The Role of Near-Infrared Fluorescence with Indocyanine Green in Robot-Assisted Partial Nephrectomy: Results from an Updated Systematic Review and Meta-Analyses of Controlled Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection of Eligible Studies
2.2. Data Extraction, Quality of Studies, and Risk of Bias Assessment
2.3. Statistical Analyses
3. Results
3.1. Literature Screening
3.2. Studies’ Characteristics
3.3. Main Studies’ Findings
3.4. Meta-Analysis of Perioperative and Postoperative Outcomes
3.4.1. Warm Ischemia Time
3.4.2. Operative Time
3.4.3. Estimated Blood Loss
3.4.4. Transfusions
3.4.5. Length of Hospital Stay
3.4.6. Complications
3.4.7. Positive Surgical Margins
3.4.8. Renal Function
3.4.9. Sensitivity and Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bex, A.; Ghanem, Y.A.; Albiges, L.; Bonn, S.; Campi, R.; Capitanio, U.; Dabestani, S.; Hora, M.; Klatte, T.; Kuusk, T.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2025 Update. Eur. Urol. 2025, 87, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, A.; Gavi, F.; Sighinolfi, M.C.; Assumma, S.; Panio, E.; Fettucciari, D.; Pallotta, G.; Schubert, O.; Carerj, C.; Ragonese, M.; et al. Management of Small Renal Masses: Literature and Guidelines Review. Int. Braz. J. Urol. 2025, 51, e20250203. [Google Scholar] [CrossRef]
- Kim, S.P.; Thompson, R.H.; Boorjian, S.A.; Weight, C.J.; Han, L.C.; Murad, M.H.; Shippee, N.D.; Erwin, P.J.; Costello, B.A.; Chow, G.K.; et al. Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: A systematic review and meta-analysis. J. Urol. 2012, 188, 51–57. [Google Scholar] [CrossRef]
- Lane, B.R.; Babineau, D.C.; Poggio, E.D.; Weight, C.J.; Larson, B.T.; Gill, I.S.; Novick, A.C. Factors predicting renal functional outcome after partial nephrectomy. J. Urol. 2008, 180, 2363–2369. [Google Scholar] [CrossRef]
- Pereira, J.F.; Renzulli, J.; Pareek, G.; Moreira, D.; Guo, R.; Zhang, Z.; Amin, A.; Mega, A.; Golijanin, D.; Gershman, B. Perioperative Morbidity of Open Versus Minimally Invasive Partial Nephrectomy: A Contemporary Analysis of the National Surgical Quality Improvement Program. J. Endourol. 2018, 32, 116–123. [Google Scholar] [CrossRef]
- Leow, J.J.; Heah, N.H.; Chang, S.L.; Chong, Y.L.; Png, K.S. Outcomes of Robotic versus Laparoscopic Partial Nephrectomy: An Updated Meta-Analysis of 4919 Patients. J. Urol. 2016, 196, 1371–1377. [Google Scholar] [CrossRef]
- Li, S.; Guo, Z.; Li, Y.; Chan, F.L.; Wang, S.; Gu, C. The impact of warm ischemia time on short-term renal function after partial nephrectomy: A systematic review and meta-analysis. BMC Urol. 2025, 25, 121. [Google Scholar] [CrossRef]
- Thompson, R.H.; Lane, B.R.; Lohse, C.M.; Leibovich, B.C.; Fergany, A.; Frank, I.; Gill, I.S.; Blute, M.L.; Campbell, S.C. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur. Urol. 2010, 58, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Gill, I.S.; Eisenberg, M.S.; Aron, M.; Berger, A.; Ukimura, O.; Patil, M.B.; Campese, V.; Thangathurai, D.; Desai, M.M. “Zero ischemia” partial nephrectomy: Novel laparoscopic and robotic technique. Eur. Urol. 2011, 59, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.L.; Gill, I.S.; Desai, M.M. Zero-ischaemia robotic partial nephrectomy (RPN) for hilar tumours. BJU Int. 2011, 108, 948–954. [Google Scholar] [CrossRef]
