Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zagórowicz, E.; Walkiewicz, D.; Kucha, P.; Perwieniec, J.; Maluchnik, M.; Wieszczy, P.; Reguła, J. Nationwide Data on Epidemiology of Inflammatory Bowel Disease in Poland between 2009 and 2020. Pol. Arch. Intern. Med. 2022, 132, 16194. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2018, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Monstad, I.L.; Solberg, I.C.; Cvancarova, M.; Hovde, O.; Henriksen, M.; Huppertz-Hauss, G.; Gunther, E.; Moum, B.A.; Stray, N.; Vatn, M.; et al. Outcome of Ulcerative Colitis 20 Years after Diagnosis in a Prospective Population-Based Inception Cohort from South-Eastern Norway, the IBSEN Study. J. Crohns Colitis 2021, 15, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Buie, M.J.; Quan, J.; Windsor, J.W.; Coward, S.; Hansen, T.M.; King, J.A.; Kotze, P.G.; Gearry, R.B.; Ng, S.C.; Mak, J.W.Y.; et al. Global Hospitalization Trends for Crohn’s Disease and Ulcerative Colitis in the 21st Century: A Systematic Review with Temporal Analyses. Clin. Gastroenterol. Hepatol. 2023, 21, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gönczi, L.; Lakatos, P.L.; Burisch, J. The Burden of Inflammatory Bowel Disease in Europe in 2020. J. Crohns Colitis 2021, 15, 1573–1587. [Google Scholar] [CrossRef] [PubMed]
- Chanchlani, N.; Lin, S.; Bewshea, C.; Hamilton, B.; Thomas, A.; Smith, R.; Roberts, C.; Bishara, M.; Nice, R.; Lees, C.W.; et al. Mechanisms and Management of Loss of Response to Anti-TNF Therapy for Patients with Crohn’s Disease: 3-Year Data from the Prospective, Multicentre PANTS Cohort Study. Lancet Gastroenterol. Hepatol. 2024, 9, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Levine, A.; Hirsch, A.; Boneh, R.S.; Kopylov, U.; Eran, H.B.; Cohen, N.A.; Ron, Y.; Goren, I.; Leibovitzh, H.; et al. The Crohn’s Disease Exclusion Diet for Induction and Maintenance of Remission in Adults with Mild-to-Moderate Crohn’s Disease (CDED-AD): An Open-Label, Pilot, Randomised Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Svolos, V.; Hansen, R.; Nichols, B.; Quince, C.; Ijaz, U.Z.; Papadopoulou, R.T.; Edwards, C.A.; Watson, D.; Alghamdi, A.; Brejnrod, A.; et al. Treatment of Active Crohn’s Disease with an Ordinary Food-Based Diet That Replicates Exclusive Enteral Nutrition. Gastroenterology 2019, 156, 1354–1367.e6. [Google Scholar] [CrossRef]
- Kedia, S.; Virmani, S.; Vuyyuru, S.K.; Kumar, P.; Kante, B.; Sahu, P.; Kaushal, K.; Farooqui, M.; Singh, M.; Verma, M.; et al. Faecal Microbiota Transplantation with Anti-Inflammatory Diet (FMT-AID) Followed by Anti-Inflammatory Diet Alone Is Effective in Inducing and Maintaining Remission over 1 Year in Mild to Moderate Ulcerative Colitis: A Randomised Controlled Trial. Gut 2022, 71, 2401–2413. [Google Scholar] [CrossRef]
- Papadimitriou, K. The Influence of Aerobic Type Exercise on Active Crohn’s Disease Patients: The Incidence of an Elite Athlete. Healthcare 2022, 10, 713. [Google Scholar] [CrossRef]
- Prins, F.M.; Hidding, I.J.; Klaassen, M.A.Y.; Collij, V.; Schultheiss, J.P.D.; Venema, W.T.C.U.; Bangma, A.; Aardema, J.B.; Jansen, B.H.; Mares, W.G.N.; et al. Limited Predictive Value of the Gut Microbiome and Metabolome for Response to Biological Therapy in Inflammatory Bowel Disease. medRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Shubhakar, A.; Jansen, B.C.; Adams, A.T.; Reiding, K.R.; Ventham, N.T.; Kalla, R.; Bergemalm, D.; Urbanowicz, P.A.; Gardner, R.A.; Consortium, I.-B.; et al. Serum N-Glycomic Biomarkers Predict Treatment Escalation in Inflammatory Bowel Disease. J. Crohns Colitis 2023, 17, 919–932. [Google Scholar] [CrossRef] [PubMed]
