Diabetic Complication Profiles and Associated Risk Factors: A Comprehensive Analysis from Two Public Hospitals in the Najran Region, Southern Saudi Arabia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Sampling
2.2. Sample Size Calculation
2.3. Inclusion and Exclusion Criteria
2.4. Diabetes Classification Criteria
- -
- Age at onset;
- -
- Clinical presentation;
- -
- Autoantibody testing results;
- -
- Insulin dependency patterns.
2.5. Complication Definitions
2.6. Data Validation
2.7. Data Collection
2.8. Statistical Analysis
2.9. Ethical Considerations
3. Results
3.1. Type 1 Diabetes Patient Profile
3.2. Type 2 Diabetes Patient Profile
3.3. Complication Prevalence and Patterns
3.4. Risk Factor Analysis
3.5. Multicollinearity Assessment
- Diabetes Type: VIF = 28.34 (High multicollinearity);
- BMI: VIF = 8.57 (Moderate multicollinearity);
- Treatment Modality: VIF = 7.71 (Moderate multicollinearity);
- Other variables: VIF < 5 (Low multicollinearity).
- -
- Type 1 diabetes: predominantly younger patients (mean age: 14.7 ± 4.0 years);
- -
- Type 2 diabetes: predominantly older patients (mean age: 26.0 ± 9.8 years);
- -
- Perfect treatment separation: T1D = insulin only, T2D = includes oral meds;
- -
- Distinct BMI profiles: T1D = 25.1 ± 0.7 kg/m2, T2D = 29.2 ± 0.4 kg/m2.
3.6. Multiple Testing Correction
4. Discussion
4.1. Type 1 Diabetes Findings
4.2. Type 2 Diabetes Regional Patterns
4.3. Comparisons Between T1D and T2D Patients
4.4. Associations Between Complications and Variables
4.5. Implications for Management
4.6. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
BMI | Body mass index |
HbA1c | Hemoglobin A1c |
References
- International Diabetes Federation. Diabetes Around the World in 2025. IDF Diabetes Atlas 2025; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shaw, J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol. 2014, 2, 56–64. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009, 32 (Suppl. 1), S62–S67. [Google Scholar] [CrossRef]
- International Diabetes Federation. Saudi Arabia. Diabetes Atlas 2025; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018, 41, 963–970. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Stratigou, T.; Geladari, E.; Tessier, C.M.; Mantzoros, C.S.; Dalamaga, M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev. Endocr. Metab. Disord. 2021, 22, 859–876. [Google Scholar] [CrossRef]
- Pillon, N.J.; Loos, R.J.F.; Marshall, S.M.; Zierath, J.R. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 2021, 184, 1530–1544. [Google Scholar] [CrossRef]
- Al-Rubeaan, K.; Al-Manaa, H.A.; Khoja, T.A.; Ahmad, N.A.; Al-Sharqawi, A.H.; Siddiqui, K.; Alnaqeb, D.; Aburisheh, K.H.; Youssef, A.M.; Al-Batel, A.; et al. Epidemiology of abnormal glucose metabolism in a country facing its epidemic: SAUDI-DM study. J. Diabetes 2015, 7, 622–632. [Google Scholar] [CrossRef]
- Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J. 2015, 92, 63–69. [Google Scholar] [CrossRef]
- Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol. 2020, 18, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Orchard, T.J.; Costacou, T. 30-Year cardiovascular disease in type 1 diabetes: Risk and risk factors differ by long-term patterns of glycemic control. Diabetes Care 2022, 45, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, D.; Dou, K. Intensified glycemic control by HbA1c for patients with coronary heart disease and Type 2 diabetes: A review of findings and conclusions. Cardiovasc. Diabetol. 2023, 22, 146. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.-F.; Li, Q.-X.; Han, Y.-L.; Wang, X.-Z.; Song, Y.; Zhang, Z.; Xu, J.-J.; Liu, Z.-Y.; Chen, Y.; Zhang, Y.-Z.; et al. Implications of baseline glycemic control by plasma glycated hemoglobin A1c on adverse outcomes in patients with coronary heart disease and type 2 diabetes mellitus: Results from the PROMISE study. Heliyon 2024, 10, e39748. [Google Scholar] [CrossRef]
- Kontopantelis, E.; Springate, D.A.; Reeves, D.; Ashcroft, D.M.; Rutter, M.; Buchan, I.; Doran, T. Glucose, blood pressure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: A retrospective cohort study. Diabetologia 2015, 58, 505–518. [Google Scholar] [CrossRef]
- Vázquez, L.A.; Rodríguez, Á.; Salvador, J.; Ascaso, J.F.; Petto, H.; Reviriego, J. Relationships between obesity, glycemic control, and cardiovascular risk factors: A pooled analysis of cross-sectional data from Spanish patients with type 2 diabetes in the preinsulin stage. BMC Cardiovasc. Disord. 2014, 14, 153. [Google Scholar] [CrossRef]
- Guan, H.; Tian, J.; Wang, Y.; Niu, P.; Zhang, Y.; Zhang, Y.; Fang, X.; Miao, R.; Yin, R.; Tong, X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: A comprehensive review. Eur. J. Med. Res. 2024, 29, 152. [Google Scholar] [CrossRef]
- Ewid, M.; Algoblan, A.S.; Elzaki, E.M.; Muqresh, M.A.; Al Khalifa, A.R.; Alshargabi, A.M.; Alotaibi, S.A.; Alfayez, A.S.; Naguib, M. Factors associated with glycemic control and diabetes complications in a group of Saudi patients with type 2 diabetes. Medicine 2023, 102, e35212. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.A.; Al-Dawish, A.; Mujammami, M.; Dawish, M.A.A. Type 1 Diabetes Mellitus in Saudi Arabia: A Soaring Epidemic. Int. J. Pediatr. 2018, 2018, 9408370. [Google Scholar] [CrossRef] [PubMed]
- Lwanga, S.K.; Lemeshow, S. Sample Size Determination in Health Studies: A Practical Manual; World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Wilkinson, C.P.; Ferris, F.L., 3rd; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Hinchliffe, R.J.; Lipsky, B.A. Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes/Metab. Res. Rev. 2020, 36 (Suppl. 1), e3266. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Sattar, N.; Eliasson, B.; Svensson, A.M.; Zethelius, B.; Miftaraj, M.; McGuire, D.K.; Rosengren, A.; et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2018, 379, 633–644. [Google Scholar] [CrossRef]
- Gagliardino, J.J.; Aschner, P.; Ilkova, H.M.; Lavalle-Gonzalez, F.J.S.; Ramachandran, A.; Kaddaha, G.; Mbanya, J.C.; Shestakova, M.V.; Chantelot, J.-M.; Chan, J.C. Frequency of Diabetes-Related Complications in Type 1 and Type 2 Diabetes—Results from the International Diabetes Management Practices Study (IDMPS). Diabetes 2018, 67, 1584-P. [Google Scholar] [CrossRef]