- Reinhart, M.B.; Huntington, C.R.; Blair, L.J.; Heniford, B.T.; Augenstein, V.A. Indocyanine Green: Historical Context, Current Applications, and Future Considerations. Surg. Innov. 2016, 23, 166–175. [Google Scholar] [CrossRef]
- Schaafsma, B.E.; Mieog, J.S.D.; Hutteman, M.; van der Vorst, J.R.; Kuppen, P.J.; Löwik, C.W.; Frangioni, J.V.; van de Velde, C.J.; Vahrmeijer, A.L. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 2011, 104, 323–332. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Shakir, A.; Tafuri, A.; Gill, K.; Han, J.; Ahmadi, N.; Hueber, P.A.; Gallucci, M.; Simone, G.; Campi, R.; et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: A systematic review-based expert consensus. World J. Urol. 2020, 38, 883–896. [Google Scholar] [CrossRef]
- Tobis, S.; Knopf, J.K.; Silvers, C.; Messing, E.; Yao, J.; Rashid, H.; Wu, G.; Golijanin, D. Robot-assisted and laparoscopic partial nephrectomy with near infrared fluorescence imaging. J. Endourol. 2012, 26, 797–802. [Google Scholar] [CrossRef]
- Manny, T.B.; Krane, L.S.; Hemal, A.K. Indocyanine green cannot predict malignancy in partial nephrectomy: Histopathologic correlation with fluorescence pattern in 100 patients. J. Endourol. 2013, 27, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Simone, G.; Tuderti, G.; Anceschi, U.; Ferriero, M.; Costantini, M.; Minisola, F.; Vallati, G.; Pizzi, G.; Guaglianone, S.; Misuraca, L.; et al. “Ride the Green Light”: Indocyanine Green-marked Off-clamp Robotic Partial Nephrectomy for Totally Endophytic Renal Masses. Eur. Urol. 2019, 75, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Sentell, K.T.; Ferroni, M.C.; Abaza, R. Near-infrared fluorescence imaging for intraoperative margin assessment during robot-assisted partial nephrectomy. BJU Int. 2020, 126, 259–264. [Google Scholar] [CrossRef]
- Diana, P.; Buffi, N.M.; Lughezzani, G.; Dell’oGlio, P.; Mazzone, E.; Porter, J.; Mottrie, A. The Role of Intraoperative Indocyanine Green in Robot-assisted Partial Nephrectomy: Results from a Large, Multi-institutional Series. Eur. Urol. 2020, 78, 743–749. [Google Scholar] [CrossRef]
- Veccia, A.; Antonelli, A.; Hampton, L.J.; Greco, F.; Perdonà, S.; Lima, E.; Hemal, A.K.; Derweesh, I.; Porpiglia, F.; Autorino, R. Near-infrared Fluorescence Imaging with Indocyanine Green in Robot-assisted Partial Nephrectomy: Pooled Analysis of Comparative Studies. Eur. Urol. Focus 2020, 6, 505–512. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, J.; Shuai, H.; Xu, Q.; Tan, Y.; Luo, J.; Xu, P.; Duan, X.; Mao, X.; Wang, S.; et al. Comparison of perioperative outcomes of selective arterial clipping guided by near-infrared fluorescence imaging using indocyanine green versus undergoing standard robotic-assisted partial nephrectomy: A systematic review and meta-analysis. Int. J. Surg. 2024, 110, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Hartmann, K.E.; Matchar, D.B.; Chang, S. Chapter 6: Assessing applicability of medical test studies in systematic reviews. J. Gen. Intern. Med. 2012, 27 (Suppl. S1), 39–46. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 July 2025).