- de Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G.; et al. Genome-Wide Association Study Implicates Immune Activation of Multiple Integrin Genes in Inflammatory Bowel Disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Goyette, P.; Lefebvre, C.; Ng, A.; Brant, S.R.; Cho, J.H.; Duerr, R.H.; Silverberg, M.S.; Taylor, K.D.; Latiano, A.; Aumais, G.; et al. Gene-Centric Association Mapping of Chromosome 3p Implicates MST1 in IBD Pathogenesis. Mucosal Immunol. 2008, 1, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Melum, E.; Franke, A.; Schramm, C.; Weismüller, T.J.; Gotthardt, D.N.; Offner, F.A.; Juran, B.D.; Laerdahl, J.K.; Labi, V.; Björnsson, E.; et al. Genome-Wide Association Analysis in Primary Sclerosing Cholangitis Identifies Two Non-HLA Susceptibility Loci. Nat. Genet. 2011, 43, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, T.H.; Franke, A.; Melum, E.; Kaser, A.; Hov, J.R.; Balschun, T.; Lie, B.A.; Bergquist, A.; Schramm, C.; Weismüller, T.J.; et al. Genome-Wide Association Analysis in Primary Sclerosing Cholangitis. Gastroenterology 2010, 138, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Häuser, F.; Deyle, C.; Berard, D.; Neukirch, C.; Glowacki, C.; Bickmann, J.K.; Wenzel, J.J.; Lackner, K.J.; Rossmann, H. Macrophage-Stimulating Protein Polymorphism Rs3197999 Is Associated with a Gain of Function: Implications for Inflammatory Bowel Disease. Genes. Immun. 2012, 13, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wen, Y.; Lu, Q.; Hua, S.; Hou, Y.; Du, X.; Zheng, Y.; Sun, S. MST1/2 in Inflammation and Immunity. Cell Adhes. Migr. 2023, 17, 1–15. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Sun, L.; Zhou, S.; Xu, J.; Xing, D. MST1: A Future Novel Target for Cardiac Diseases. Int. J. Biol. Macromol. 2023, 239, 124296. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, A.; Cao, Y.; Hu, X.; Wang, Y.; Yang, Q.; Bi, Y.; Liu, G. Hippo Kinases MST1/2 Regulate Immune Cell Functions in Cancer, Infection, and Autoimmune Diseases. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 427–442. [Google Scholar] [CrossRef]
- Zinatizadeh, M.R.; Miri, S.R.; Zarandi, P.K.; Chalbatani, G.M.; Rapôso, C.; Mirzaei, H.R.; Akbari, M.E.; Mahmoodzadeh, H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in Cancer Metastasis. Genes Dis. 2021, 8, 48–60. [Google Scholar] [CrossRef]
- Zhou, D.; Medoff, B.D.; Chen, L.; Li, L.; Zhang, X.; Praskova, M.; Liu, M.; Landry, A.; Blumberg, R.S.; Boussiotis, V.A.; et al. The Nore1B/Mst1 Complex Restrains Antigen Receptor-Induced Proliferation of Naïve T Cells. Proc. Natl. Acad. Sci. USA 2008, 105, 20321–20326. [Google Scholar] [CrossRef]
- Ueda, Y.; Katagiri, K.; Tomiyama, T.; Yasuda, K.; Habiro, K.; Katakai, T.; Ikehara, S.; Matsumoto, M.; Kinashi, T. Mst1 Regulates Integrin-Dependent Thymocyte Trafficking and Antigen Recognition in the Thymus. Nat. Commun. 2012, 3, 1098. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Shi, H.; Deng, K.; Chi, H.; Tao, W. Mammalian Sterile 20-like Kinase 1 (Mst1) Enhances the Stability of Forkhead Box P3 (Foxp3) and the Function of Regulatory T Cells by Modulating Foxp3 Acetylation. J. Biol. Chem. 2015, 290, 30762–30770. [Google Scholar] [CrossRef]