- Gebre, B.B.; Assefa, Z.M. Magnitude and associated factors of diabetic complication among diabetic patients attending Gurage zone hospitals, South West Ethiopia. BMC Res. Notes 2019, 12, 780. [Google Scholar] [CrossRef]
- Gómez-Peralta, F.; Menéndez, E.; Conde, S.; Conget, I.; Novials, A. Clinical characteristics and management of type 1 diabetes in Spain. The SED1 study. Endocrinol. Diabetes Nutr. 2021, 68, 642–653. [Google Scholar] [CrossRef]
- Martínez-Ortega, A.J.; Muñoz-Gómez, C.; Gros-Herguido, N.; Remón-Ruiz, P.J.; Acosta-Delgado, D.; Losada-Viñau, F.; Pumar-López, A.; Mangas-Cruz, M.Á.; González-Navarro, I.; López-Gallardo, G.; et al. Description of a Cohort of Type 1 Diabetes Patients: Analysis of Comorbidities, Prevalence of Complications and Risk of Hypoglycemia. J. Clin. Med. 2022, 11, 1039. [Google Scholar] [CrossRef]
- Akbar, D.H.; Mira, S.A.; Zawawi, T.H.; Malibary, H.M. Subclinical diabetic neuropathy. A common complication in Saudi diabetics. Neurosci. J. 2000, 5, 110–114. [Google Scholar]
- Aljehani, E.A.; Alhawiti, A.E.; Mohamad, R.M. Prevalence and Determinants of Diabetic Retinopathy Among Type 2 Diabetic Patients in Saudi Arabia: A Systematic Review. Cureus 2023, 15, e42771. [Google Scholar] [CrossRef] [PubMed]
- Garofolo, M.; Gualdani, E.; Giannarelli, R.; Aragona, M.; Campi, F.; Lucchesi, D.; Daniele, G.; Miccoli, R.; Francesconi, P.; Del Prato, S.; et al. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: A 10-year follow-up study. Cardiovasc. Diabetol. 2019, 18, 159. [Google Scholar] [CrossRef] [PubMed]
- Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: A cohort study using the general practice research database. Diabetes Care 2006, 29, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.P.; Swerdlow, A.J.; Slater, S.D.; Burden, A.C.; Morris, A.; Waugh, N.R.; Gatling, W.; Bingley, P.J.; Patterson, C.C. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 2003, 46, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, S.J.; Looker, H.C.; Hothersall, E.J.; Wild, S.H.; Lindsay, R.S.; Chalmers, J.; Cleland, S.; Leese, G.P.; McKnight, J.; Morris, A.D.; et al. Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study. PLoS Med. 2012, 9, e1001321. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; de Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J.; et al. Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care 2014, 37, 2843–2863. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.Y.; Albunyan, A.; Al Nahari, A.; Al Azmi, F.; Alenazi, B.; Al Harbi, T.; Al Malki, M.; Al Ahmadi, H. Measuring the Impact of Flash Glucose Monitoring in a Pediatric Population in Saudi Arabia: A Retrospective Cohort Study. Diabetes Ther. 2022, 13, 1139–1146. [Google Scholar] [CrossRef]
- Al-Qahtani, S.M.; Shati, A.A.; Alqahtani, Y.A.; AlAsmari, A.A.; Almahdi, M.A.; Al Hassan, A.A.; Alhassany, A.M.; Shathan, R.A.; Aldosari, R.M.; AlQahtani, A.S.; et al. Factors Affecting Glycemic Control among Saudi Children with Type 1 Diabetes Mellitus in Aseer Region, Southwestern Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 11558. [Google Scholar] [CrossRef] [PubMed]