- Krane, L.S.; Manny, T.B.; Hemal, A.K. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: A prospective comparative study of 94 patients. Urology 2012, 80, 110–118. [Google Scholar] [CrossRef]
- Borofsky, M.S.; Gill, I.S.; Hemal, A.K.; Marien, T.P.; Jayaratna, I.; Krane, L.S.; Stifelman, M.D. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013, 111, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Bjurlin, M.; Wysock, J.; McClintock, T.R.; Borofsky, M.; Sivarajan, G.; Sorin, S.; Stifelman, M.D. 1193 Robotic Partial Nephrectomy With Selective arterial Clamping Using Near Infrared Fluorescence Imaging: NYU Initial Experience. J. Urol. 2013, 189, e488. [Google Scholar] [CrossRef]
- Harke, N.; Schoen, G.; Schiefelbein, F.; Heinrich, E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: A single-surgeon matched-pair study. World J. Urol. 2014, 32, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- McClintock, T.R.; Bjurlin, M.A.; Wysock, J.S.; Borofsky, M.S.; Marien, T.P.; Okoro, C.; Stifelman, M.D. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology 2014, 84, 327–334. [Google Scholar] [CrossRef]
- Lanchon, C.; Arnoux, V.; Fiard, G.; Descotes, J.-L.; Rambeaud, J.-J.; Lefrancq, J.-B.; Poncet, D.; Terrier, N.; Overs, C.; Franquet, Q.; et al. Super-selective robot-assisted partial nephrectomy using near-infrared flurorescence versus early-unclamping of the renal artery: Results of a prospective matched-pair analysis. Int. Braz. J. Urol. 2018, 44, 53–62. [Google Scholar] [CrossRef]
- Mattevi, D.; Luciani, L.G.; Mantovani, W.; Cai, T.; Chiodini, S.; Vattovani, V.; Puglisi, M.; Malossini, G. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J. Robot. Surg. 2019, 13, 391–396. [Google Scholar] [CrossRef]
- Long, J.-A.; Fiard, G.; Giai, J.; Teyssier, Y.; Fontanell, A.; Overs, C.; Poncet, D.; Descotes, J.-L.; Rambeaud, J.-J.; Moreau-Gaudry, A.; et al. Superselective Ischemia in Robotic Partial Nephrectomy Does Not Provide Better Long-term Renal Function than Renal Artery Clamping in a Randomized Controlled Trial (EMERALD): Should We Take the Risk? Eur. Urol. Focus 2022, 8, 769–776. [Google Scholar] [CrossRef]
- Yang, Y.-K.; Hsieh, M.-L.; Chen, S.-Y.; Liu, C.-Y.; Lin, P.-H.; Kan, H.-C.; Pang, S.-T.; Yu, K.-J. Clinical Benefits of Indocyanine Green Fluorescence in Robot-Assisted Partial Nephrectomy. Cancers 2022, 14, 3032. [Google Scholar] [CrossRef]
- Mazzoleni, F.; Perri, D.; Pacchetti, A.; Morini, E.; Berti, L.; Besana, U.; Faiella, E.; Moramarco, L.; Santucci, D.; Fior, D.; et al. Indocyanine green-marked fluorescence-guided off-clamp versus intraoperative ultrasound-guided on-clamp robotic partial nephrectomy: Outcomes on surgical procedure. BJUI Compass 2024, 5, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Joffe, B.I.; Li, G.; Gorroochurn, P.; DeCastro, G.J.; Lenis, A.T.; McKiernan, J.M.; Anderson, C.B. The impact of indocyanine green on partial nephrectomy perioperative outcomes. J. Robot. Surg. 2025, 19, 78. [Google Scholar] [CrossRef]
- Woon, D.; Qin, S.; Al-Khanaty, A.; Perera, M.; Lawrentschuk, N. Imaging in Renal Cell Carcinoma Detection. Diagnostics 2024, 14, 2105. [Google Scholar] [CrossRef]