- Cheng, J.; Jing, Y.; Kang, D.; Yang, L.; Li, J.; Yu, Z.; Peng, Z.; Li, X.; Wei, Y.; Gong, Q.; et al. The Role of Mst1 in Lymphocyte Homeostasis and Function. Front. Immunol. 2018, 9, 149. [Google Scholar] [CrossRef]
- Chen, J.; Xu, F.; Ruan, X.; Sun, J.; Zhang, Y.; Zhang, H.; Zhao, J.; Zheng, J.; Larsson, S.C.; Wang, X.; et al. Therapeutic Targets for Inflammatory Bowel Disease: Proteome-Wide Mendelian Randomization and Colocalization Analyses. eBioMedicine 2023, 89, 104494. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.-L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN Revised Porto Criteria for the Diagnosis of Inflammatory Bowel Disease in Children and Adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Guzik, P.; Mostowska, A.; Walkowiak, J. Publication Ethics of Human Studies in the Light of the Declaration of Helsinki—A Mini-Review. J. Med. Sci. 2022, 91, e700. [Google Scholar] [CrossRef]
- Turner, D.; Otley, A.R.; Mack, D.; Hyams, J.; De Bruijne, J.; Uusoue, K.; Walters, T.D.; Zachos, M.; Mamula, P.; Beaton, D.E.; et al. Development, Validation, and Evaluation of a Pediatric Ulcerative Colitis Activity Index: A Prospective Multicenter Study. Gastroenterology 2007, 133, 423–432. [Google Scholar] [CrossRef]
- Hyams, J.S.; Ferry, G.D.; Mandel, F.S.; Gryboski, J.D.; Kibort, P.M.; Kirschner, B.S.; Griffiths, A.M.; Katz, A.J.; Grand, R.J.; Boyle, J.T.; et al. Development and Validation of a Pediatric Crohn’s Disease Activity Index. J. Pediatr. Gastroenterol. Nutr. 1991, 12, 439. [Google Scholar] [CrossRef]
- Shamir, R. Nutrition and Growth in Inflammatory Bowel Disease. In World Review of Nutrition and Dietetics; Shamir, R., Turck, D., Phillip, M., Eds.; S. Karger AG: Basel, Switzerland, 2013; Volume 106, pp. 156–161. ISBN 978-3-318-02265-0. [Google Scholar]
- Cleynen, I.; Boucher, G.; Jostins, L.; Schumm, L.P.; Zeissig, S.; Ahmad, T.; Andersen, V.; Andrews, J.M.; Annese, V.; Brand, S.; et al. Inherited Determinants of Crohn’s Disease and Ulcerative Colitis Phenotypes: A Genetic Association Study. Lancet 2016, 387, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, O.; Bossa, F.; Valvano, M.R.; Corritore, G.; Latiano, T.; Martino, G.; D’Incà, R.; Cucchiara, S.; Pastore, M.; D’Altilia, M.; et al. Crohn’s Disease Localization Displays Different Predisposing Genetic Variants. PLoS ONE 2017, 12, e0168821. [Google Scholar] [CrossRef] [PubMed]
- Latiano, A.; Palmieri, O.; Corritore, G.; Valvano, M.R.; Bossa, F.; Cucchiara, S.; Castro, M.; Riegler, G.; De Venuto, D.; D’Incà, R.; et al. Variants at the 3p21 Locus Influence Susceptibility and Phenotype Both in Adults and Early-Onset Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2010, 16, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Panikkath, D.; Yan, X.; Liu, Z.; Berel, D.; Li, D.; Vasiliauskas, E.A.; Ippoliti, A.; Dubinsky, M.; Shih, D.Q.; et al. Perianal Crohn’s Disease Is Associated with Distal Colonic Disease, Stricturing Disease Behavior, IBD-Associated Serologies and Genetic Variation in the JAK-STAT Pathway. Inflamm. Bowel Dis. 2016, 22, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.K.; Sun, R.; Zuo, T.; Tian, Y.; Zeng, Z.; Ho, J.; Wu, J.C.Y.; Chan, F.K.L.; Chan, M.T.V.; Yu, J.; et al. A Novel Susceptibility Locus in MST1 and Gene-Gene Interaction Network for Crohn’s Disease in the Chinese Population. J. Cell Mol. Med. 2018, 22, 2368–2377. [Google Scholar] [CrossRef]