- Aljuhani, F.M.; Al-Agha, A.E.; Almunami, B.A.; Meftah, E.A.; Sultan, R.A.; Sultan, R.A.; Alsawadi, H.M.; Alahmadi, M.M.; Albogmi, R.A.; Khaldi, S.J. Growth status of children and adolescents with type 1 diabetes mellitus in Jeddah, Saudi Arabia: A cross-sectional study. Curr. Pediatr. Res. 2018, 22, 249–254. [Google Scholar]
- Hafidh, K.; Malek, R.; Al-Rubeaan, K.; Kok, A.; Bayram, F.; Echtay, A.; Rajadhyaksha, V.; Hadaoui, A. Prevalence and risk factors of vascular complications in type 2 diabetes mellitus: Results from discover Middle East and Africa cohort. Front. Endocrinol. 2022, 13, 940309. [Google Scholar] [CrossRef] [PubMed]
- Luk, A.O.; Lau, E.S.; So, W.-Y.; Ma, R.C.; Kong, A.P.; Ozaki, R.; Chow, F.C.; Chan, J.C. Prospective study on the incidences of cardiovascular-renal complications in Chinese patients with young-onset type 1 and type 2 diabetes. Diabetes Care 2014, 37, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Aljulifi, M.Z. Prevalence and reasons of increased type 2 diabetes in Gulf Cooperation Council Countries. Saudi Med. J. 2021, 42, 481–490. [Google Scholar] [CrossRef]
- Al-Rubeaan, K. National surveillance for type 1, type 2 diabetes and prediabetes among children and adolescents: A population-based study (SAUDI-DM). J. Epidemiol. Community Health 2015, 69, 1045–1051. [Google Scholar] [CrossRef]
- AlHarbi, M.; Othman, A.; Nahari, A.A.; Al-Jedai, A.H.; Cuadras, D.; Almalky, F.; AlAzmi, F.; Almudaiheem, H.Y.; AlShubrumi, H.; AlSwat, H. Burden of illness of type 2 diabetes mellitus in the Kingdom of Saudi Arabia: A five-year longitudinal study. Adv. Ther. 2024, 41, 1120–1150. [Google Scholar] [CrossRef]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef]
- Saiyed, N.S.; Yagoub, U.; Al Qahtani, B.; Al Zahrani, A.M.; Al Hariri, I.; Syed, M.J.; Elmardi, M.E.; Tufail, M.A.; Manajreh, M. Risk factors of microvascular complications among type 2 diabetic patients using cox proportional hazards models: A cohort study in Tabuk Saudi Arabia. J. Multidiscip. Healthc. 2022, 15, 1619–1632. [Google Scholar] [CrossRef]
- Ikem, R.T.; Enikuomehin, A.C.; Soyoye, D.O.; Kolawole, B.A. The burden of diabetic complications in subjects with type 2 diabetes attending the diabetes clinic of the Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria—A cross-sectional study. Pan Afr. Med. J. 2022, 43, 148. [Google Scholar] [CrossRef]
- Elhadd, T.A.; Al-Amoudi, A.A.; Alzahrani, A.S. Epidemiology, clinical and complications profile of diabetes in Saudi Arabia: A review. Ann. Saudi Med. 2007, 27, 241–250. [Google Scholar] [CrossRef]
- Daousi, C.; Casson, I.; Gill, G.; MacFarlane, I.; Wilding, J.; Pinkney, J. Prevalence of obesity in type 2 diabetes in secondary care: Association with cardiovascular risk factors. Postgrad. Med. J. 2006, 82, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H. Complication characteristics between young-onset type 2 versus type 1 diabetes in a UK population. BMJ Open Diabetes Res. Care 2015, 3, e000044. [Google Scholar] [CrossRef] [PubMed]
