Ní Cheallaigh, C.; Hurley, T.; Stevenson, N.J.; et al. Neutrophils in COVID-19: Not Innocent Bystanders. Front. Immunol. 2022, 13, 864387. [Google Scholar] [CrossRef]
- Thiam, H.; Wong, S.; Wagner, D.; Waterman, C. Cellular Mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020, 36, 191–218. [Google Scholar] [CrossRef]
- Kumar, S.; Payal, N.; Srivastava, V.; Kaushik, S.; Saxena, J.; Jyoti, A. Neutrophil Extracellular Traps and Organ Dysfunction in Sepsis. Clin. Chim. Acta 2021, 523, 152–162. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, E.; Kaushik, S.; Srivastava, V.; Saxena, J.; Mehta, S.; Jyoti, A. Quantification of NETs Formation in Neutrophil and its Correlation with the Severity of Sepsis and Organ Dysfunction. Clin. Chim. Acta 2019, 495, 606–610. [Google Scholar] [CrossRef]
- Koupenova, M. Potential role of platelets in COVID-19: Implications for thrombosis. Res. Pract. Thromb. Haemost. 2020, 4, 737–740. [Google Scholar] [CrossRef]
Total n (%) | Men n (%) | Women n (%) | |
---|---|---|---|
aHTN * | 270 (50.4) | 141 (45) | 129 (57.8) |
T2DM ** | 74 (13.8) | 39 (12.5) | 35 (15.7) |
T1DM *** | 29 (5.4) | 20 (6.4) | 9 (4) |
COPD **** | 13 (2.4) | 9 (2.9) | 4 (1.8) |
CKD ***** | 28 (5.2) | 22 (7) | 6 (2.7) |
Dialysis | 5 (0.9) | 3 (1) | 2 (0.9) |
Hematological diseases | 12 (2.2) | 6 (1.9) | 6 (2.7) |
Active neoplasia | 28 (5.2) | 14 (4.5) | 14 (6.3) |
History of a neoplasia | 34 (6.3) | 8 (2.6) | 26 (11.7) |
Chronic liver disease | 45 (8.4) | 30 (9.6) | 15 (6.7) |
HIV | 1 (0.2) | 1 (0.3) | 0 |
Autoimmune diseases | 25 (4.7) | 10 (3.2) | 15 (6.7) |
Immunosuppression | 8 (1.5) | 6 (1.9) | 2 (0.9) |
Other chronic conditions | 363 (67.7) | 198 (63.3) | 165 (74) |
Number of Cases (%) | ||
---|---|---|
WBC 4.0–10.0 × 103/µL | <4.0 × 103/µL | 79 (14.7) |
4.0–10.0 × 103/µL | 386 (72) | |
>10.0 × 103/µL | 70 (13.1) | |
Neu 1.8–8.0 × 103/µL | <1.8 × 103/µL | 20 (3.7) |
1.8–8.0 × 103/µL | 435 (81.2) | |
>8.0 × 103/µL | 81 (15.1) | |
Lym 1.5–4.0 × 103/µL | <1.5 × 103/µL | 449 (83.8) |
1.5–4.0 × 103/µL | 82 (15.3) | |
>4.0 × 103/µL | 5 (0.9) | |
Plt 200–400 × 103/µL | <200.00 × 103/µL | 256 (47.8) |
200–400 × 103/µL | 252 (47) | |
>400 × 103/µL | 28 (5.2) |
Ratios | All Cases N (%) | High Values | Normal Values | Statistical Significance |
---|---|---|---|---|
NLR | ||||
Deceased | 4 (0.7) | 2 | 2 | p = 0.46 |
ICU | 8 (1.5) | 7 | 1 | p = 0.04 |
ARF | 391 (64) | 283 | 122 | p = 0.00 |
Complications | 279 (52.1) | 220 | 59 | p = 0.04 |
Bacterial superinfection | 148 (27.6) | 119 | 29 | p = 0.01 |
CRP | 485 (90.5) | 375 | 110 | p = 0.003 |
Fibrinogen | 431 (80.4) | 339 | 92 | p = 0.001 |
Hepatic cytolysis | 298 (55.6%) | 226 | 72 | p = 0.79 |
Cholestasis | 312 (58.2) | 244 | 68 | p = 0.093 |
PLR | ||||
Deceased | 4 (0.7) | 2 | 2 | p = 0.32 |
ICU | 8 (1.5) | 7 | 1 | p = 0.04 |
ARF | 391 (64) | 271 | 72 | p = 0.00 |
Complications | 279 (52.1) | 219 | 60 | p = 0.00 |
Bacterial superinfection | 148 (27.6) | 117 | 31 | p = 0.04 |
CRP | 485 (90.5) | 364 | 121 | p = 0.001 |
Fibrinogen | 431 (80.4) | 330 | 101 | p = 0.000 |
Hepatic cytolysis | 298 (55.6%) | 225 | 73 | p = 0.87 |
Cholestasis | 312 (58.2) | 242 | 70 | p = 0.005 |
Gender | ARF | Complications | Bacterial Superinfection | ICU | Death | |
---|---|---|---|---|---|---|
Leu | p = 0.00 | p = 0.19 | p = 0.61 | p = 0.16 | p = 0.56 | p = 0.88 |
Lym | p = 0.98 | p = 0.00 | p = 0.03 | p = 0.07 | p = 0.02 | p = 0.67 |
Neu | p = 0.00 | p = 0.00 | p = 0.27 | p = 0.19 | p = 0.27 | p = 0.60 |
Plt | p = 0.04 | p = 0.06 | p = 0.13 | p = 0.34 | p = 0.84 | p = 0.24 |
CRP | p = 0.00 | p = 0.00 | p = 0.26 | p = 0.01 | p = 0.03 | p = 0.16 |
NLR | p = 0.08 | p = 0.00 | p = 0.04 | p = 0.01 | p = 0.04 | p = 0.46 |
PLR | p = 0.44 | p = 0.00 | p = 0.00 | p = 0.04 | p = 0.04 | p = 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamescu, A.-I.; Tilișcan, C.; Stratan, L.M.; Mihai, N.; Ganea, O.-A.; Ciobanu, S.; Marinescu, A.G.; Aramă, V.; Aramă, Ș.S. Decoding Inflammation: The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Critical Outcomes in COVID-19 Patients. Medicina 2025, 61, 634. https://doi.org/10.3390/medicina61040634
Adamescu A-I, Tilișcan C, Stratan LM, Mihai N, Ganea O-A, Ciobanu S, Marinescu AG, Aramă V, Aramă ȘS. Decoding Inflammation: The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Critical Outcomes in COVID-19 Patients. Medicina. 2025; 61(4):634. https://doi.org/10.3390/medicina61040634
Chicago/Turabian StyleAdamescu, Aida-Isabela, Cătălin Tilișcan, Laurențiu Mihăiță Stratan, Nicoleta Mihai, Oana-Alexandra Ganea, Sebastian Ciobanu, Adrian Gabriel Marinescu, Victoria Aramă, and Ștefan Sorin Aramă. 2025. "Decoding Inflammation: The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Critical Outcomes in COVID-19 Patients" Medicina 61, no. 4: 634. https://doi.org/10.3390/medicina61040634
APA StyleAdamescu, A.-I., Tilișcan, C., Stratan, L. M., Mihai, N., Ganea, O.-A., Ciobanu, S., Marinescu, A. G., Aramă, V., & Aramă, Ș. S. (2025). Decoding Inflammation: The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Critical Outcomes in COVID-19 Patients. Medicina, 61(4), 634. https://doi.org/10.3390/medicina61040634