- Kaczmarek, B.F.; Sukumar, S.; Petros, F.; Trinh, Q.; Mander, N.; Chen, R.; Menon, M.; Rogers, C.G. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: Initial series and outcomes. Int. J. Urol. 2013, 20, 172–176. [Google Scholar] [CrossRef]
- Amparore, D.; Pecoraro, A.; Piramide, F.; Verri, P.; Checcucci, E.; De Cillis, S.; Piana, A.; Burgio, M.; Di Dio, M.; Manfredi, M.; et al. Three-dimensional imaging reconstruction of the kidney’s anatomy for a tailored minimally invasive partial nephrectomy: A pilot study. Asian J. Urol. 2022, 9, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Fiori, C.; Checcucci, E.; Amparore, D.; Bertolo, R. Hyperaccuracy Three-dimensional Reconstruction Is Able to Maximize the Efficacy of Selective Clamping During Robot-assisted Partial Nephrectomy for Complex Renal Masses. Eur. Urol. 2018, 74, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Carbonara, U.; Crocerossa, F.; Campi, R.; Veccia, A.; Cacciamani, G.E.; Amparore, D.; Checcucci, E.; Loizzo, D.; Pecoraro, A.; Marchioni, M.; et al. Retroperitoneal Robot-assisted Partial Nephrectomy: A Systematic Review and Pooled Analysis of Comparative Outcomes. Eur. Urol. Open Sci. 2022, 40, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-Y.; Tsai, I.-C.; Hsieh, C.-C.; Tseng, W.-H.; Wu, R.-H.; Huang, S.K.; Chiu, A.W. Pioneering the retroperitoneal approach: Indocyanine green fluorescence-guided embolization in totally endophytic renal masses during robot-assisted partial nephrectomy. Urol. Sci. 2025, 36, 41–46. [Google Scholar] [CrossRef]
POPULATION (P) | Adults (age ≥ 18 years) with a renal mass undergoing partial nephrectomy. |
INTERVENTION (I) | Transperitoneal or retroperitoneal robot-assisted partial nephrectomy (RAPN) with selective artery clamping or no clamping guided by near-infrared imaging (NIRF) with indocyanine green (ICG). |
COMPARATOR (C) | Transperitoneal or retroperitoneal RAPN with main artery clamping. |
OUTCOME (O) | Any surgical outcomes, including perioperative (e.g., operative time, blood loss, ischemia time), and postoperative (complications, renal function preservation, length of in-hospital stay, oncological outcomes). |
TYPE OF STUDY (T) | Comparative studies (prospective and retrospective) published as a full-text manuscript or conference abstract, with no restriction on sample size or follow-up duration. |
Study | Design | Cases/Controls | Clamp Method/ Ischemia Type | ICG Dose | Sample Size | Sex (Males) | BMI | CCI | Tumor Size (cm) | Laterality (Right) | Complexity Score | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Krane et al. Urology USA, 2012 [27] | Prospective enrolled cases matched with retrospective evaluated controls | NIRF-RAPN | Main artery clamping (global ischemia) or selective clamping or no clamping (zero-ischemia) | 5–7.5 mg | 47 | 29 (62%) | 28.9 | NA | 2.7 | 24 (51%) | RENAL 4–6: 31 (66%) RENAL 7–9: 15 (32%) RENAL ≥10: 1 (2%) PADUA 6–7: 30 (64%) PADUA 8–9: 10 (21%) PADUA ≥10: 7 (15%) | 5 months |
no NIRF-RAPN | Main artery clamping (global ischemia) or no clamping (zero-ischemia) | __ | 47 | 24 (51%) | 30.2 | NA | 2.6 | 25 (53%) | RENAL 4–6: 29 (62%) RENAL 7–9: 16 (34%) RENAL ≥10 0 (0%) PADUA 6–7: 22 (49%) PADUA 8–9: 19 (37%) PADUA ≥10: 4 (10%) | 5 months | ||