- Ismail, L.; Materwala, H.; Al Kaabi, J. Association of risk factors with type 2 diabetes: A systematic review. Comput. Struct. Biotechnol. J. 2021, 19, 1759–1785. [Google Scholar] [CrossRef] [PubMed]
- Fasil, A.; Biadgo, B.; Abebe, M. Glycemic control and diabetes complications among diabetes mellitus patients attending at University of Gondar Hospital, Northwest Ethiopia. Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 12, 75–83. [Google Scholar] [CrossRef]
- Abebe, S.M.; Berhane, Y.; Worku, A.; Alemu, S.; Mesfin, N. Level of sustained glycemic control and associated factors among patients with diabetes mellitus in Ethiopia: A hospital-based cross-sectional study. Diabetes Metab. Syndr. Obes. Targets Ther. 2015, 8, 65–71. [Google Scholar] [CrossRef]
- Moreira Jr, E.D.; Neves, R.C.S.; Nunes, Z.O.; de Almeida, M.C.C.; Mendes, A.B.V.; Fittipaldi, J.A.S.; Ablan, F. Glycemic control and its correlates in patients with diabetes in Venezuela: Results from a nationwide survey. Diabetes Res. Clin. Pract. 2010, 87, 407–414. [Google Scholar] [CrossRef]
- Apperley, L.J.; Ng, S.M. Socioeconomic deprivation, household education, and employment are associated with increased hospital admissions and poor glycemic control in children with type 1 diabetes mellitus. Rev. Diabet. Stud. RDS 2017, 14, 295. [Google Scholar] [CrossRef] [PubMed]
- Crasto, W.; Patel, V.; Davies, M.J.; Khunti, K. Prevention of microvascular complications of diabetes. Endocrinol. Metab. Clin. 2021, 50, 431–455. [Google Scholar] [CrossRef]
- Yapanis, M.; James, S.; Craig, M.E.; O’Neal, D.; Ekinci, E.I. Complications of Diabetes and Metrics of Glycemic Management Derived From Continuous Glucose Monitoring. J. Clin. Endocrinol. Metab. 2022, 107, e2221–e2236. [Google Scholar] [CrossRef]
- Ghabban, S.J.; Althobaiti, B.; Farouk, I.M.; Al Hablany, M.; Ghabban, A.; Alghbban, R.; Harbi, S.; Albalawi, A.E., Sr. Diabetic Complications and Factors Affecting Glycemic Control Among Patients with Type II Diabetes Mellitus Attending the Chronic Illness Clinics at Tabuk, Saudi Arabia. Cureus 2020, 12, e11683. [Google Scholar] [CrossRef]
- Dinavari, M.F.; Sanaie, S.; Rasouli, K.; Faramarzi, E.; Molani-Gol, R. Glycemic control and associated factors among type 2 diabetes mellitus patients: A cross-sectional study of Azar cohort population. BMC Endocr. Disord. 2023, 23, 273. [Google Scholar] [CrossRef]
- Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. Jama 2002, 287, 2563–2569. [Google Scholar] [CrossRef]
- Ciemins, E.; Coon, P.; Peck, R.; Holloway, B.; Min, S.-J. Using telehealth to provide diabetes care to patients in rural Montana: Findings from the promoting realistic individual self-management program. Telemed. e-Health 2011, 17, 596–602. [Google Scholar] [CrossRef]
- Ko, J.; Delafield, R.; Davis, J.; Mau, M.K. Characteristics of patients with type 2 diabetes mellitus in two rural, medically underserved communities. Hawai’i J. Med. Public Health 2013, 72, 191. [Google Scholar]
