Effects of Thymoquinone on Cell Proliferation, Oxidative Damage, and Toll-like Signaling Pathway Genes in H1650 Lung Adenocarcinoma Cell Line
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Viability Assay
2.2.1. Total Antioxidant Status and Total Oxidant Status Assay
2.2.2. Oxidative Stress Index Assay
2.2.3. 8-Hydroxy-2′-Deoxyguanosine Assay
2.2.4. Caspase-3 Assay
2.2.5. Total RNA Isolation, cDNA Synthesis, and RT-PCR Analysis
2.3. Statistical Analysis
3. Results
3.1. MTT Analysis
3.2. Total Antioxidant Status (TAS), Total Oxidant Status (TOS), and Oxidative Stress Index (OSI) Analysis
3.3. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) Analysis
3.4. Caspase-3 Analysis
3.5. Real Time-PCR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSCLC | Non-small cell lung cancer |
TQ | Thymoquinone |
TLR | Toll-like receptor |
EGFR | Epidermal growth factor receptor |
TAS | Total antioxidant status |
TOS | Total oxidant status |
OSI | Oxidative stress index |
8-OHdG | Human 8-Hydroxy-2 Deoxyguanosine |
RT-PCR | Real-time PCR |
ROS | Reactive oxygen species |
OS | Oxidative stress |
iNOS | Inducible nitric oxide synthase |
COX-2 | Cyclooxygenase-2 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Remon, J.; Soria, J.C.; Peters, S.; ESMO Guidelines Committee. Early and Locally Advanced Non-Small-Cell Lung Cancer: An Update of the ESMO Clinical Practice Guidelines Focusing on Diagnosis, Staging, Systemic and Local Therapy. Ann. Oncol. 2021, 32, 1637–1642. [Google Scholar] [CrossRef]
- Daly, M.E.; Singh, N.; Ismaila, N.; the Management of Stage III NSCLC Guideline Expert Panel. Management of Stage III Non-Small Cell Lung Cancer: ASCO Guideline Rapid Recommendation Update. J. Clin. Oncol. 2024, 42, 3058–3060. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Jiang, Y.; Fu, W.; Liu, X.; Zhong, R.; Cheng, B.; Zhu, F.; Xiang, Y.; He, J.; et al. Advances in Lung Cancer Screening and Early Detection. Cancer Biol. Med. 2022, 19, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Tarawneh, T.S.; Mack, E.K.M.; Faoro, C.; Neubauer, A.; Middeke, M.; Kirschbaum, A.; Holland, A. Diagnostic and Therapeutic Delays in Lung Cancer during the COVID-19 Pandemic: A Single Center Experience at a German Cancer Center. BMC Pulm. Med. 2024, 24, 320. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, G.; Choi, A.; Kim, S.; Yum, J.S.; Chun, E.; Shin, H. Comparative Network-Based Analysis of Toll-like Receptor Agonist, L-Pampo Signaling Pathways in Immune and Cancer Cells. Sci. Rep. 2024, 14, 17173. [Google Scholar] [CrossRef] [PubMed]
- Hoden, B.; DeRubeis, D.; Martinez-Moczygemba, M.; Ramos, K.S.; Zhang, D. Understanding the Role of Toll-like Receptors in Lung Cancer Immunity and Immunotherapy. Front. Immunol. 2022, 13, 1033483. [Google Scholar] [CrossRef]
- Belmont, L.; Rabbe, N.; Antoine, M.; Cathelin, D.; Guignabert, C.; Kurie, J.; Cadranel, J.; Wislez, M. Expression of TLR9 in Tumor-Infiltrating Mononuclear Cells Enhances Angiogenesis and Is Associated with a Worse Survival in Lung Cancer. Int. J. Cancer 2014, 134, 765–777. [Google Scholar] [CrossRef]