Borofsky et al. BJU Int USA, 2013 [28] | Retrospective matched-paired study | NIRF-RAPN | No clamping (zero ischemia) | 7.5 mg | 27 | 16 (59%) | 28.9 | NA | 2.79 | 14 (52%) | RENAL: 8 (5–10) | 13.5 days |
no NIRF-RAPN | Main artery clamping (global ischemia) | __ | 27 | 15 (56%) | 30.1 | NA | 3.24 | 16 (59%) | RENAL: 8 (5–10) | 12.7 days | ||
Bjurlin et al. J Urol USA, 2013 [29] | Retrospective matched-paired study | NIRF-RAPN | Selective clamping | NA | 39 | 28 | 29.3 | NA | 2.8 | NA | NA | NA |
no NIRF-RAPN | Non-selective clamping | __ | 39 | NA | NA | NA | 2.7 | NA | NA | NA | ||
Harke et al. World J Urol Germany, 2013 [30] | Retrospective matched-paired study | NIRF-RAPN | Selective clamping | 5 mg | 15 | NA | 28.9 | 1.3 | 3.71 | NA | RENAL 4–6: 2 (13%) RENAL 7–9: 10 (67%) RENAL ≥10: 3 (20%) | NA |
no NIRF-RAPN | Main artery clamping (global ischemia) | __ | 15 | NA | 27.7 | 1.5 | 3.24 | NA | RENAL 4–6: 2 (13%) RENAL 7–9: 10 (67%) RENAL ≥10: 3 (20%) | NA | ||
McClintock et al. Urology USA, 2014 [31] | Retrospective matched-paired study | NIRF-RAPN | Selective clamping | 5–7.5 mg | 42 | 30 | 29 | NA | 2.81 | NA | RENAL: 6.67 (1.75) | 3 months |
no NIRF-RAPN | Main artery clamping (global ischemia) | __ | 42 | 26 | 28.2 | NA | 2.97 | NA | RENAL: 7.35 (1.94) | 3 months | ||
Lanchon et al. Int Braz J Urol France, 2018 [32] | Prospective enrolled cases matched with retrospective evaluated controls | NIRF-RAPN | Super selective clamping (zero ischemia) | 0.5–2 cc | 25 | 22 (88%) | 27 | 5 | 3.0 | 17 (68%) | RENAL 4–6: 7 (28%) RENAL 7–9: 11 (44%) RENAL ≥10: 7 (28%) PADUA 6–7: 7 (28%) PADUA 8–9: 11 (44%) PADUA ≥10: 7 (28%) | 3 months |
no NIRF-RAPN | Early-unclamping | __ | 25 | 17 (68%) | 25 | 5 | 4.0 | 14 (56%) | RENAL 4–6: 5 (20%) RENAL 7–9: 13 (52%) RENAL ≥10: 7 (28%) PADUA 6–7: 4 (16%) PADUA 8–9: 13 (52%) PADUA ≥10: 8 (32%) | 3 months | ||
Mattevi et al. J Robot Surg Italy, 2019 [33] | Retrospective comparative study | NIRF-RAPN | Selective artery clamping | 5 mg | 15 | 12 (75%) | 27 | 2 | 4.0 | 10 (67%) | PADUA 6–7: 6 (40%) PADUA 8–9: 5 (33.3%) PADUA ≥10: 4 (26.7%) | 1 month |
no NIRF-RAPN | Main artery clamping (global ischemia) | __ | 42 | 27 (64%) | 27 | 3 | 4.0 | 21 (50%) | PADUA 6–7: 18 (43%) PADUA 8–9: 17 (40%) PADUA ≥10: 7 (17%) | 1 month | ||
Long et al. Eur Uro Focus France, 2022 [34] | Randomized clinical trial | NIRF-RAPN | Super selective clamping (zero ischemia) | 5 cc | 15 | 10 (67%) | 26.7 | 2 | 2.6 | 9 (60%) | RENAL: 7 (6–9) PADUA: 8 (7–10) | 6 months |
no NIRF-RAPN | Early unclamping | __ | 14 | 9 (64%) | 26.5 | 2 | 3.0 | 7 (50%) | RENAL 8 (6–9) PADUA 7.5 (7–9) | 6 months | ||
Yang et al. Cancers Taiwan, 2022 [35] | Retrospective comparative study | NIRF-RAPN | Main artery clamping | 3–5 mL | 21 | 12 (57%) | 26.5 | NA | 3.3 | 13 (62%) | RENAL: 8 (6–8) | 6 months |
no NIRF-RAPN | Main artery clamping | __ | 106 | 60 (57%) | 25.1 | NA | 2.9 | 63 (59%) | RENAL: 8 (6–9) | 6 months | ||
Mazzoleni et al. BJU Compass Italy, 2023 [36] | Randomized clinical trial | NIRF-RAPN | Super selective preoperative embolization—no clamping | NA | 70 | NA | 25 | NA | 2.4 | 33 (47%) | RENAL: 8.3 (3.4) | 1 month |