- Bennett, K.J.; Olatosi, B.; Probst, J.C. Health Disparities: A Rural-Urban Chartbook; South Carolina Rural Health Research Center, University of South Carolina: Columbia, SC, USA, 2008. [Google Scholar]
- Flood, D.; Geldsetzer, P.; Agoudavi, K.; Aryal, K.K.; Brant, L.C.C.; Brian, G.; Dorobantu, M.; Farzadfar, F.; Gheorghe-Fronea, O.; Gurung, M.S.; et al. Rural-Urban Differences in Diabetes Care and Control in 42 Low- and Middle-Income Countries: A Cross-sectional Study of Nationally Representative Individual-Level Data. Diabetes Care 2022, 45, 1961–1970. [Google Scholar] [CrossRef] [PubMed]
- Naseer, S.; Malkera, A.; Khan, N.; Siddiqui, A.H.; Khan, S.A.; Ali, S.; Israr, M. Prevalence of diabetic complications in urban and rural population of Punjab. Pak. J. Med. Health Sci. 2022, 16, 69. [Google Scholar] [CrossRef]
- Mokhtarpour, K.; Yadegar, A.; Mohammadi, F.; Aghayan, S.N.; Seyedi, S.A.; Rabizadeh, S.; Esteghamati, A.; Nakhjavani, M. Impact of Gender on Chronic Complications in Participants with Type 2 Diabetes: Evidence from a Cross-Sectional Study. Endocrinol. Diabetes Metab. 2024, 7, e488. [Google Scholar] [CrossRef]
- Ndetei, D.M.; Mutiso, V.; Musyimi, C.; Nyamai, P.; Lloyd, C.; Sartorius, N. Association of type 2 diabetes with family history of diabetes, diabetes biomarkers, mental and physical disorders in a Kenyan setting. Sci. Rep. 2024, 14, 11037. [Google Scholar] [CrossRef]
- Yamazaki, D.; Hitomi, H.; Nishiyama, A. Hypertension with diabetes mellitus complications. Hypertens. Res. 2018, 41, 147–156. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Khiari, M.; Zribi, S.; Zahra, H.; Boukhayatia, F.; Hatira, Y.; Temessek, A.; Mami, F.B. Effect of diabetes and high blood pressure association on degenerative complications of diabetes. Endocr. Abstr. 2019, 63, EP51. [Google Scholar] [CrossRef]
- Dimore, A.L.; Edosa, Z.K.; Mitiku, A.A. Glycemic control and diabetes complications among adult type 2 diabetic patients at public hospitals in Hadiya zone, Southern Ethiopia. PLoS ONE 2023, 18, e0282962. [Google Scholar] [CrossRef] [PubMed]
- Poonoosamy, J.; Lopes, P.; Huret, P.; Dardari, R.; Penfornis, A.; Thomas, C.; Dardari, D. Impact of intensive glycemic treatment on diabetes complications—A systematic review. Pharmaceutics 2023, 15, 1791. [Google Scholar] [CrossRef]
Characteristic | Type 1 Diabetes (n = 200) | Type 2 Diabetes (n = 300) | χ2, p-Value |
---|---|---|---|
Gender | |||
Male | 88 (44.0%) | 163 (54.3%) | χ2 = 5.13, p = 0.024 |
Female | 112 (56.0%) | 137 (45.7%) | |
Age (years) | |||
Median (IQR) | 14.0 (3.0) | 23.0 (7.0) | p = 0.00 |
Range | 10–40 | 13–65 | |
Weight (kg) | |||
Median (IQR) | 48.0 (13.0) | 84.0 (16.3) | p = 0.00 # |
Range | 30–89 | 43–104 | |
BMI (kg/m2) | |||
Median (IQR) | 25.1 (0.92) | 29.2 (0.47) | p = 0.00 # |
Range | 22.8–26.5 | 28.1–30.6 | |
HbA1c (%) | |||
Median (IQR) | 9.79 (0.54) | 7.89 (0.92) | p = 0.00 # |
Range | 6.8–11.9 | 5.3–9.42 | |
Geographic Distribution | |||
Urban residence | 102 (51.0%) | 164 (54.7%) | χ2 = 0.648, p = 0.421 |
Rural residence | 98 (49.0%) | 136 (45.3%) | |