- Perros, F.; Lambrecht, B.N.; Hammad, H. TLR4 Signalling in Pulmonary Stromal Cells Is Critical for Inflammation and Immunity in the Airways. Respir. Res. 2011, 12, 125. [Google Scholar] [CrossRef]
- Green, H.E.; Nieva, J. Clinical Management of Immune-Related Adverse Events Following Immunotherapy Treatment in Patients with Non-Small Cell Lung Cancer. J. Investig. Med. 2021, 69, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Hines, J.B.; Bowar, B.; Levine, E.; Esposito, A.; Garassino, M.C.; Bestvina, C.M. Targeted Toxicities: Protocols for Monitoring the Adverse Events of Targeted Therapies Used in the Treatment of Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2023, 24, 9429. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, A.H.; Fan, H.J.; He, A.B.; Cao, D.D.; Hu, W.; Xu, H.L. The Incidences of Adverse Events in Small-Cell Lung Cancer Patients after Radiotherapy and Immunotherapy Treatment: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3062–3073. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.; Liu, H.; Chen, J. Advances in Immune Neoadjuvant/Adjuvant Therapy-Related Adverse Events of Non-Small Cell Lung Cancer. Asia Pac. J. Clin. Oncol. 2022, 18, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Karimian, A.; Majidinia, M.; Moliani, A.; Alemi, F.; Asemi, Z.; Yousefi, B.; Fazlollahpour Naghibi, A. The Modulatory Effects of Two Bioflavonoids, Quercetin and Thymoquinone on the Expression Levels of DNA Damage and Repair Genes in Human Breast, Lung and Prostate Cancer Cell Lines. Pathol. Res. Pract. 2022, 240, 154143. [Google Scholar] [CrossRef] [PubMed]
- Sukprasansap, M.; Chanvorachote, P. Evidence of Potential Plant-Derived Compounds with Anticancer Effects on Lung Cancer: Clinical and Molecular Pharmacology Approaches. Anticancer. Res. 2022, 42, 4247–4258. [Google Scholar] [CrossRef]
- Virchea, L.I.; Frum, A.; Georgescu, C.; Pecsenye, B.; Mathe, E.; Mironescu, M.; Craciunas, M.T.; Totan, M.; Tanasescu, C.; Gligor, F.G. An Overview of the Bioactivity of Spontaneous Medicinal Plants Suitable for the Improvement of Lung Cancer Therapies. Pharmaceutics 2025, 17, 336. [Google Scholar] [CrossRef]
- Jeon, H.; Wang, S.; Song, J.; Gill, H.; Cheng, H. Update 2025: Management of Non-Small-Cell Lung Cancer. Lung 2025, 203, 53. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin Mediates Anticancer Effects by Modulating Multiple Cell Signaling Pathways. Clin. Sci. 2017, 131, 1781–1799. [Google Scholar] [CrossRef]
- Molassiotis, A.; Fernandez-Ortega, P.; Pud, D.; Ozden, G.; Scott, J.A.; Panteli, V.; Margulies, A.; Browall, M.; Magri, M.; Selvekerova, S.; et al. Use of Complementary and Alternative Medicine in Cancer Patients: A European Survey. Ann. Oncol. 2005, 16, 655–663. [Google Scholar] [CrossRef]
- Shukla, Y.; Singh, R. Resveratrol and Cellular Mechanisms of Cancer Prevention. Ann. N. Y. Acad. Sci. 2011, 1215, 1–8. [Google Scholar] [CrossRef]