- Niriella, M.A.; Liyanage, I.K.; Kodisinghe, S.K.; Silva, A.P.D.; Rajapakshe, N.; Nanayakkara, S.D.; Luke, D.; Silva, T.; Nawarathne, M.; Peiris, R.K.; et al. Genetic Associations of Inflammatory Bowel Disease in a South Asian Population. World J. Clin. Cases 2018, 6, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Skieceviciene, J.; Kiudelis, G.; Ellinghaus, E.; Balschun, T.; Jonaitis, L.V.; Zvirbliene, A.; Denapiene, G.; Leja, M.; Pranculiene, G.; Kalibatas, V.; et al. Replication Study of Ulcerative Colitis Risk Loci in a Lithuanian-Latvian Case-Control Sample. Inflamm. Bowel Dis. 2013, 19, 2349–2355. [Google Scholar] [CrossRef] [PubMed]
- Di Narzo, A.F.; Telesco, S.E.; Brodmerkel, C.; Argmann, C.; Peters, L.A.; Li, K.; Kidd, B.; Dudley, J.; Cho, J.; Schadt, E.E.; et al. High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genet. 2017, 13, e1006565. [Google Scholar] [CrossRef] [PubMed]
- Gorlatova, N.; Chao, K.; Pal, L.R.; Araj, R.H.; Galkin, A.; Turko, I.; Moult, J.; Herzberg, O. Protein Characterization of a Candidate Mechanism SNP for Crohn’s Disease: The Macrophage Stimulating Protein R689C Substitution. PLoS ONE 2011, 6, e27269. [Google Scholar] [CrossRef]
- Krawczyk, M.; Höblinger, A.; Mihalache, F.; Grünhage, F.; Acalovschi, M.; Lammert, F.; Zimmer, V. Macrophage Stimulating Protein Variation Enhances the Risk of Sporadic Extrahepatic Cholangiocarcinoma. Dig. Liver Dis. 2013, 45, 612–615. [Google Scholar] [CrossRef]
- Maxwell, T.J.; Franks, P.W.; Kahn, S.E.; Knowler, W.C.; Mather, K.J.; Florez, J.C.; Jablonski, K.A.; and for the Diabetes Prevention Program Research Group. Quantitative Trait Loci, G×E and G×G for Glycemic Traits: Response to Metformin and Placebo in the Diabetes Prevention Program (DPP). J. Hum. Genet. 2022, 67, 465–473. [Google Scholar] [CrossRef]
- Laukens, D.; Georges, M.; Libioulle, C.; Sandor, C.; Mni, M.; Vander Cruyssen, B.; Peeters, H.; Elewaut, D.; De Vos, M. Evidence for Significant Overlap between Common Risk Variants for Crohn’s Disease and Ankylosing Spondylitis. PLoS ONE 2010, 5, e13795. [Google Scholar] [CrossRef]
- Zou, M.; Liang, Q.; Zhang, W.; Zhu, Y.; Xu, Y. Endoplasmic Reticulum Stress Related Genome-Wide Mendelian Randomization Identifies Therapeutic Genes for Ulcerative Colitis and Crohn’s Disease. Front. Genet. 2023, 14, 1270085. [Google Scholar] [CrossRef]
- Costa Pereira, C.; Durães, C.; Coelho, R.; Grácio, D.; Silva, M.; Peixoto, A.; Lago, P.; Pereira, M.; Catarino, T.; Pinho, S.; et al. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease. PLoS ONE 2017, 12, e0169102. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.-F.; Esworthy, R.S.; Shen, B.; Doroshow, J.H. Role of the Microbiota in Ileitis of a Mouse Model of Inflammatory Bowel Disease-Glutathione Peroxide Isoenzymes 1 and 2-Double Knockout Mice on a C57BL Background. Microbiologyopen 2020, 9, e1107. [Google Scholar] [CrossRef]
- Mrowicka, M.; Mrowicki, J.; Mik, M.; Dziki, Ł.; Dziki, A.; Majsterek, I. Assessment of DNA Damage Profile and Oxidative /Antioxidative Biomarker Level in Patients with Inflammatory Bowel Disease. Pol. Przegl Chir. 2020, 92, 8–15. [Google Scholar] [CrossRef]
- Eriksson, A.; Flach, C.-F.; Lindgren, A.; Kvifors, E.; Lange, S. Five Mucosal Transcripts of Interest in Ulcerative Colitis Identified by Quantitative Real-Time PCR: A Prospective Study. BMC Gastroenterol. 2008, 8, 34. [Google Scholar] [CrossRef]