Employment Status | |||
Employed | 44 (22.0%) | 200 (66.7%) | χ2 = 95.8, p < 0.001 * |
Unemployed | 156 (78.0%) | 100 (33.3%) | |
Disease Duration | |||
≤5 years | 52 (26.0%) | 43 (14.3%) | χ2 = 67.0, p < 0.001 *$ |
6–10 years | 148 (74.0%) | 176 (58.7%) | |
>10 years | 0 (0%) | 81 (27.0%) | |
Treatment Modality | |||
Insulin alone | 72 (36.0%) | 0 (0%) | χ2 = 207. 9, p < 0.001 *$ |
Insulin + oral agents | 128 (64.0%) | 155 (51.7%) | |
Oral agents alone | 0 (0%) | 145 (48.3%) | |
Hypertension | |||
Yes | 32 (16.0%) | 70 (23.3%) | χ2 = 3.97, p = 0.046 * |
No | 168 (84.0%) | 230 (76.7%) | |
Family history of diabetes | |||
Yes | 117 (58.5%) | 130 (43.3%) | χ2 = 11.0, p < 0.001 * |
No | 83 (41.5%) | 170 (56.7%) | |
Glycemic Control | |||
Poor (HbA1c > 9%) | 127 (63.5%) | 10 (3.3%) | χ2 = 219, p < 0.001 * |
Moderate (HbA1c 7–9%) | 57 (28.5%) | 214 (71.3%) | |
Good (HbA1c < 7%) | 16 (8.0%) | 76 (25.3%) |
Diabetes Type | Characteristic | Complications | Total | χ2 | p-Value | |
---|---|---|---|---|---|---|
No | Yes | |||||
T1D and T2D | Gender | |||||
Male | 114 | 137 | 251 | 0.13 | 0.71 | |
Female | 109 | 140 | 249 | |||
T1D | Gender | |||||
Male | 36 | 52 | 88 | 1.31 | 0.25 | |
Female | 37 | 75 | 112 | |||
T2D | Male | 78 | 85 | 163 | 0.65 | 0.41 |
Female | 72 | 65 | 137 | |||
T1D | Residence | |||||
Urban | 32 | 70 | 102 | 2.36 | 0.12 | |
Rural | 41 | 57 | 98 | |||
T2D | Urban | 92 | 72 | 164 | 5.38 | 0.02* |
Rural | 58 | 78 | 136 | |||
T1D | Duration of diabetes | |||||
≤5 years | 19 | 33 | 52 | NA | NA | |
6–10 years | 54 | 94 | 148 | |||
>10 years | 0 | 0 | 0 | |||
T2D | ≤5 years | 23 | 20 | 43 | 0.54 | 0.76 |
6–10 years | 89 | 87 | 176 | |||
>10 years | 38 | 43 | 81 | |||
T1D | Family history of diabetes | |||||
No | 24 | 59 | 83 | 3.52 | 0.06 | |
Yes | 49 | 68 | 117 | |||
T2D | No | 81 | 89 | 170 | 0.86 | 0.35 |
Yes | 69 | 61 | 130 | |||
T1D | History of hypertension | |||||
No | 64 | 104 | 168 | 1.15 | 0.56 | |
Yes | 9 | 23 | 32 | |||
T2D | No | 119 | 111 | 230 | 1.19 | 0.27 |
Yes | 31 | 39 | 70 | |||
T1D & T2D | Glycemic control | |||||
Poor | 47 | 90 | 137 | 8.85 | 0.01 * | |
Moderate | 135 | 136 | 271 | |||
Good | 41 | 51 | 92 | |||
T1D | Glycemic control | |||||
Poor | 45 | 82 | 127 | 0.61 | 0.73 | |
Moderate | 23 | 34 | 57 | |||
Good | 5 | 11 | 16 | |||
T2D | Poor | 2 | 8 | 10 | 4.27 | 0.11 |
Moderate | 112 | 102 | 214 | |||
Good | 36 | 40 | 76 |
Complication Type | Type 1 Diabetes n = 127 Patients | Type 2 Diabetes n = 150 Patients | Total n = 277 | χ2, p-Value |
---|---|---|---|---|
Microvascular Complications | ||||
Retinopathy | 35 (27.6%) | 48 (32.0%) | 83 (30.0%) | |
Neuropathy | 32 (25.2%) | 59 (39.3%) | 91 (32.9%) | χ2 = 22.0 |
Nephropathy | 21 (16.5%) | 29 (19.3%) | 50 (18.1%) | p = 0.001 * |
Microvascular Complications | ||||
Ischemic heart disease | 13 (10.2%) | 5 (3.3%) | 18 (6.5%) | |
Stroke | 9 (7.1%) | 4 (2.7%) | 13 (4.7%) | |
Other Complications | ||||
Foot ulcer | 13 (10.2%) | 3 (2.0%) | 16 (5.8%) | |
Impotency | 4 (3.1%) | 2 (1.3%) | 6 (2.2%) | |
Total | 127 | 150 | 277 |
Predictor | Estimate | SE | Z | p | Odds Ratio (95% CI) |