- Yang, J.; Kuang, X.R.; Lv, P.T.; Yan, X.X. Thymoquinone Inhibits Proliferation and Invasion of Human Nonsmall-Cell Lung Cancer Cells via ERK Pathway. Tumour Biol. 2015, 36, 259–269. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, L.; Li, S.; Hou, X.; Yang, J. Advances in Research on the Relationship between Thymoquinone and Pancreatic Cancer. Front. Oncol. 2022, 12, 1092020. [Google Scholar] [CrossRef]
- Yenigun, V.B.; Acar, H.; Kanimdan, E.; Yenigun, A.; Kocyigit, A.; Cora, T. KRAS Mutation Reduces Thymoquinone Anticancer Effects on Viability of Cells and Apoptosis. Anticancer. Agents Med. Chem. 2023, 23, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Huang, H.Y.; Lin, Z.; Ranieri, M.; Li, S.; Sahu, S.; Liu, Y.; Ban, Y.; Guidry, K.; Hu, H.; et al. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res. 2023, 83, 4095–4111. [Google Scholar] [CrossRef] [PubMed]
- Elgohary, S.; Elkhodiry, A.A.; Amin, N.S.; Stein, U.; El Tayebi, H.M. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021, 10, 302. [Google Scholar] [CrossRef]
- Sos, M.L.; Koker, M.; Weir, B.A.; Heynck, S.; Rabinovsky, R.; Zander, T.; Seeger, J.M.; Weiss, J.; Fischer, F.; Frommolt, P.; et al. PTEN Loss Contributes to Erlotinib Resistance in EGFR-Mutant Lung Cancer by Activation of Akt and EGFR. Cancer Res. 2009, 69, 3256–3261. [Google Scholar] [CrossRef]
- Sui, X.; Han, X.; Chen, P.; Wu, Q.; Feng, J.; Duan, T.; Chen, X.; Pan, T.; Yan, L.; Jin, T.; et al. Baicalin Induces Apoptosis and Suppresses the Cell Cycle Progression of Lung Cancer Cells Through Downregulating Akt/MTOR Signaling Pathway. Front. Mol. Biosci. 2021, 7, 602282. [Google Scholar] [CrossRef]
- Acar, A.; Cevik, M.U.; Evliyaoglu, O.; Uzar, E.; Tamam, Y.; Arikanoglu, A.; Yucel, Y.; Varol, S.; Onder, H.; Tasdemir, N. Evaluation of Serum Oxidant/Antioxidant Balance in Multiple Sclerosis. Acta Neurol. Belg. 2012, 112, 275–280. [Google Scholar] [CrossRef]
- Gulbay, G.; Secme, M.; Mutlu, D. Fusaric Acid Inhibits Cell Proliferation and Downregulates Expressions of Toll-like Receptors Pathway Genes in Ishikawa Endometrial Cancer Cells. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7431–7436. [Google Scholar] [CrossRef]
- Khan, M.; Lam, S.K.; Yan, S.; Feng, Y.; Chen, C.; Ko, F.C.; Ho, J.C. The Anti-Neoplastic Impact of Thymoquinone from Nigella Sativa on Small Cell Lung Cancer: In Vitro and in Vivo Investigations. J. Cancer Res. Ther. 2024, 20, 1224–1231. [Google Scholar] [CrossRef]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Thymoquinone-Induced Antitumor and Apoptosis in Human Lung Adenocarcinoma Cells. J. Cell Physiol. 2019, 234, 10421–10431. [Google Scholar] [CrossRef]
- Gurbilek, M.; Deniz, C.D.; Eroglu Gunes, C.; Kurar, E.; Reisli, I.; Kursunel, M.A.; Topcu, C.; Koc, M. Anticancer Activity of Thymoquinone in Non-Small Cell Lung Cancer and Possible Involvement of PPAR-Gamma Pathway. Int. J. Radiat. Biol. 2025, 101, 370–381. [Google Scholar] [CrossRef]
