Can Nutritional Screening Tools Predict the Prognosis of Critically Ill Patients with Sepsis?
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Assessment and Data Collection Instruments
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- Baek, M.S.; Kwon, Y.S.; Kang, S.S.; Shim, D.; Yoon, Y.; Kim, J.H. Association of malnutrition status with 30-day mortality in patients with sepsis using objective nutritional indices: A multicenter retrospective study in South Korea. Acute Crit. Care 2024, 39, 127–137. [Google Scholar] [CrossRef]
- Shao, Y.; Lai, Q.C.; Duan, Q.; Ge, P.; Ye, L. Nutritional indices at admission are associated with mortality rates of patients in the intensive care unit. Eur. J. Clin. Nutr. 2022, 76, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enteral Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- La Via, L.; Sangiorgio, G.; Stefani, S.; Marino, A.; Nunnari, G.; Cocuzza, S.; La Mantia, I.; Cacopardo, B.; Stracquadanio, S.; Spampinato, S.; et al. The Global Burden of Sepsis and Septic Shock. Epidemiologia 2024, 5, 456–478. [Google Scholar] [CrossRef]
- Hung, K.Y.; Chen, Y.M.; Wang, C.C.; Wang, Y.H.; Lin, C.Y.; Chang, Y.T.; Huang, K.T.; Lin, M.C.; Fang, W.F. Insufficient Nutrition and Mortality Risk in Septic Patients Admitted to ICU with a Focus on Immune Dysfunction. Nutrients 2019, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, Y.; Li, Z.; Tang, Q.; Qiu, R.; Cai, S.; Xu, X.; Peng, J.; Xie, H. Association Between Nutritional Risk Screening Score and Prognosis of Patients with Sepsis. Infect. Drug Resist. 2021, 14, 3817–3825. [Google Scholar] [CrossRef]
- Wełna, M.; Adamik, B.; Kübler, A.; Goździk, W. The NUTRIC Score as a Tool to Predict Mortality and Increased Resource Utilization in Intensive Care Patients with Sepsis. Nutrients 2023, 15, 1648. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhou, C.; Kong, W.; Zhang, Y.; Pan, D. Prognostic nutrition index is associated with the all-cause mortality in sepsis patients: A retrospective cohort study. J. Clin. Lab. Anal. 2022, 36, e24297. [Google Scholar] [CrossRef]
- Li, L.; Lu, X.; Qin, S.; Huang, D. Association between geriatric nutritional risk index and 28 days mortality in elderly patients with sepsis: A retrospective cohort study. Front. Med. 2023, 10, 1258037. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Miano, N.; Di Marco, M.; Alaimo, S.; Coppolino, G.; L’Episcopo, G.; Leggio, S.; Scicali, R.; Piro, S.; Purrello, F.; Di Pino, A. Controlling Nutritional Status (CONUT) Score as a Potential Prognostic Indicator of In-Hospital Mortality, Sepsis and Length of Stay in an Internal Medicine Department. Nutrients 2023, 15, 1554. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Jiang, X.; Day, A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care 2011, 15, R268. [Google Scholar] [CrossRef]
- Hai, P.D.; Viet Hoa, L.T. The Prognostic Accuracy Evaluation of mNUTRIC, APACHE II, SOFA, and SAPS 2 Scores for Mortality Prediction in Patients with Sepsis. Crit. Care Res. Pract. 2022, 13, 4666594. [Google Scholar] [CrossRef]
- Fathi, M.; Markazi-Moghaddam, N.; Ramezankhani, A. A systematic review on risk factors associated with sepsis in patients admitted to intensive care units. Aust. Crit. Care 2019, 32, 155–164. [Google Scholar] [CrossRef]