---|---|---|---|---|---|
Intercept | 12.66 | 9.02 | 1.40 | 0.16 | 3.17 × 10−6 (6.61 × 10−14–151.824) |
Age | −0.03 | 0.017 | 2.00 | 0.04 * | 0.96 (0.93−0.99) |
Weight | −0.00 | 0.10 | 0.14 | 0.88 | 0.98 (0.97−1.02) |
BMI | 0.45 | 0.34 | 1.31 | 0.19 | 1.56 (0.79−3.07) |
HBA1c | 0.35 | 0.22 | 1.54 | 0.12 | 1.42 (0.90−2.23) |
Sex (Female–Male) | 0.08 | 0.27 | 0.30 | 0.75 | 1.09 (0.90−2.23) |
Residence (Rural–Urban) | −0.04 | 0.29 | 0.15 | 087 | 0.95 (0.36−1.30) |
Occupation (Employed–Unemployed) | −0.36 | 0.32 | 1.13 | 0.25 | 1.69 (0.72−2.50) |
Diabetes type (Type 2–Type 1) | −0.54 | 1.91 | 0.28 | 0.77 | 0.58 (0.01−24.72) |
Duration (6–10 years–Up to 5 years) | 0.28 | 0.34 | 0.81 | 0.41 | 1.32 (0.67-2.60) |
Duration (>10 years–Up to 5 years) | −0.02 | 0.62 | −0.03 | 0.97 | 0.98 (0.28−3.31) |
Treatment (Insulin plus OHG–Insulin) | −1.17 | 0.62 | −1.87 | 0.06 | 0.31 (0.09−1.05) |
Treatment (OHG–Insulin) | −0.36 | 1.18 | −0.30 | 0.75 | 0.69 (0.06−7.03) |
F/H Diabetes (Yes–No) | −0.31 | 0.28 | −1.12 | 0.26 | 0.72 (0.41−1.26) |
Hypertension (Yes–No) | 0.41 | 0.37 | 1.12 | 0.29 | 1.15 (0.73−3.12) |
Glycemic control (Moderate–poor) | −1.34 | 0.54 | −2.45 | 0.01 * | 0.26 (0.08−0.76) |
Glycemic control (Good–poor) | −0.41 | 0.70 | −0.58 | 0.56 | 0.66 (0.16−2.64) |
Model | Deviance | AIC | R2McF |
---|---|---|---|
1 | 314 | 348 | 0.0791 |
Analysis | Chi2 | p-Value | Interpretation |
---|---|---|---|
Alternative HbA1c categories (<7, 7–8.5, >8.5) | 5.48 | 0.0645 | Association remains significant |
Rural vs. Urban complications (T1D) | 1.93 | 0.1646 | No rural–urban difference in T1D |
Rural vs. Urban complications (T2D) | 4.86 | 0.0276 | Rural disadvantage persists in T2D * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, F.; AlMutyif, S.; Bandy, A.; Thirunavukkarasu, A.; Alzarea, E.; Alsurur, M.; Alomair, B. Diabetic Complication Profiles and Associated Risk Factors: A Comprehensive Analysis from Two Public Hospitals in the Najran Region, Southern Saudi Arabia. Medicina 2025, 61, 1871. https://doi.org/10.3390/medicina61101871
Wani F, AlMutyif S, Bandy A, Thirunavukkarasu A, Alzarea E, Alsurur M, Alomair B. Diabetic Complication Profiles and Associated Risk Factors: A Comprehensive Analysis from Two Public Hospitals in the Najran Region, Southern Saudi Arabia. Medicina. 2025; 61(10):1871. https://doi.org/10.3390/medicina61101871
Chicago/Turabian StyleWani, Farooq, Saeed AlMutyif, Altaf Bandy, Ashokkumar Thirunavukkarasu, Ekremah Alzarea, Muath Alsurur, and Basil Alomair. 2025. "Diabetic Complication Profiles and Associated Risk Factors: A Comprehensive Analysis from Two Public Hospitals in the Najran Region, Southern Saudi Arabia" Medicina 61, no. 10: 1871. https://doi.org/10.3390/medicina61101871
APA StyleWani, F., AlMutyif, S., Bandy, A., Thirunavukkarasu, A., Alzarea, E., Alsurur, M., & Alomair, B. (2025). Diabetic Complication Profiles and Associated Risk Factors: A Comprehensive Analysis from Two Public Hospitals in the Najran Region, Southern Saudi Arabia. Medicina, 61(10), 1871. https://doi.org/10.3390/medicina61101871