- Osorio-Perez, S.M.; Estrada-Meza, C.; Ruiz-Manriquez, L.M.; Arvizu-Espinosa, M.G.; Srivastava, A.; Sharma, A.; Paul, S. Thymoquinone Potentially Modulates the Expression of Key Onco- and Tumor Suppressor MiRNAs in Prostate and Colon Cancer Cell Lines: Insights from PC3 and HCT-15 Cells. Genes 2023, 14, 1730. [Google Scholar] [CrossRef]
- Seçme, M.; Aybek, S.D.; Gülbay, G.; Dodurga, Y. The Effect of Thymoquinone on Cell Proliferation, 8-Hydroxy-2′-Deoxyguanosine Level and Expression Changes of DNA Repair and Oxidative Stress-Related Genes in MCF-7 Breast Cancer Cells. Pamukkale Med. J. 2025, 18, 304–312. [Google Scholar] [CrossRef]
- He, P.; He, Y.; Ma, J.; Liu, Y.; Liu, C.; Baoping, Y.; Dong, W. Thymoquinone Induces Apoptosis and Protective Autophagy in Gastric Cancer Cells by Inhibiting the PI3K/Akt/MTOR Pathway. Phytother. Res. 2023, 37, 3467–3480. [Google Scholar] [CrossRef]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Walser, T.C.; Dubinett, S.M. Chronic Inflammation, Chronic Obstructive Pulmonary Disease, and Lung Cancer. Curr. Opin. Pulm. Med. 2009, 15, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Younus, H. Thymoquinone Shows the Diverse Therapeutic Actions by Modulating Multiple Cell Signaling Pathways: Single Drug for Multiple Targets. Curr. Pharm. Biotechnol. 2018, 19, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Kundu, J.; Chun, K.S.; Aruoma, O.I.; Kundu, J.K. Mechanistic Perspectives on Cancer Chemoprevention/Chemotherapeutic Effects of Thymoquinone. Mutat. Res. 2014, 768, 22–34. [Google Scholar] [CrossRef]
- Shakeel, I.; Haider, S.; Khan, S.; Ahmed, S.; Hussain, A.; Alajmi, M.F.; Chakrabarty, A.; Afzal, M.; Imtaiyaz Hassan, M. Thymoquinone, Artemisinin, and Thymol Attenuate Proliferation of Lung Cancer Cells as Sphingosine Kinase 1 Inhibitors. Biomed. Pharmacother. 2024, 177, 117123. [Google Scholar] [CrossRef]
- El-Far, A.H.; Godugu, K.; Noreldin, A.E.; Saddiq, A.A.; Almaghrabi, O.A.; Al Jaouni, S.K.; Mousa, S.A. Thymoquinone and Costunolide Induce Apoptosis of Both Proliferative and Doxorubicin-Induced-Senescent Colon and Breast Cancer Cells. Integr. Cancer Ther. 2021, 20, 15347354211035450. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase-3 Regulates the Migration, Invasion and Metastasis of Colon Cancer Cells. Int. J. Cancer 2018, 143, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Mohammad, T.; Padder, R.A.; Hassan, M.I.; Husain, M. Thymoquinone and Quercetin Induce Enhanced Apoptosis in Non-Small Cell Lung Cancer in Combination through the Bax/Bcl2 Cascade. J. Cell Biochem. 2022, 123, 259–274. [Google Scholar] [CrossRef]
- Zhu, N.; Zhao, X.; Xiang, Y.; Ye, S.; Huang, J.; Hu, W.; Lv, L.; Zeng, C. Thymoquinone Attenuates Monocrotaline-Induced Pulmonary Artery Hypertension via Inhibiting Pulmonary Arterial Remodeling in Rats. Int. J. Cardiol. 2016, 221, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Dera, A.A.; Rajagopalan, P.; Al Fayi, M.; Ahmed, I.; Chandramoorthy, H.C. Indirubin-3-Monoxime and Thymoquinone Exhibit Synergistic Efficacy as Therapeutic Combination in in-Vitro and in-Vivo Models of Lung Cancer. Arch. Pharm. Res. 2020, 43, 655–665. [Google Scholar] [CrossRef]
