Antimicrobial Resistance and Causal Relationship: A Complex Approach Between Medicine and Dentistry
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
- Published in English or Italian;
- Addressed antimicrobial resistance in medicine, dentistry, or environmental microbiology;
2.2. Search Strategy and Study Selection
- Molecular and genetic determinants of AMR;
- Environmental and behavioral factors influencing resistance selection;
- Clinical and therapeutic implications in medical and dental settings.
- (a)
- Molecular and genetic determinants.
- (b)
- Environmental and behavioral factors.
- (c)
- Clinical and institutional implications in medicine and dentistry.
2.3. Methodological Limitations
3. Discussion
- 1.
- The Causal Relationship: Between Science, Perception, and Responsibility.
- Plastic as a safe material: long considered harmless and stable, it is now studied for its toxic effects, including potential endocrine and inflammatory impacts.
- The dogma of internal organ sterility: the discovery of the microbiome revealed stable microbial communities with regulatory functions, overturning the idea of sterile organs.
- The myth of absolute screening efficacy: tools such as mammography or PSA testing, initially perceived as guarantees of reduced mortality, have shown limitations related to overdiagnosis and overtreatment.
- The paradigm of immutable DNA: the deterministic view of the genotype has been replaced by epigenetics, which highlights the environment’s influence on gene expression.
- 2.
- The Epistemological Lesson: Complexity and Prudence.
- 3.
- Molecular and genetic determinants of AMR.
3.1. Bacterial Genetics and Molecular Mechanisms of Resistance
- Spontaneous Mutations
- Horizontal Gene Transfer (HGT)
- Conjugation: the direct transfer of extrachromosomal DNA, typically plasmids carrying antibiotic resistance genes, from one bacterium to another via a cytoplasmic bridge known as a sex pilus. A well-known example is the plasmid pOXA-48, which mediates carbapenem resistance in Enterobacteriaceae and can spread rapidly across different bacterial genera.
- Transformation: incorporation of free DNA present in the environment, frequently released by dead bacteria.
- Transduction: gene transfer mediated by bacteriophages, viruses capable of accidentally transporting genetic material from one bacterial host to another.
- Interaction with Environmental Pollution.
3.2. Biological Mechanisms of Resistance
- Production of Inactivating Enzymes.
- Modification of Molecular Targets.
- Reduced Permeability.
- Active Efflux.
- Biofilm Formation.
3.3. Clinical Prescriptive Practices
- Inappropriate Antibiotic Use.
- Pharmacological Interactions and Unintended Synergies.
3.4. The Environment as a Reservoir and Incubator of Resistance
3.5. Human Behavior and Social Dynamics
3.6. Healthcare System and Nosocomial Infections
3.7. Transmission Pathways of Antimicrobial Resistance
3.8. Clinical, Economic, and Social Impacts
3.9. Mechanistic Interplay Between Medicine and Dentistry
3.10. Integrative Prevention Strategies at the Medicine–Dentistry Interface
4. Bacterial Resistance: An Example of How a Complex Phenomenon Operates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
WHO | World Health Organization |
HGT | Horizontal Gene Transfer |
MDR | Multidrug Resistance |
PSA | Prostate-Specific Antigen |
ECDC | European Centre for Disease Prevention and Control |
ICU | Intensive Care Unit |
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 4 July 2025).
- World Health Organization. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 4 July 2025).
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 481–511. [Google Scholar] [CrossRef]
- Cambiotti, V.; Romagnoli, P.; Sorice, A.; Sechi, P.; Cenci-Goga, B. I meccanismi con cui i batteri resistono agli antimicrobici. Argomenti 2014, 7, 71–80. [Google Scholar]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- World Health Organization. One Health: Q&A Detail; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/news-room/q-a-detail/one-health (accessed on 4 July 2025).
- Auta, A.; Hadi, M.A.; Oga, E.; Abdu-Aguye, S.N.; Adeloye, D.; Strickland-Hodge, B.; Morgan, D.J. Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis. J. Infect. 2019, 78, 8–18. [Google Scholar] [CrossRef]
- Morgan, D.J.; Okeke, I.N.; Laxminarayan, R.; Perencevich, E.N.; Weisenberg, S. Non-prescription antimicrobial use worldwide: A systematic review. Lancet Infect. Dis. 2011, 11, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Orizio, G.; Merla, A.; Schulz, P.J.; Gelatti, U. Quality of online pharmacies and websites selling prescription drugs: A systematic review. J. Med. Internet. Res. 2011, 13, e74. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Antimicrobial Resistance Surveillance System: Manual for Early Implementation; WHO: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/handle/10665/188783 (accessed on 4 July 2025).