Ulcerative Colitis | Crohn’s Disease | |||||
---|---|---|---|---|---|---|
Analyzed Variables | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) |
MST1 rs3197999 major homozygous CC | 170 | 51.7% | 197 | 52.8% | ||
MST1 rs3197999 heterozygous CT | 170 | 38.3% | 197 | 33.5% | ||
MST1 rs3197999 minor homozygous TT | 170 | 10.0% | 197 | 13.7% | ||
Age at diagnosis [years] | 169 | 11.9 (7.8–14.8) | 196 | 12.2 (9.9–14.2) | ||
Age at inclusion [years] | 162 | 15.1 (11.6–16.8) | 196 | 15.2 (13.2–17.0) | ||
Duration of the disease [years] | 157 | 2.2 (0.6–3.9) | 194 | 2.3 (1.0–4.5) | ||
Female | 170 | 45.8% | 197 | 40.6% | ||
CRP at diagnosis [mg/L] | 157 | 2.3 (0.5–9.6) | 192 | 12.1 (2.0–28.7) | ||
CRP at worst flare [mg/L] | 140 | 2.7 (0.8–11.0) | 172 | 13.5 (3.0–31.9) | ||
Albumin at diagnosis [g/dL] | 139 | 4.1 (3.7–4.4) | 171 | 3.8 (3.5–4.3) | ||
Albumin at worst flare [g/dL] | 130 | 4.2 (3.8–4.4) | 166 | 3.9 (3.5–4.2) | ||
Mass Z-score at diagnosis | 158 | −0.5 (−1.1–0.2) | 187 | −0.7 (−1.4–0.0) | ||
Height Z-score at diagnosis | 154 | 0.0 (−0.7–0.7) | 187 | −0.3 (−1.3–0.5) | ||
BMI Z-score at diagnosis | 154 | −0.4 (−1.0–0.2) | 187 | −0.7 (−1.4–0.0) | ||
Mass Z-score at worst flare | 139 | −0.5 (−1.0– 0.4) | 166 | −0.8 (−1.4– −0.1) | ||
Height Z-score at worst flare | 139 | 0.0 (−0.7–0.8) | 167 | −0.3 (−1.3–0.3) | ||
BMI Z-score at worst flare | 138 | −0.6 (−1.1–0.3) | 166 | −0.8 (−1.4–0.2) | ||
PCDAI at diagnosis | 176 | 30.0 (22.5–47.5) | ||||
PUCAI at diagnosis | 147 | 35.0 (30.0–60.0) | ||||
PCDAI at worst flare | 160 | 40.0 (30.0–52.5) | ||||
PUCAI at worst flare | 135 | 55.0 (40.0–65.0) | ||||
Systemic steroids | 170 | 74.1% | 197 | 54.8% | ||
Azathioprine | 169 | 58.5% | 197 | 79.7% | ||
Methotrexate | 169 | 3.5% | 197 | 8.6% | ||
Ciclosporin | 169 | 11.2% | 197 | 3.0% | ||
Biologics | 170 | 27.0% | 197 | 50.7% | ||
Infliximab | 167 | 25.1% | 196 | 48.9% | ||
Adalimumab | 167 | 5.9% | 196 | 8.1% | ||
Months from diagnosis to biological therapy | 44 | 13.5 (8.8–26.9) | 96 | 14.1 (6.0–29.2) | ||
Age at first biological therapy | 45 | 12.1 (7.4–15.3) | 96 | 13.6 (11.8–15.1) | ||
IBD-related surgery | 170 | 2.3% | 197 | 13.2% | ||
Time hospitalized for IBD flare | 148 | 2.0 (1.0–3.0) | 172 | 1.0 (1.0–2.0) | ||
Hospitalizations for IBD flare per year | 94 | 0.7 (0.3–1.3) | 130 | 0.5 (0.2–0.8) | ||
Days hospitalized for IBD flare per year | 94 | 4.7 (1.8–8.9) | 129 | 3.8 (1.3–7.2) |
CC | CT | TT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyzed Variables | CC vs. Other p | TT vs. Other p | K-W p | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) |
Age at diagnosis [years] | 0.189 | 0.162 | 0.058 | 88 | 11.6 (7.1–14.5) | 64 | 13.2 (9.7–15.0) | 17 | 9.2 (5.5–13.6) | |||
Age at inclusion [years] | 0.084 | 0.488 | 0.224 | 86 | 14.2 (11.8–16.3) | 61 | 15.9 (11.6–17.1) | 15 | 15.6 (11.5–17.6) | |||
Duration of the disease [years] | 0.155 | 0.278 | 0.089 | 82 | 2.3 (0.8–4.9) | 60 | 1.8 (0.3–3.2) | 15 | 2.3 (1.7–5.3) | |||
Female | 0.355 | 0.799 | 88 | 42.0% | 65 | 52.3% | 17 | 41.2% | ||||
CRP at diagnosis [mg/L] | 0.080 | 0.619 | 0.215 | 81 | 1.8 (0.4–8.2) | 62 | 3.4 (1.2–9.1) | 14 | 4.8 (0.6–28.7) | |||
CRP at worst flare [mg/L] | 0.515 | 0.434 | 0.476 | 69 | 2.7 (1.0–6.4) | 60 | 2.8 (0.8–16.9) | 11 | 1.1 (0.6–10.1) | |||
Albumin at diagnosis [g/dL] | 0.694 | 0.557 | 0.817 | 69 | 4.1 (3.6–4.5) | 57 | 4.1 (3.7–4.4) | 13 | 3.9 (3.7–4.2) | |||