- Ibarz, M.; Haas, L.E.M.; Ceccato, A.; Artigas, A. The critically ill older patient with sepsis: A narrative review. Ann. Intensive Care 2024, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Gordon, A.C.; Williams, M.D.; Boyd, J.H.; Walley, K.R.; Kissoon, N. Vasopressor Therapy in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2021, 2, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Kyo, D.; Tokuoka, S.; Katano, S.; Hisamune, R.; Yoshimoto, H.; Murao, S.; Umemura, Y.; Takasu, A.; Yamakawa, K. Comparison of Nutrition Indices for Prognostic Utility in Patients with Sepsis: A Real-World Observational Study. Diagnostics 2023, 13, 1302. [Google Scholar] [CrossRef] [PubMed]
- Toscano, A.; Bellone, F.; Maggio, N.; Cinquegrani, M.; Spadaro, F.; Bueti, F.M.; Lorello, G.; Marini, H.R.; Lo Gullo, A.; Basile, G.; et al. Unlocking the Predictive Power of Nutritional Scores in Septic Patients. Nutrients 2025, 17, 545. [Google Scholar] [CrossRef] [PubMed]
- Domenech-Briz, V.; Gea-Caballero, V.; Czapla, M.; Chover-Sierra, E.; Juárez-Vela, R.; Santolalla Arnedo, I.; Villanueva-Blasco, V.J.; Sánchez-González, J.L.; Martínez-Sabater, A. Importance of nutritional assessment tools in the critically ill patient: A systematic review. Front. Nutr. 2023, 30, 1073782. [Google Scholar] [CrossRef]
- Prakash, J.; Verma, S.; Shrivastava, P.; Saran, K.; Kumari, A.; Raj, K.; Kumar, A.; Ray, H.N.; Bhattacharya, P.K. Modified NUTRIC Score as a Predictor of All-cause Mortality in Critically Ill Patients: A Systematic Review and Meta-analysis. Indian J. Crit. Care Med. 2024, 28, 495–503. [Google Scholar] [CrossRef]
- Moghaddam, O.M.; Emam, M.H.; Irandoost, P.; Hejazi, M.; Iraji, Z.; Yazdanpanah, L.; Mirhosseini, S.F.; Mollajan, A.; Lahiji, M.N. Relation between nutritional status on clinical outcomes of critically ill patients: Emphasizing nutritional screening tools in a prospective cohort investigation. BMC Nutr. 2024, 10, 69. [Google Scholar] [CrossRef]
- Cai, K.; Mao, W.; Yang, M.; Chen, C.; Gong, S.; Zheng, L.; Zhao, C. Impact of the Geriatric Nutritional Risk Index on short-term prognosis of patients with sepsis-related acute kidney injury: Analysis using the MIMIC-IV database. BMC Nephrol. 2025, 26, 205. [Google Scholar] [CrossRef]
- Jin, Y.; Zhou, T.; Hou, C.; Zhang, H.; Xu, B. Relationship between the geriatric nutritional risk index and sepsis in elderly critically ill patients: A retrospective cohort study. Eur. J. Med. Res. 2025, 30, 130. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qi, M.; Dong, G.; Li, X.; Xu, Z.; Wei, Y.; Feng, Y.; Ren, C.; Wang, Y.; Yang, J. Clinical Value of Prognostic Nutritional Index in Prediction of the Presence and Severity of Neonatal Sepsis. J. Inflamm. Res. 2021, 14, 7181–7190. [Google Scholar] [CrossRef]
- Shimoyama, Y.; Umegaki, O.; Kadono, N.; Minami, T. Presepsin values and prognostic nutritional index predict mortality in intensive care unit patients with sepsis: A pilot study. BMC Res. Notes 2021, 14, 245. [Google Scholar] [CrossRef]
- Collins, K.; Huen, S.C. Metabolism and Nutrition in Sepsis: In Need of a Paradigm Shift. Nephron 2023, 147, 733–736. [Google Scholar] [CrossRef]