- Vidović Juras, D.; Škrinjar, I.; Križnik, T.; Andabak Rogulj, A.; Lončar Brzak, B.; Gabrić, D.; Granić, M.; Peroš, K.; Šutej, I.; Ivanišević, A. Antibiotic prophylaxis prior to dental procedures. Dent. J. 2024, 12, 364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, K. From prescription to protection: Combating antimicrobial resistance in dental practice. Evid. Based. Dent. 2024, 25, 171–172. [Google Scholar] [CrossRef]
- Luzzaro, F. Fluorochinoloni e Gram-negativi: Differenze di attività e nuove evidenze sui meccanismi di resistenza. Infez. Med. 2008, 16, 5–11. [Google Scholar]
- Burmeister, A.R. Horizontal gene transfer. Evol. Med. Public Health 2015, 2015, 193–194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J.V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-selection for antibiotic resistance by environmental contaminants. npj Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial enzymes and antibiotic resistance. Acta Naturae 2018, 10, 33–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 2014, 12, 35–48. [Google Scholar] [CrossRef]
- Li, W.; Atkinson, G.C.; Thakor, N.S.; Allas, U.; Lu, C.C.; Chan, K.Y.; Tenson, T.; Schulten, K.; Wilson, K.S.; Hauryliuk, V.; et al. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 2013, 4, 1477. [Google Scholar] [CrossRef]
- Nguyen Van, J.C.; Gutmann, L. Résistance aux antibiotiques par diminution de la perméabilité chez les bactéries à Gram négatif. Presse Med. 1994, 23, 522–531. (In French) [Google Scholar] [PubMed]
- Sekar, P.; Mamtora, D.; Bhalekar, P.; Krishnan, P. AcrAB-TolC efflux pump mediated resistance to carbapenems among clinical isolates of Enterobacteriaceae. J. Pure Appl. Microbiol. 2022, 16, 1982–1989. [Google Scholar] [CrossRef]
- Jang, S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: Toward understanding its operation mechanism. BMB Rep. 2023, 56, 326–334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abebe, G.M. The role of bacterial biofilm in antibiotic resistance and food contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.Y.; Prentice, E.L.; Webber, M.A. Mechanisms of antimicrobial resistance in biofilms. npj Antimicrob. Resist. 2024, 2, 27. [Google Scholar] [CrossRef]
- Colombo, A.P.V.; do Souto, R.M.; Araújo, L.L.; Hartenbach, F.A.R.R.; Magalhães, C.B.; da Silva Oliveira Alves, G.; Lourenço, T.G.B.; da Silva-Boghossian, C.M. Antimicrobial resistance and virulence of subgingival staphylococci isolated from periodontal health and diseases. Sci. Rep. 2023, 13, 11613. [Google Scholar] [CrossRef]
- Mainous, A.G., 3rd; Everett, C.J.; Post, R.E.; Diaz, V.A.; Hueston, W.J. Availability of antibiotics for purchase without a prescription on the internet. Ann Fam Med. 2019, 7, 431–435. [Google Scholar] [CrossRef]
- Sakeena, M.H.F.; Bennett, A.A.; McLachlan, A.J. Non-prescription sales of antimicrobial agents at community pharmacies in developing countries: A systematic review. Int. J. Antimicrob. Agents 2018, 52, 771–782. [Google Scholar] [CrossRef]
- Schnall, J.; Rajkhowa, A.; Ikuta, K.; Rao, P.; Moore, C.E. Surveillance and monitoring of antimicrobial resistance: Limitations and lessons from the GRAM project. BMC Med. 2019, 17, 176. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, J.H.; Kang, L.W.; Jeong, B.C.; Lee, S.H. Educational effectiveness, target, and content for prudent antibiotic use. Biomed Res. Int. 2015, 2015, 214021. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.P.; Chintu, C.; Mpundu, M.; Kibuule, D.; Hazemba, O.; Andualem, T.; Embrey, M.; Phulu, B.; Gerba, H. Multidisciplinary and multisectoral coalitions as catalysts for action against antimicrobial resistance: Implementation experiences at national and regional levels. Glob. Health Action 2018, 13, 1781–1795. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, P.; Stålsby Lundborg, C.; Tomson, G. Consumers and providers—Could they make better use of antibiotics? Int. J. Risk Saf. Med. 2005, 17, 117–125. [Google Scholar] [CrossRef]
- Neuvonen, P.J. Interactions with the absorption of tetracyclines. Drugs 1976, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.S. Enzyme induction and inhibition by new antiepileptic drugs: A review of human studies. Fundam. Clin. Pharmacol. 2000, 14, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Nova Manosalva, M.A.; López Gutiérrez, J.J.; Cañas, M. Drug information centers: An overview to the concept. Rev. Colomb. Cienc. Quím. Farm. 2016, 45, 243–255. [Google Scholar] [CrossRef]
- World Health Organization. Core Components for Infection Prevention and Control Programmes: Report of the Second Meeting Informal Network on Infection Prevention and Control in Health Care; WHO: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/handle/10665/69982 (accessed on 4 July 2025).
- Bellino, S.; Iacchini, S.; Monaco, M.; del Grosso, M.; Camilli, R.; Errico, G.; Patrizio, P.; Annalisa, P.; Monica, M. Il Sistema di Sorveglianza AR-ISS. EpiCentro ISS. 2020. Available online: https://www.epicentro.iss.it/antibiotico-resistenza/ar-iss/RIS-1_2021.pdf (accessed on 4 July 2025).