Albumin at worst flare [g/dL] | 0.854 | 0.519 | 0.806 | 60 | 4.2 (3.9–4.4) | 58 | 4.2 (3.8–4.4) | 12 | 4.3 (3.8–4.7) | |||
Mass Z-score at diagnosis | 0.197 | 0.585 | 0.430 | 79 | −0.6 (−1.2–0.2) | 63 | −0.4 (−0.9–0.1) | 16 | −0.2 (−0.9–0.2) | |||
Height Z-score at diagnosis | 0.035 * | 0.256 | 0.099 | 76 | −0.2 (−1.0–0.5) | 62 | 0.2 (−0.4–0.9) | 16 | 0.4 (−0.4–1.0) | |||
BMI Z-score at diagnosis | 0.643 | 0.379 | 0.633 | 76 | −0.5 (−1.1–0.2) | 62 | −0.5 (−0.9–0.1) | 16 | −0.3 (−0.9–0.6) | |||
Mass Z-score at worst flare | 0.262 | 0.726 | 0.530 | 67 | −0.6 (−1.1–0.1) | 61 | −0.5 (−0.9–0.7) | 11 | −0.8 (−0.9–0.7) | |||
Height Z-score at worst flare | 0.021 * | 0.222 | 0.058 | 67 | −0.4 (−1.0–0.4) | 61 | 0.0 (−0.4–0.9) | 11 | 0.2 (0.0–0.9) | |||
BMI Z-score at worst flare | 0.937 | 0.993 | 0.996 | 66 | −0.7 (−1.0–0.1) | 61 | −0.5 (−1.2–0.6) | 11 | −0.4 (−1.1–0.5) | |||
PUCAI at diagnosis | 0.901 | 0.214 | 0.394 | 73 | 45.0 (30.0–65.0) | 61 | 45.0 (30.0–65.0) | 13 | 55.0 (40.0–60.0) | |||
PUCAI at worst flare | 0.734 | 0.374 | 0.545 | 63 | 50.0 (40.0–67.5) | 60 | 52.5 (39.4–65.0) | 12 | 62.5 (42.5–66.3) | |||
Systemic steroids | 0.295 | 0.564 | 88 | 70.5% | 65 | 76.9% | 17 | 82.4% | ||||
Azathioprine | 1 | 0.795 | 88 | 59.1% | 64 | 56.3% | 17 | 64.7% | ||||
Methotrexate | 1 | 0.476 | 88 | 3.4% | 64 | 3.1% | 17 | 5.9% | ||||
Ciclosporin | 0.339 | 1 | 88 | 13.6% | 64 | 7.8% | 17 | 11.8% | ||||
Biologics | 0.605 | 0.402 | 88 | 25.0% | 65 | 27.7% | 17 | 35.3% | ||||
Infliximab | 1 | 0.375 | 88 | 25.0% | 62 | 22.6% | 17 | 35.3% | ||||
Adalimumab | 0.750 | 1 | 88 | 6.8% | 62 | 4.8% | 17 | 5.9% | ||||
Months from diagnosis to biological therapy | 0.834 | 0.205 | 0.411 | 21 | 13.0 (9.1–26.9) | 17 | 15.8 (11.1–27.0) | 6 | 7.4 (3.8–21.2) | |||
Age at first biological therapy | 0.348 | 0.442 | 0.563 | 21 | 13.1 (9.9–15.4) | 18 | 11.3 (6.9–14.8) | 6 | 8.5 (4.6–14.5) | |||
IBD-related surgery | 0.353 | 0.050 | 88 | 1.1% | 65 | 1.5% | 17 | 11.8% | ||||
Times hospitalized for IBD flare | 0.818 | 0.886 | 0.970 | 74 | 2.0 (1.0–3.8) | 62 | 2.0 (1.0–3.0) | 12 | 2.0 (1.0–2.3) | |||
Hospitalizations for IBD flare per year | 0.064 | 0.685 | 0.175 | 48 | 0.6 (0.2–1.0) | 37 | 0.8 (0.5–1.6) | 9 | 0.9 (0.3–1.7) | |||
Days hospitalized for IBD flare per year | 0.148 | 0.454 | 0.334 | 48 | 4.6 (1.2–7.7) | 37 | 6.1 (2.5–9.7) | 9 | 6.9 (3.1–14.0) |
CC | CT | TT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyzed Variables | CC vs. Other p | TT vs. Other p | K-W p | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) |
Age at diagnosis [years] | 0.550 | 0.808 | 0.835 | 103 | 12.1 (9.5–14.6) | 66 | 12.2 (9.4–14.1) | 27 | 12.4 (10.8–13.3) | |||
Age at inclusion [years] | 0.749 | 0.892 | 0.907 | 103 | 15.2 (13.4–17.1) | 66 | 15.2 (12.8–16.8) | 27 | 15.0 (13.4–17.4) | |||
Duration of the disease [years] | 0.721 | 0.316 | 0.600 | 102 | 2.1 (0.9–4.5) | 65 | 2.3 (1.0–4.6) | 27 | 3.4 (1.5–4.4) | |||
Female | 0.029 * | 0.291 | 104 | 48.1% | 66 | 33.3% | 27 | 29.6% | ||||
CRP at diagnosis [mg/L] | 0.872 | 0.102 | 0.222 | 101 | 12.0 (1.9–29.6) | 65 | 9.4 (1.5–19.8) | 26 | 17.1 (6.8–30.6) | |||
CRP at worst flare [mg/L] | 0.797 | 0.300 | 0.569 | 92 | 14.1 (2.8–31.9) | 56 | 11.3 (2.0–30.1) | 24 | 17.4 (5.4–32.9) | |||
Albumin at diagnosis [g/dL] | 0.326 | 0.882 | 0.591 | 89 | 3.8 (3.4–4.3) | 58 | 3.9 (3.7–4.3) | 24 | 4.0 (3.7–4.1) | |||