no NIRF-RAPN | No preoperative embolization— main artery clamping and intraoperative ultrasonography | __ | 70 | NA | 26 | NA | 2.5 | 34 (49%) | RENAL: 7.9 (4.1) | 1 month | ||
Joffe et al. J Robot Surg USA, 2025 [37] | Retrospective comparative study | NIRF-PN | Main artery clamping (hilar) or selective clamping | 7 mL | 87 | 58 (67%) | NA | NA | 3.1 | NA | NA | 6–12 months |
no NIRF-PN | Main artery clamping (hilar) | __ | 63 | 40 (63%) | NA | NA | 2.7 | NA | NA | 6–12 months |
Author (Year) | Design | LE (Oxford 2011) | Risk of Bias (Tool) |
---|---|---|---|
Krane et al. [27] | Observational, matched cohort | 2b | Serious (ROBINS-I) |
Borofsky et al. [28] | Observational, matched cohort | 3b | Serious (ROBINS-I) |
Harke et al. [30] | Observational, matched cohort | 3b | Moderate (ROBINS-I) |
McClintock et al. [31] | Observational, matched cohort | 2b | Serious (ROBINS-I) |
Lanchon et al. [32] | Observational, matched cohort | 2b | Serious (ROBINS-I) |
Mattevi et al. [33] | Observational, comparative | 3b | Moderate (ROBINS-I) |
Long et al. [34] | RCT | 1b | Some concerns (RoB-2) |
Yang et al. [35] | Observational, comparative | 3b | Moderate (ROBINS-I) |
Mazzoleni et al. [36] | RCT | 1b | Some concerns (RoB-2) |
Joffe et al. [37] | Observational, comparative | 3b | Moderate (ROBINS-I) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panunzio, A.; Orlando, R.; Greco, F.; Cerrato, C.; D’Elia, S.D.; Marinaci, L.; Manno, F.; Shakir, A.; Battaglia, M.; Baccaglini, W.; et al. The Role of Near-Infrared Fluorescence with Indocyanine Green in Robot-Assisted Partial Nephrectomy: Results from an Updated Systematic Review and Meta-Analyses of Controlled Studies. Medicina 2025, 61, 1735. https://doi.org/10.3390/medicina61101735
Panunzio A, Orlando R, Greco F, Cerrato C, D’Elia SD, Marinaci L, Manno F, Shakir A, Battaglia M, Baccaglini W, et al. The Role of Near-Infrared Fluorescence with Indocyanine Green in Robot-Assisted Partial Nephrectomy: Results from an Updated Systematic Review and Meta-Analyses of Controlled Studies. Medicina. 2025; 61(10):1735. https://doi.org/10.3390/medicina61101735
Chicago/Turabian StylePanunzio, Andrea, Rossella Orlando, Federico Greco, Clara Cerrato, Serena Domenica D’Elia, Laura Marinaci, Federica Manno, Aliasger Shakir, Michele Battaglia, Willy Baccaglini, and et al. 2025. "The Role of Near-Infrared Fluorescence with Indocyanine Green in Robot-Assisted Partial Nephrectomy: Results from an Updated Systematic Review and Meta-Analyses of Controlled Studies" Medicina 61, no. 10: 1735. https://doi.org/10.3390/medicina61101735
APA StylePanunzio, A., Orlando, R., Greco, F., Cerrato, C., D’Elia, S. D., Marinaci, L., Manno, F., Shakir, A., Battaglia, M., Baccaglini, W., Porcaro, A. B., Antonelli, A., Abreu, A., & Tafuri, A., on behalf of Innovation on Surgical Excellence Research (InSuRe) Group. (2025). The Role of Near-Infrared Fluorescence with Indocyanine Green in Robot-Assisted Partial Nephrectomy: Results from an Updated Systematic Review and Meta-Analyses of Controlled Studies. Medicina, 61(10), 1735. https://doi.org/10.3390/medicina61101735