- Morgan, D.J.; Rogawski, E.; Thom, K.A.; Johnson, J.K.; Perencevich, E.N.; Shardell, M.; Leekha, S.; Harris, A.D. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit. Care Med. 2012, 40, 1045–1051. [Google Scholar] [CrossRef]
- Gelbíčová, T.; Brodíková, K.; Karpiskova, R. Livestock-associated methicillin-resistant Staphylococcus aureus in Czech retailed ready-to-eat meat products. Int. J. Food Microbiol. 2022, 374, 109727. [Google Scholar] [CrossRef] [PubMed]
- Blanco, N.; O’Hara, L.M.; Harris, A.D. Transmission pathways of multidrug-resistant organisms in the hospital setting: A scoping review. Infect. Control Hosp. Epidemiol. 2019, 40, 447–456. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Mauldin, P.D.; Salgado, C.D.; Hansen, I.S.; Durup, D.T.; Bosso, J.A. Attributable hospital cost and length of stay associated with health care–associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob. Agents Chemother. 2010, 54, 109–115. [Google Scholar] [CrossRef]
- World Health Organization. Adopt AWaRe: Handle Antibiotics with Care; WHO: Geneva, Switzerland, 2019; Available online: https://adoptaware.org/ (accessed on 4 July 2025).
Gene | Mechanism/Function | Target or Resistance Type | Associated Antibiotic Resistance | Bacterial Species (Examples) |
---|---|---|---|---|
merA | Mercuric reductase; detoxifies Hg2+ | Mercury resistance | β-lactams, macrolides (co-localized genes) | Streptococcus mitis, Pseudomonas aeruginosa |
czcA | Efflux pump for Cd2+, Zn2+, Co2+ | Heavy metal efflux | Tetracyclines, quinolones | Pseudomonas spp., Enterococcus faecalis |
arsB | Arsenite efflux transporter | Arsenic detoxification | Sulfonamides (co-selection) | Streptococcus oralis, Escherichia coli |
copA | Cu+-translocating ATPase | Copper resistance | Aminoglycosides | Enterococcus faecium, Actinomyces spp. |
Domain | Common Bacteria | Main Resistance Genes/Mechanisms | Clinical Impact | Preventive Strategies |
---|---|---|---|---|
Medicine | Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa | blaCTX-M, mecA, ndm-1, efflux pumps (AcrAB-TolC) | Hospital-acquired infections, treatment failure, prolonged hospital stay | Antimicrobial stewardship programs, infection-control policies, surveillance of hospital environments |
Dentistry | Porphyromonas gingivalis, Tannerella forsythia, Streptococcus mitis, Actinomyces spp. | ermB, tetM, mefA, β-lactamase production | Periodontal and endodontic infections, reduced prophylactic efficacy, oral–systemic dissemination | Evidence-based antibiotic prophylaxis, oral biofilm control, adherence to WHO/ECDC guidelines |
Shared Environment | Aquatic and soil microbiota; opportunistic human commensals | Integrons, transposons, conjugative plasmids, metal-resistance genes (merA, czcA) | Environmental dissemination, cross-sector transmission to humans and animals | Wastewater management, reduction of pharmaceutical residues, One Health-based monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caivano, G.; Sciarra, F.M.; Messina, P.; Cumbo, E.M.; Caradonna, L.; Di Vita, E.; Nigliaccio, S.; Fontana, D.A.; Scardina, A.; Scardina, G.A. Antimicrobial Resistance and Causal Relationship: A Complex Approach Between Medicine and Dentistry. Medicina 2025, 61, 1870. https://doi.org/10.3390/medicina61101870
Caivano G, Sciarra FM, Messina P, Cumbo EM, Caradonna L, Di Vita E, Nigliaccio S, Fontana DA, Scardina A, Scardina GA. Antimicrobial Resistance and Causal Relationship: A Complex Approach Between Medicine and Dentistry. Medicina. 2025; 61(10):1870. https://doi.org/10.3390/medicina61101870
Chicago/Turabian StyleCaivano, Giovanni, Fabio Massimo Sciarra, Pietro Messina, Enzo Maria Cumbo, Luigi Caradonna, Emanuele Di Vita, Salvatore Nigliaccio, Davide Alessio Fontana, Antonio Scardina, and Giuseppe Alessandro Scardina. 2025. "Antimicrobial Resistance and Causal Relationship: A Complex Approach Between Medicine and Dentistry" Medicina 61, no. 10: 1870. https://doi.org/10.3390/medicina61101870
APA StyleCaivano, G., Sciarra, F. M., Messina, P., Cumbo, E. M., Caradonna, L., Di Vita, E., Nigliaccio, S., Fontana, D. A., Scardina, A., & Scardina, G. A. (2025). Antimicrobial Resistance and Causal Relationship: A Complex Approach Between Medicine and Dentistry. Medicina, 61(10), 1870. https://doi.org/10.3390/medicina61101870