Albumin at worst flare [g/dL] | 0.737 | 0.594 | 0.706 | 88 | 3.9 (3.6–4.3) | 54 | 3.9 (3.4–4.1) | 24 | 4.0 (3.6–4.1) | |||
Mass Z-score at diagnosis | 0.904 | 0.117 | 0.199 | 99 | −0.8 (−1.4–−0.1) | 62 | −0.7 (−1.2–0.2) | 26 | −1.1 (−1.5– −0.6) | |||
Height Z-score at diagnosis | 0.285 | 0.307 | 0.428 | 99 | −0.4 (−1.2–0.4) | 62 | −0.1 (−1.3–0.6) | 26 | −0.7 (−1.4–0.6) | |||
BMI Z-score at diagnosis | 0.794 | 0.251 | 0.364 | 99 | −0.7 (−1.4–0.0) | 62 | −0.7 (−1.2–0.1) | 26 | −1.0 (−1.7– −0.3) | |||
Mass Z-score at worst flare | 0.392 | 0.433 | 0.295 | 89 | −1.0 (−1.4–−0.2) | 53 | −0.7 (−1.3–0.1) | 24 | −1.0 (−1.4– −0.5) | |||
Height Z-score at worst flare | 0.339 | 0.602 | 0.359 | 90 | −0.5 (−1.3–0.2) | 53 | −0.2 (−1.1–0.4) | 24 | −0.6 (−1.5–0.6) | |||
BMI Z-score at worst flare | 0.296 | 0.585 | 0.304 | 89 | −0.9 (−1.6–0.0) | 53 | −0.7 (−1.2–0.4) | 24 | −1.0 (−1.3– −0.2) | |||
PCDAI at diagnosis | 0.387 | 0.418 | 0.282 | 93 | 35.0 (22.5–45.0) | 57 | 25.0 (20.0–43.0) | 26 | 35.0 (20.6–50.0) | |||
PCDAI at worst flare | 0.997 | 0.066 | 0.123 | 85 | 40.0 (30.0–52.5) | 66 | 37.3 (25.0–51.3) | 23 | 50.0 (36.3–55.0) | |||
Systemic steroids | 0.031 * | 1 | 104 | 62.5% | 66 | 42.4% | 27 | 55.6% | ||||
Azathioprine | 0.159 | 0.798 | 104 | 83.7% | 66 | 74.2% | 27 | 77.8% | ||||
Methotrexate | 0.800 | 0.709 | 104 | 7.7% | 66 | 9.1% | 27 | 11.1% | ||||
Ciclosporin | 0.685 | 0.592 | 104 | 3.8% | 66 | 1.5% | 27 | 3.7% | ||||
Biologics | 0.089 | 0.680 | 104 | 55.8% | 66 | 40.9% | 27 | 55.6% | ||||
Infliximab | 0.123 | 0.536 | 103 | 53.4% | 66 | 39.4% | 27 | 55.6% | ||||
Adalimumab | 0.482 | 0.703 | 103 | 8.7% | 25 | 9.1% | 27 | 3.7% | ||||
Months from diagnosis to biological therapy | 0.394 | 0.435 | 0.249 | 56 | 17.6 (5.8–33.1) | 25 | 11.0 (7.0–19.5) | 15 | 23.4 (8.4–36.6) | |||
Age at first biological therapy | 0.850 | 0.471 | 0.748 | 56 | 13.8 (11.8–14.8) | 66 | 13.7 (11.3–15.2) | 15 | 13.5 (12.8–16.1) | |||
IBD-related surgery | 0.207 | 0.215 | 104 | 16.3% | 61 | 12.1% | 27 | 3.7% | ||||
Times hospitalized for IBD flare | 0.734 | 0.347 | 0.467 | 88 | 1.0 (1.0–2.0) | 45 | 1.0 (1.0–2.0) | 23 | 2.0 (1.0–2.5) | |||
Hospitalizations for IBD flare per year | 0.501 | 0.855 | 0.693 | 65 | 0.5 (0.2–0.9) | 45 | 0.4 (0.2–0.8) | 20 | 0.5 (0.3–0.8) | |||
Days hospitalized for IBD flare per year | 0.159 | 0.734 | 0.214 | 64 | 4.8 (2.0–7.6) | 66 | 2.0 (1.0–6.6) | 20 | 4.3 (1.8–6.5) |
CC | CT | TT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyzed Variables | CC vs. Other p | TT vs. Other p | K-W p | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) | n | % | Median (Q1–Q3) |
Age at diagnosis [years] | 0.629 | 0.271 | 0.333 | 191 | 11.9 (8.6–14.5) | 130 | 12.5 (9.5–14.6) | 44 | 11.7 (8.9–13.3) | |||
Age at inclusion [years] | 0.314 | 0.464 | 0.561 | 189 | 14.9 (12.7–16.8) | 127 | 15.5 (12.6–16.9) | 42 | 15.3 (12.7–17.4) | |||
Duration of the disease [years] | 0.474 | 0.102 | 0.090 | 184 | 2.2 (0.9–4.8) | 125 | 2.3 (0.5–3.6) | 42 | 3.3 (1.4–4.5) | |||
Female | 0.398 | 0.255 | 192 | 45.3% | 131 | 42.7% | 44 | 34.1% | ||||
CRP at diagnosis [mg/L] | 0.241 | 0.023 * | 0.072 | 182 | 4.3 (0.7–21.8) | 127 | 5.3 (1.3–17.9) | 40 | 12.2 (3.0–32.9) | |||
CRP at worst flare [mg/L] | 0.683 | 0.305 | 0.589 | 161 | 4.8 (1.4–25.0) | 116 | 6.5 (1.2–22.1) | 35 | 9.2 (1.6–27.7) | |||
Albumin at diagnosis [g/dL] | 0.560 | 0.632 | 0.633 | 158 | 4.0 (3.4–4.4) | 115 | 4.1 (3.7–4.4) | 37 | 3.9 (3.7–4.2) | |||