- Gabrielli, M.; Zaccaria, R.; Impagnatiello, M.; Zileri Dal Verme, L.; Gasbarrini, A. Nutritional Strategies for the Treatment and Prevention of Sepsis Outside the Intensive Care Unit. Nutrients 2024, 16, 3985. [Google Scholar] [CrossRef] [PubMed]
- Kosałka, K.; Wachowska, E.; Słotwiński, R. Disorders of nutritional status in sepsis—Facts and myths. Prz. Gastroenterol. 2017, 12, 73–82. [Google Scholar] [CrossRef] [PubMed]
Survivors (n = 97) | Non-Survivors (n = 29) | p | ||
---|---|---|---|---|
Sex | Female | 50 (51.5%) | 17 (58.6%) | 0.647 a |
Male | 47 (48.5%) | 12 (41.4%) | ||
Age (year) | 74.9 ± 13.5 | 66.5 ± 18.8 | 0.008 b | |
BMI (kg/m2) | 26.3 ± 5.8 | 25.5 ± 5.1 | 0.526 b | |
APACHE II Score | 26.3 ± 7.6 | 34.0 ± 7.1 | <0.001 b | |
SOFA Score | 8.0 ± 2.8 | 10.1 ± 2.8 | 0.001 b | |
CCI | 7.5 ± 2.4 | 8.0 ± 2.7 | 0.387 b | |
Vasopressor therapy | No | 44 (45.4%) | 3 (10.3%) | 0.001 a |
Yes | 53 (54.6%) | 26 (89.7%) | ||
Length of ICU stay (day) | 23.7 ± 18.2 | 32.9 ± 32.5 | 0.154 b | |
Length of hospital stay (day) | 35.4 ± 27.3 | 36.7 ± 33.2 | 0.844 b |
Survivors (n = 97) | Non-Survivors (n = 29) | p b | ||
---|---|---|---|---|
Albumin (g/dL) | Day-0 | 31.0 ± 5.7 | 29.2 ± 6.1 | 0.138 |
Day-5 | 28.1 ± 3.7 | 25.8 ± 3.0 | 0.002 | |
p c | <0.001 | <0.001 | ||
ΔDay 0–5 | −2.9 ± 4.4 | −3.4 ± 4.8 | 0.557 | |
Prealbumin (g/dL) | Day-0 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.104 |
Day-5 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.551 | |
p c | 0.353 | 0.325 | ||
ΔDay 0–5 | 0.0 ± 0.2 | 0.0 ± 0.2 | 0.709 | |
TC (mg/dL) | Day-0 | 128.2 ± 46.8 | 123.9 ± 43.9 | 0.661 |
Day-5 | 116.5 ± 45.0 | 91.5 ± 41.7 | 0.009 | |
p c | 0.009 | <0.001 | ||
ΔDay 0–5 | −11.7 ± 43.0 | −32.4 ± 40.2 | 0.023 | |
Triglyceride (mg/dL) | Day-0 | 138.7 ± 104.0 | 134.9 ± 70.6 | 0.851 |
Day-5 | 134.8 ± 82.4 | 137.9 ± 73.8 | 0.853 | |
p c | 0.550 | 0.781 | ||
ΔDay 0–5 | −4.0 ± 65.0 | 3.1 ± 59.2 | 0.602 | |
CRP (mg/L) | Day-0 | 137.5 ± 109.1 | 155.1 ± 163.2 | 0.502 |
Day-5 | 85.2 ± 73.4 | 138.3 ± 110.3 | 0.020 | |
p c | <0.001 | 0.569 | ||
ΔDay 0–5 | −52.3 ± 101.6 | −16.8 ± 156.5 | 0.151 | |
PCT (μg/dL) | Day-0 | 13.9 ± 30.4 | 9.7 ± 15.6 | 0.478 |
Day-5 | 3.9 ± 10.1 | 7.6 ± 16.4 | 0.148 | |
p c | <0.001 | 0.286 | ||
ΔDay 0–5 | −10.0 ± 28.4 | −2.1 ± 10.7 | 0.027 | |
IL-6 (pg/mL) | Day-0 | 172.3 ± 389.3 | 690.4 ± 1466.4 | 0.070 |
Day-5 | 74.3 ± 111.5 | 695.1 ± 1510.7 | 0.035 | |
p c | 0.009 | 0.979 | ||
ΔDay 0–5 | −98.0 ± 364.3 | 4.8 ± 962.1 | 0.577 | |
Hemoglobin (g/dL) | Day-0 | 11.0 ± 2.0 | 9.6 ± 1.7 | 0.001 |
Day-5 | 10.1 ± 1.8 | 9.0 ± 1.0 | <0.001 | |
p c | <0.001 | 0.027 | ||
ΔDay 0–5 | −0.8 ± 1.4 | −0.6 ± 1.5 | 0.561 | |
Leucocyte (×109/L) | Day-0 | 14.1 ± 8.4 | 12.9 ± 8.3 | 0.488 |
Day-5 | 10.9 ± 6.2 | 11.8 ± 9.5 | 0.649 | |
p c | <0.001 | 0.391 | ||
ΔDay 0–5 | −3.2 ± 7.5 | −1.1 ± 7.1 | 0.186 | |
NLR | Day-0 | 18.4 ± 16.0 | 15.4 ± 12.1 | 0.359 |
Day-5 | 11.9 ± 13.0 | 14.0 ± 12.6 | 0.452 | |
p c | <0.001 | 0.625 | ||
ΔDay 0–5 | −6.4 ± 17.1 | −1.4 ± 15.5 | 0.160 |
Survivors (n = 97) | Non-Survivors (n = 29) | p d | ||
---|---|---|---|---|
NRS-2002 | Day-0 | 4.0 (1.0–6.0) | 4.0 (3.0–6.0) | 0.888 |
Day-5 | 4.0 (3.0–6.0) | 4.0 (3.0–6.0) | 0.419 | |
p e | 0.441 | 0.264 | ||
ΔDay 0–5 | 0.0 (−1.0–2.0) | 0.0 (−1.0–2.0) | 0.508 | |