- Rivera-Cruz, C.M.; Figueiredo, M.L. Evaluation of Human Adipose-Derived Mesenchymal Stromal Cell Toll-like Receptor Priming and Effects on Interaction with Prostate Cancer Cells. Cytotherapy 2023, 25, 33–45. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, B.; Xu, M.; Qiu, Z.; Tao, Y.; Zhang, Y.; Wang, J.; Xu, Y.; Zhou, Y.; Yang, J.; et al. Gene Silencing of Toll-like Receptor 2 Inhibits Proliferation of Human Liver Cancer Cells and Secretion of Inflammatory Cytokines. PLoS ONE 2012, 7, e38890. [Google Scholar] [CrossRef]
- Ouyang, B.; Pan, N.; Zhang, H.; Xing, C.; Ji, W. MiR-146b-5p Inhibits Tumorigenesis and Metastasis of Gallbladder Cancer by Targeting Toll-like Receptor 4 via the Nuclear Factor-kappaB Pathway. Oncol. Rep. 2021, 45, 15. [Google Scholar] [CrossRef]
- Gulbay, G.; Secme, M.; Ilhan, H. Exploring the Potential of Thymoquinone-Stabilized Selenium Nanoparticles: In HEC1B Endometrial Cancer Cells Revealing Enhanced Anticancer Efficacy. ACS Omega 2023, 8, 39822–39829. [Google Scholar] [CrossRef]
- Pomerenke, A.; Lea, S.R.; Herrick, S.; Lindsay, M.A.; Singh, D. Characterization of TLR-Induced Inflammatory Responses in COPD and Control Lung Tissue Explants. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
Gene Names | Forward | Reverse | Amplicon Length (bp) |
---|---|---|---|
(5′–3′) | (5′–3′) | ||
TLR1 | CAGCGATGTGTTCGGTTTTCCG | GATGGGCAAAGCATGTGGACCA | 1151 |
TLR2 | TTATCCAGCACACGAATACACAG | AGGCATCTGGTAGAGTCATCAA | 160 |
TLR3 | GGCTAGCAGTCATCCAACAGAA | GCAGTCAGCAACTTCATGGC | 143 |
TLR4 | CCCTGAGGCATTTAGGCAGCTA | GGTAGAGAGGTGGCTTAGGCT | 144 |
TLR6 | TTCTCCGACGGAAATGAATTTGC | CAGCGGTAGGTCTTTTGGAAC | 75 |
TLR7 | CTTTGGACCTCAGCCACAACCA | CGCAACTGGAAGGCATCTTGTAG | 163 |
TLR8 | ACTCCAGCAGTTTCCTCGTCTC | AAAGCCAGAGGGTAGGTGGGAA | 144 |
TLR9 | TGAGCCACAACTGCATCTCGCA | CAGTCGTGGTAGCTCCGTGAAT | 116 |
Beta–Actin | CACCATTGGCAATGAGCGGTTC | AGGTCTTTGCGGATGTCCACGT | 131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaoğlanoğlu, S.; Gülbay, G. Effects of Thymoquinone on Cell Proliferation, Oxidative Damage, and Toll-like Signaling Pathway Genes in H1650 Lung Adenocarcinoma Cell Line. Medicina 2025, 61, 1835. https://doi.org/10.3390/medicina61101835
Karaoğlanoğlu S, Gülbay G. Effects of Thymoquinone on Cell Proliferation, Oxidative Damage, and Toll-like Signaling Pathway Genes in H1650 Lung Adenocarcinoma Cell Line. Medicina. 2025; 61(10):1835. https://doi.org/10.3390/medicina61101835
Chicago/Turabian StyleKaraoğlanoğlu, Selen, and Gonca Gülbay. 2025. "Effects of Thymoquinone on Cell Proliferation, Oxidative Damage, and Toll-like Signaling Pathway Genes in H1650 Lung Adenocarcinoma Cell Line" Medicina 61, no. 10: 1835. https://doi.org/10.3390/medicina61101835
APA StyleKaraoğlanoğlu, S., & Gülbay, G. (2025). Effects of Thymoquinone on Cell Proliferation, Oxidative Damage, and Toll-like Signaling Pathway Genes in H1650 Lung Adenocarcinoma Cell Line. Medicina, 61(10), 1835. https://doi.org/10.3390/medicina61101835