Albumin at worst flare [g/dL] | 0.934 | 0.736 | 0.942 | 148 | 4.0 (3.6–4.3) | 112 | 4.0 (3.5–4.4) | 36 | 4.0 (3.6–4.3) | |||
Mass Z-score at diagnosis | 0.305 | 0.293 | 0.173 | 178 | −0.7 (−1.3–0.0) | 125 | −0.5 (−1.1–0.2) | 42 | −0.8 (−1.4– 0.0) | |||
Height Z-score at diagnosis | 0.099 | 0.766 | 0.154 | 175 | −0.3 (−1.1–0.4) | 124 | 0.1 (−0.8–0.8) | 42 | −0.3 (−1.2–0.7) | |||
BMI Z-score at diagnosis | 0.570 | 0.623 | 0.631 | 175 | −0.6 (−1.2–0.2) | 124 | −0.5 (−1.0–0.1) | 42 | −0.7 (−1.5–0.1) | |||
Mass Z-score at worst flare | 0.151 | 0.435 | 0.131 | 156 | −0.8 (−1.3–0.0) | 114 | −0.6 (−1.0–0.5) | 35 | −0.8 (−1.3– −0.2) | |||
Height Z-score at worst flare | 0.016 * | 0.983 | 0.035 | 157 | −0.4 (−1.2–0.4) | 114 | −0.1 (−0.7–0.8) | 35 | 0.0 (1.2–0.7) | |||
BMI Z-score at worst flare | 0.434 | 0.453 | 0.392 | 155 | −0.7 (−1.3–0.1) | 114 | −0.7 (−1.2–0.4) | 35 | −0.8 (−1.2– −0.1) | |||
Systemic steroids | 0.329 | 0.867 | 192 | 66.1% | 131 | 59.5% | 44 | 65.9% | ||||
Azathioprine | 0.305 | 0.728 | 192 | 72.4% | 130 | 65.4% | 44 | 72.7% | ||||
Methotrexate | 0.671 | 0.501 | 192 | 5.7% | 130 | 6.2% | 44 | 9.1% | ||||
Ciclosporin | 0.300 | 1 | 192 | 8.3% | 130 | 4.6% | 44 | 6.8% | ||||
Biologics | 0.456 | 0.255 | 192 | 41.7% | 131 | 34.4% | 44 | 47.7% | ||||
Infliximab | 0.386 | 0.185 | 191 | 40.3% | 128 | 31.3% | 44 | 47.7% | ||||
Adalimumab | 0.685 | 0.754 | 191 | 7.9% | 128 | 7.0% | 44 | 4.5% | ||||
Months from diagnosis to biological therapy | 0.357 | 0.965 | 0.565 | 77 | 14.6 (6.3–29.9) | 42 | 12.1 (7.9–24.0) | 21 | 14.1 (4.7–29.1) | |||
Age at first biological therapy | 0.553 | 0.711 | 0.640 | 77 | 13.6 (10.9–15.3) | 43 | 12.8 (10.5–15.1) | 21 | 13.4 (10.8–15.8) | |||
IBD-related surgery | 0.447 | 1 | 192 | 9.4% | 131 | 6.9% | 44 | 6.6% | ||||
Times hospitalized for IBD flare | 0.691 | 0.707 | 0.791 | 162 | 2.0 (1.0–3.0) | 123 | 1.0 (1.0–2.5) | 35 | 2.0 (1.0–2.5) | |||
Hospitalizations for IBD flare per year | 0.463 | 0.878 | 0.755 | 113 | 0.6 (0.2–0.9) | 82 | 0.6 (0.3–1.0) | 29 | 0.6 (0.3–0.9) | |||
Days hospitalized for IBD flare per year | 0.935 | 0.548 | 0.784 | 112 | 4.6 (1.5–7.7) | 82 | 3.5 (1.3–7.7) | 29 | 4.9 (2.5–8.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brylak, J.; Nowak, J.K.; Dybska, E.; Glapa-Nowak, A.; Kierkuś, J.; Osiecki, M.; Banaszkiewicz, A.; Radzikowski, A.; Szaflarska-Popławska, A.; Kwiecień, J.; et al. Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease. Medicina 2024, 60, 1243. https://doi.org/10.3390/medicina60081243
Brylak J, Nowak JK, Dybska E, Glapa-Nowak A, Kierkuś J, Osiecki M, Banaszkiewicz A, Radzikowski A, Szaflarska-Popławska A, Kwiecień J, et al. Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease. Medicina. 2024; 60(8):1243. https://doi.org/10.3390/medicina60081243
Chicago/Turabian StyleBrylak, Jan, Jan K. Nowak, Emilia Dybska, Aleksandra Glapa-Nowak, Jarosław Kierkuś, Marcin Osiecki, Aleksandra Banaszkiewicz, Andrzej Radzikowski, Anna Szaflarska-Popławska, Jarosław Kwiecień, and et al. 2024. "Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease" Medicina 60, no. 8: 1243. https://doi.org/10.3390/medicina60081243
APA StyleBrylak, J., Nowak, J. K., Dybska, E., Glapa-Nowak, A., Kierkuś, J., Osiecki, M., Banaszkiewicz, A., Radzikowski, A., Szaflarska-Popławska, A., Kwiecień, J., Buczyńska, A., & Walkowiak, J. (2024). Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease. Medicina, 60(8), 1243. https://doi.org/10.3390/medicina60081243