NUTRIC | Day-0 | 6.0 (1.0–10.0) | 7.0 (4.0–11.0) | 0.006 |
Day-5 | 5.0 (2.0–9.0) | 7.00 (4.0–10.0) | <0.001 | |
p e | <0.001 | 0.730 | ||
ΔDay 0–5 | −1.0 (−7.0–2.0) | 0.0 (−2.0–3.0) | 0.018 | |
CONUT | Day-0 | 6.0 (1.0–12.0) | 7.0 (0.0–12.0) | 0.067 |
Day-5 | 7.0 (1.0–12.0) | 9.0 (3.0–12.0) | 0.001 | |
p e | <0.001 | <0.001 | ||
ΔDay 0–5 | 1.0 (−4.0–6.0) | 1.0 (−2.0–6.0) | 0.202 | |
PNI | Day-0 | 37.0 (20.0–53.0) | 32.0 (20.0–46.0) | 0.040 |
Day-5 | 34.0 (22.0–43.0) | 30.0 (21.0–52.0) | <0.001 | |
p e | <0.001 | 0.011 | ||
ΔDay 0–5 | −3.0 (−17.0–8.0) | −3.0 (−14.0–12.0) | 0.843 | |
GNRI | Day-0 | 93.0 (56.0–130.0) | 89.0 (64.0–115.0) | 0.129 |
Day-5 | 90.0 (33.0–140.0) | 83.5 (70.0–116.0) | 0.126 | |
p e | <0.001 | 0.094 | ||
ΔDay 0–5 | −4.0 (−63.0–15.0) | −2.5 (−22.0–18.0) | 0.818 |
Univariate Logistic Regression | Multivariate Logistic Regression | |||||
---|---|---|---|---|---|---|
Odds | 95% CI | p | Odds | 95% CI | p | |
Age | 0.97 | 0.94–0.99 | 0.013 | 0.97 | 0.94–1.00 | 0.034 |
APACHE II Score | 1.15 | 1.08–1.23 | <0.001 | 1.12 | 1.04–1.20 | 0.001 |
SOFA Score | 1.27 | 1.10–1.48 | 0.002 | -- | -- | -- |
Vasopressor therapy | 7.19 | 2.04–25.37 | 0.002 | 4.26 | 1.10–16.41 | 0.035 |
NRS-2002 Day-0 | 1.05 | 0.61–1.81 | 0.846 | -- | -- | -- |
NRS-2002 Day-5 | 1.23 | 0.69–2.21 | 0.485 | -- | -- | -- |
NUTRIC Day-0 | 1.43 | 1.11–1.85 | 0.006 | -- | -- | -- |
NUTRIC Day-5 | 2.00 | 1.46–2.74 | <0.001 | 2.54 | 1.46–4.43 | 0.001 |
CONUT Day-0 | 1.18 | 1.00–1.38 | 0.051 | -- | -- | -- |
CONUT Day-5 | 1.41 | 1.14–1.74 | 0.001 | -- | -- | -- |
PNI Day-0 | 0.92 | 0.86–0.99 | 0.024 | -- | -- | -- |
PNI Day-5 | 0.87 | 0.79–0.96 | 0.005 | -- | -- | -- |
GNRI Day-0 | 0.97 | 0.94–1.01 | 0.121 | -- | -- | -- |
GNRI Day-5 | 0.98 | 0.95–1.01 | 0.225 | -- | -- | -- |
AUC | %95 CI | Cut Off | Sensitivity | Specificity | Youden Index | +PV | −PV | p | |
---|---|---|---|---|---|---|---|---|---|
Age | 0.640 | 0.549–0.723 | ≤73 | 62.1 | 62.9 | 0.250 | 33.3 | 84.7 | 0.016 |
APACHE II Score | 0.773 | 0.690–0.843 | >31 | 65.5 | 77.3 | 0.428 | 46.3 | 88.2 | <0.001 |
SOFA Score | 0.704 | 0.616–0.782 | >6 | 96.6 | 35.1 | 0.316 | 30.8 | 97.1 | <0.001 |
NUTRIC Day-0 | 0.664 | 0.575–0.746 | >6 | 65.5 | 63.9 | 0.294 | 35.2 | 86.1 | 0.005 |
NUTRIC Day-5 | 0.769 | 0.686–0.840 | >6 | 65.5 | 78.4 | 0.439 | 47.5 | 88.4 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calili, D.K.; Bolukbasi, D.; Izdes, S. Can Nutritional Screening Tools Predict the Prognosis of Critically Ill Patients with Sepsis? Medicina 2025, 61, 1846. https://doi.org/10.3390/medicina61101846
Calili DK, Bolukbasi D, Izdes S. Can Nutritional Screening Tools Predict the Prognosis of Critically Ill Patients with Sepsis? Medicina. 2025; 61(10):1846. https://doi.org/10.3390/medicina61101846
Chicago/Turabian StyleCalili, Duygu Kayar, Demet Bolukbasi, and Seval Izdes. 2025. "Can Nutritional Screening Tools Predict the Prognosis of Critically Ill Patients with Sepsis?" Medicina 61, no. 10: 1846. https://doi.org/10.3390/medicina61101846
APA StyleCalili, D. K., Bolukbasi, D., & Izdes, S. (2025). Can Nutritional Screening Tools Predict the Prognosis of Critically Ill Patients with Sepsis? Medicina, 61(10), 1846. https://doi.org/10.3390/medicina61101846